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Abstract
Unmanned Aerial Vehicles (UAVs) are an emerging technology with the potential to be used in various sectors for various 
applications and services. In wireless networking, UAVs can be used as a vital part of the supplementary infrastructure to 
improve coverage, principally during public safety emergencies. Because of their affordability and potential for widespread 
deployment, there has been a growing interest in exploring the ways in which UAVs can enhance the services offered to 
isolated ground devices. Large areas may lose cellular coverage following a public safety emergency that impacts critical 
communication infrastructure. This prompts the need for the employment of D2D communication frameworks as a comple-
ment. In such critical conditions, timely response and network connectivity are essential factors for reliable communication. 
This study focuses on the mathematical models of UAV-based wireless communication in the context of disaster recovery. 
Particularly, we aim to model a queuing framework comprising UAVs as mobile relay nodes between the stranded user 
devices and neighbouring operational base stations. We present an iterative solution with a novel method for generating 
initial conditions for the two-stage queuing model. The approximate approach presented is validated for its accuracy using 
discrete-event simulation. The effects of various factors on performance measures are also analysed in detail. The validation 
results show that the discrepancy between the analytical approach and the simulation is less than 5%, which is the confidence 
interval of the simulation.

Keywords  UAV relay nodes · Disaster recovery environment · Two-stage open queuing networks · Iterative queuing 
solution · Discrete-event simulation

1  Introduction

Uninterrupted coverage is a vital aspect of disaster recovery 
communication infrastructure, due to the dynamic nature 
of factors affecting both stranded individuals and search 
and rescue teams. Hence, the need for continuous network 
coverage strategies becomes evident. This can be achieved 
through on-ground devices [1] and UAVs [2]. Focusing on 
UAVs, their mobility enhances resource management and 
provides greater control to search and rescue authorities.

Public safety emergencies, whether man-made (e.g., ter-
ror attacks) or natural (e.g., earthquakes), can lead to the 
compromise of wireless network base stations due to physi-
cal damage or power outages. Current UAV frameworks for 
addressing network needs may face criticism for resource 
optimisation or being dependent on continuous ground 
device operation for effectiveness. These challenges sig-
nificantly hinder search and rescue operations, where speed 
and precision are critical. Such operations require targeted 
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information about individuals in the disaster recovery area. 
In this context, a streamlined infrastructure framework with 
minimal overhead is essential.

Mobile devices are well-suited for tracking the move-
ment and location of stranded individuals in inactive cells. 
Connecting these devices to operational base stations in 
neighbouring cells can be achieved through various means. 
Therefore, both academia and industry have investigated 
strategies to develop practical solutions, with recent research 
highlighting the use of UAVs to overcome these challenges.

In [3], UAV networks for disaster management are dis-
cussed, along with open research issues. The optimization 
of UAV flight paths for device-to-device (D2D) communi-
cation in disaster scenarios to meet energy constraints is 
presented in [4]. The study in [5] explores relaying with 
multiple UAVs involving multi-hop and dual-hop links, as 
well as the determination of optimal hovering positions. 
It’s important to note that these schemes primarily focus on 
stationary or hovering UAVs acting as substitute base sta-
tions and relay nodes. In [5], two typical multi-UAV relay-
ing schemes involving a single multi-hop link and multiple 
dual-hop links are also examined, with a focus on deriving 
optimal hovering positions.

One popular UAV-assisted method of alleviating wire-
less networking needs in a disaster recovery situation is 
employing UAVs as substitute base stations. In this case, 
the UAV hovers above the stranded cell and provides cellular 
coverage for data and voice packets to the mobile devices 
on the ground. In such scenarios, the UAV deployed is not 
mobile, and the concept does not provide for incorporating 
the mobility-related factors into the models presented. An 
integrated approach utilising both UAVs and ground cluster 
heads is explored in [2]. The study delves into two main sce-
narios. The first scenario employs a single stationary UAV 
within a stranded cell, which links to an emergency com-
munication vehicle located at a distance. This is facilitated 
by multiple UAV relay nodes positioned between the source 
(the stationary UAV in the stranded cell) and the destination 
(the emergency communication vehicle). It’s important to 
note that neighbouring cells have fully operational base sta-
tions in this scenario, which aligns with our study’s focus 
on localized disaster areas. The second scenario involves 
ground clusters communicating with a selected cluster head, 
which then communicates with a stationary UAV hovering 
above the stranded cell. The hovering UAV, in turn, connects 
to one or more relay nodes (other UAVs) positioned between 
it and an emergency communication vehicle outside the dis-
aster recovery area. This vehicle acts as a mobile makeshift 
base station, bridging the gap between the stranded cell and 
operational stations beyond the disaster area. In this case, 
multiple stationary UAVs are used as relay nodes due to 
their immobility. These scenarios provide a relevant context 

for our study, particularly the first scenario that deals with 
neighbouring operational base stations.

There has been extensive research into using UAV-
assisted frameworks for various practical applications, 
including disaster recovery, as seen in [6]. Recently there 
has been a particular focus on framework modelling, i.e., 
defining the optimum conditions for which UAV-assisted 
network enhancement can be applied as well as designing 
UAVs for use in disaster recovery [2, 7–9]. We have encoun-
tered research on various general aspects of queuing analysis 
in UAV-assisted communications. For instance, in [10], a 
queuing analysis approach is presented for multi-hop net-
works. Such an approach could be instrumental in modelling 
queues for ad-hoc scenarios such as Flying Ad-Hoc Net-
works (FANETs). All these form a firm foundation for our 
goal to add to work that includes mobile UAV relay nodes 
and implements an iterative method of solving for queuing 
performance measures in the context of disaster recovery.

The analytical models presented in this study provide an 
accurate approach for queuing analysis, allowing the inclu-
sion of the required devices and heterogeneous network links 
in the communication chain. Additionally, the presented ana-
lytical solution is computationally more efficient compared 
to simulation-based evaluations. The contributions of this 
study can be summarised as follows:

•	 The operational approach of the fully mobile UAV-RNs, 
focused on the efficient provision of uninterrupted wire-
less service for isolated mobile devices with the support 
of surviving ground base stations (BSs), is examined.

•	 A two-stage open queuing model is introduced, incorpo-
rating relaying and feedback mechanisms for D2D com-
munication within the UAV-assisted wireless network 
improvement framework during disaster recovery.

•	 To mitigate the well-known state explosion problem 
which is common for the elementary solutions based on 
systems of simultaneous equations [1, 11], an iterative 
solution method for the two-stage open queuing networks 
[12] is further improved for the specific scenarios consid-
ered.

•	 An augmented approach is introduced to generate the ini-
tial conditions required to kick off the iterative method.

•	 The iterative method results are presented compara-
tively in terms of accuracy and efficacy with the results 
obtained by discrete event simulation for validation. The 
results presented have less than 5% discrepancy, which is 
within the confidence interval of the simulation program, 
and the iterative approach is significantly more efficient 
in terms of computation time.
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2 � Related work

Recently, surveys [6, 13] have highlighted various wireless 
communication scenarios where UAVs can enhance net-
work throughput, particularly as hovering BSs. They address 
issues like network performance, service stability, physical 
layer considerations (e.g., non-line-of-sight communications 
analysis), and the sustainability of UAV-based networking 
in comparison to more traditional solutions.

In all of these discussions, the prevailing sentiment is that 
the benefits of UAV-based solutions, including their flex-
ibility, on-demand deployment, high mobility, and energy 
efficiency [13], outweigh the drawbacks like limited bat-
tery power, no-fly zone restrictions, and safety concerns. In 
essence, the advantages justify the effort needed to mitigate 
the disadvantages.

In the context of this study’s subject matter, it’s essential 
to mention existing research on UAV-based or UAV-assisted 
disaster recovery management for public safety networks 
(PSNs). Table 1 displays the studies considering the per-
formance evaluation of these systems. The table supports 
our claim that the majority of existing research focuses on 
framework modelling and addressing physical challenges in 
the deployment of UAV-based disaster recovery networks. 
Our aim in this study is to enhance this field by contributing 
to explicit queuing analysis for UAV-assisted frameworks 
within this context.

In studies considering UAVs as mobile relay nodes, 
such as [6], UAVs are used as mobile pure relay nodes 

in Wireless Sensory Networks (WSNs). They collect 
data from WSNs in the field and transmit it to a central 
data collection point. This approach replaces traditional 
static relay nodes, which led to problems like packet loss 
and single points of failure due to a multi-hop topology. 
Another example, [8] involves UAVs serving as mobile 
pure relay nodes in dynamic environments. These UAV 
relay nodes facilitate communications within a Vehicu-
lar Ad-Hoc Network (VANET) by collecting data packets 
from source nodes (typically vehicles) and delivering them 
to sink nodes (the destination vehicles). This back-and-
forth operation helps the VANET overcome challenges 
associated with the rapid mobility of nodes.

UAVs adopting a “dump-truck” approach selectively 
utilize transmission energy only when within range of the 
source/destination [22], thus consuming less energy com-
pared to static relay nodes acting as substitute BS, which 
require continuous transmission energy during their entire 
hovering time. Furthermore, flexibility is evident in the 
ability to adjust infrastructure configuration to cater to the 
specific needs of the scenario, including coverage area, 
UAV velocity, and transmission rates.

Another relevant study involving UAVs in wireless net-
working applications is [7], where Fenyu Jiang and Chris 
Philips investigate improving the throughput of UAVs 
deployed in disaster recovery scenarios, akin to our case. 
They establish a connection between UAV-RN bandwidth, 
throughput, and UAV trajectory to enhance network per-
formance. The study results in a UAV-RN trajectory plan-
ning scheme employing the Dual-Sampling method for 

Table 1   Performance evaluation methods used in literature

Studies Evaluation method Contribution

[14] USARSim simulation environment A post-disaster solution for an emergency communications system 
established by UAVs

[15] Custom simulation An analysis of the advantages gained by harnessing the mobility of 
UAVs for disaster scenarios

[16] Physical deployment/experimentation A solution using unmanned aerial vehicles (UAVs as data mules 
or routers) to mitigate issues caused by sensor network faults in 
monitoring natural disasters

[17] Better Approach To Mobile Ad-hoc Networks (BATMAN) dis-
covery & routing protocol

Addressing challenges to enhance the reliability and performance 
of collaborative autonomous aircraft in aerial sensing during 
disaster recovery

[18] Python software simulation and physical demo using quadrotor 
UAVs

A novel approach for handling a large-scale autonomous deploy-
ment of a UAV communications network for disaster recovery

[19] Opportunistic Network Environment (ONE) simulator testbed Proposes a model for a FANET scenario assisted by Delay Tolerant 
Networks (DTN). The analytical perspective focuses on address-
ing challenges in communication and data exchange among UAV 
nodes for sparse FANETs

[20] 3D environment rendering Addressing mobility management and coverage lifespan through 
a distributed mobility algorithm based on the virtual spring model

[21] Modelling and custom simulation A dynamic framework empowering ground users to autonomously 
allocate transmission power in either UAV-based or MBS-based 
communication is presented
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maximising data transmission throughput, bandwidth 
scheduling and contention schemes. This article provides 
a valuable reference for our proposed model’s framework 
parameters. It’s worth noting that while the paper delves 
deeply into the mathematical aspects of the framework, 
including bandwidth scheduling and trajectory planning, it 
lacks a queuing analysis of the UAV-based relaying solution. 
Therefore, our study offers crucial insights to fill this gap.

The framework presented in [1] serves as an example, 
for modelling similar interactions. It involves using mobile 
cluster heads as relay nodes (RNs) to extend coverage to 
stranded user devices during disaster recovery. The ground 
relay nodes are devices within the operational base sta-
tion’s coverage area, providing signals to devices outside 
the base station’s coverage. These relay nodes may be 
chosen randomly from devices on the edge of the opera-
tional cell or through an intelligent selection algorithm. 
Any device at the operational cell border, termed a “Relay 
UE” (Relay User Equipment), could potentially serve as 
a ground relay node. However, this approach introduces 
another problem: inconsistent signal strength when the 
current ground relay node’s battery power depletes. This 
inconsistency can hinder search and rescue operations, 
particularly if emergency packet transmissions in the dis-
aster area experience unpredictable delays. These issues 
form the basis of our proposed model and will henceforth 
be referred to as the comparative model.

The queuing system used in [1] is a Markov model. The 
first queuing stage is for packets received from the stranded 
mobile devices by the relay node. Hence the stage is referred 
to as the “uplink stage”. In the second stage, the received 
packets are subsequently forwarded to the operational BS 
in whose area of coverage the RN is. This stage is hence 
referred to as the “relay stage”. It is also important to note 
that the queuing model takes into account packet loss proba-
bility (denoted by 1 − �1 ) between the uplink and relay stages 
as well as the feedback probability (denoted by �2 ). The 
framework proposed aims to provide continuous cell signal 
for voice and data communications to stranded devices in the 
disaster area. The iterative solution presented is successfully 
applied to a 3D Markov process with good levels of accuracy 
and proved to be computationally light in comparison to 
the solution based on a system of simultaneous equations 
explored for the same scenario.

In [11], a scheme aimed at improving network speed by 
introducing a 5 G femtocell in a 4 G macrocell is investi-
gated. The resulting framework also calls for the use of a 
two-stage tandem queuing model. Unlike in [1] the proposed 
tandem queuing model employed in this paper constitutes 
tandem Markov queues i.e., an M/M/c/L queue followed by 
an M/M/1/L queue. An analytical solution based on a system 
of simultaneous equations is improved upon by introducing a 

product-form solution and an accompanying custom simula-
tion to evaluate the proposed framework.

To this point, we have presented the building blocks of 
the work tendered by our own study. It can therefore be 
gleaned from this that there is room for improvement in the 
research available regarding explicit analysis of workable 
solutions presented for the use of UAVs as RNs in disaster 
recovery, in terms of the queuing and consequent efficient 
analytical solution.

3 � System model

In this section, the role of the UAVs as relay nodes deployed 
in the disaster area is explained, and the queuing model is 
presented with the subsequent derivations and solutions 
based on a system of simultaneous equations.

3.1 � The proposed framework

Consistent with the comparative case study in [1], the pre-
cise placement of the relay node within the disaster area is 
critical. The ideal location ensures equal signal strength for 
both packet transmission up-link and relay stages. Further-
more, the UAV relay’s touted rapid mobility is achieved by 
circulating the stranded cell at an optimal speed, maintaining 
area coverage without compromising packet delivery.

While we adopt the conical area coverage concept from 
[9], we maintain the traditional hexagonal cell shape com-
mon in wireless networks. This choice allows us to plan 
for a specific number of neighbouring cells in our proposed 
framework. Furthermore, as suggested in [23], we recom-
mend implementing this framework using fixed-wing UAVs 
rather than rotary ones, as the former offer advantages such 
as smaller size, lower energy consumption for variable alti-
tudes, higher speed, greater payload capacity, and longer 
flight durations.

Fig. 1   Ideal UAVRN placement in the proposed framework
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In Fig. 1, the optimal UAV relay node placement is illus-
trated at the border of two cells. This position is considered 
ideal because it ensures continuous coverage for as many 
ground UEs as possible in the stranded cell while remain-
ing within the operational base station’s coverage area. Fig-
ure 2 below depicts the operational approach of the proposed 
framework when considering these factors.

In Fig. 2, the middle cell (Cell 7) has an operational 
BS, whereas all the BSs in the neighbouring cells (Cells 1 
to 6) have sustained damage and are not operational. The 
UAV-RN navigates the boundaries of Cell 7, extending its 
coverage to the stranded cells and relaying SOS packets 
to the emergency channel of the operational BS in Cell 7. 
The mobile UAVs are employed in a similar manner to the 
studies presented in [6, 8], and [24]. The UAV flies in a 
trajectory along the periphery of the region of interest with 

a speed that allows relaying the packets. Search and rescue 
authorities use this data to locate device holders in the dis-
aster area. This process is repeated to support search and 
rescue operations. This configuration aims to provide relay 
service to as many UEs as possible. The UEs can send their 
SOS packets while they are within the coverage area of the 
UAV-RN, which circulates in proximity (within the range 
of the operational Base Station) to the operational cell. In 
the event that a UE moves to a region that the UAV-RN 
can cover during its navigation, it can send the SOS packets 
when the UAV-RN visits that particular region. Please note 
that the configuration for different cellular setups may vary, 
and the generated traffic can easily be adapted to be covered 
as the mean arrival rate to the UAV-RN. It is critical to study 
the interaction between the UAV-RN and the operative BS 

Fig. 2   Proposed framework 
with highly mobile UAV-RN
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in order to make sure that both of them are able to cope with 
the traffic generated.

Considering the realism of the framework and the viabil-
ity of a mathematical model, the following assumptions are 
present for the modelling attempt: 

	 1.	 This framework does not cater to voice and data trans-
mission for stranded cell devices. Instead, it employs 
compact emergency SOS packets, which introduce 
far less traffic for transmission by both devices and 
the UAV-RN. These SOS packets contain the device’s 
serial number (16 bytes), GPS coordinates (6 bytes), 
and timestamp (date and time in hours, minutes, & 
seconds, 13 bytes). This totals approximately 35 bytes 
per packet, in stark contrast to the average data packet 
size of 1000 to 1500 bytes as per [25].

	 2.	 The stranded devices have SOS capabilities: This fea-
ture already exists for most, if not all, current smart 
devices. At the very least, as per 5 G (seeing as this is 
one of the target network infrastructures for this frame-
work, we are able to use its device density estimates) 
research [26], it is expected that there will be at least 
one smart device with SOS capabilities in every square 
metre ( 106 devices per square kilometre). This main-
tains the high probability that a stranded individual 
is within a reasonable distance from a device that 
is broadcasting SOS packets in the event that some 
devices are rendered physically unable to broadcast the 
SOS packet.

	 3.	 At least one neighbouring cell must have an operational 
base station, as depicted in Fig. 2, for the framework to 
maintain continuous coverage.

	 4.	 For the variable altitude path, the proposed implemen-
tation in [9] is employed, which allows us to control 
the number of devices within the area of coverage by 
varying the altitude of the UAV relay node during its 
flight.

	 5.	 The ground device broadcasting scheme is not such 
that the devices are synchronised to broadcast the SOS 
packets simultaneously. Instead, it is arbitrary. To this 
effect, the primary arrival rate at the UAV-RN stage, 
�1 , is essentially predicated on the assumption that per 
unit of time, a number of devices within the range of 
the UAV-RN’s area of coverage are broadcasting their 
respective SOS packets.

	 6.	 The UAV-RN receiving channel is always listening for 
a connection with the stranded devices on the ground. 
Upon establishment of connection, the packets are 
received as long as they are being broadcast.

	 7.	 The stranded devices are uniformly distributed 
throughout the cell.

	 8.	 The packet handling scheme at the Base Station end-
point is intelligent enough to eliminate duplicate SOS 

packets received due to originating packets (those 
within the coverage area of the operational base sta-
tion) being in the area of coverage of the UAV-RN. 
As mentioned in assumption 1, the SOS packets are 
labelled with a field containing the serial number of the 
device from which the packet originated. This infor-
mation (for the originating devices in the cell with 
the operational BS) is part of the routing information 
present at the BS; hence, the BS is able to eliminate 
duplicate packets delivered by the UAV-RN. In an 
unlikely case where a small fraction of duplicate mes-
sages occur at BS, the relatively small SOS packets are 
not expected to overwhelm the BS.

	 9.	 The operational base stations in the disaster area trans-
mit a feedback packet acknowledging receipt of the 
UAV-RN’s payload. This is a vital part of the queuing 
model.

	10.	 Co-tier interference is known to arise among network 
elements that belong to the same tier within the net-
work. In the proposed framework, co-tier interference 
in D2D communication that the SOS packet broadcasts 
may cause is assumed to be handled by the communi-
cation standard. The co-tier interference incurred at 
a D2D receiver from a neighbouring D2D transmit-
ter can be mitigated through proper user pairing and 
frequency assignment techniques [27]. Power control, 
beam forming, or spectrum slicing methods can also 
be used to manage the possible interference [28]. Fur-
thermore, some studies also use approaches such as 
Stackelberg game formulation, where the UE pays the 
price as an incentive to the BS, causing energy trad-
ing and interference pricing [29]. Considering all these 
approaches, the queuing model of the system should be 
able to accommodate various rates of incoming traffic 
to UAV-RN.

3.2 � Queuing model

This study presents an analytical model to investigate the 
queuing performance of the proposed framework, discussed 
at length in the preceding subsection. When the UAV is 
within range of both the stranded devices on the ground and 
an operational base station, a queuing model can be used 
for the SOS packets received from the stranded devices and 
relayed to the operational BS. Simultaneously, the opera-
tional base station will be servicing the devices in its own 
coverage area. Additionally, we visualise the base station 
responding to the UAV relay node with a feedback packet 
acknowledging the reception of the payload. This introduces 
the proposed two-stage tandem M/M/1/L Markov queuing 
model shown in Fig. 3. Please note that the term “User 
Equipment(s)”, denoted “UEs” throughout this study, refers 
to any connected mobile devices on the ground.
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We’re using M/M/1/L queues in our model because the 
small SOS packets can already serve many devices quickly. 
In such a case, multiple servers (meaning more channels 
in the UAV relay node/base station) aren’t needed. The 
parameters used in the queuing model, whose notations are 
matched with their respective definitions in Table 2, can be 
explained as follows: 

1.	 Arrival Rates: The primary arrivals are the packets origi-
nating from the cell represented as �1 for stage one and 
�2 for stage two. The inter-arrival times follow an expo-
nential distribution [11, 30, 31]. The secondary arrivals 
are represented as �1 for stage one and �2 for stage two. 
These arrivals are computed as the product of �1�1 and 
�2�2 , When packets arrive, they are served if the channel 

is free. If the channel is busy, the packets go into their 
respective queues and wait for their turn to be served.

2.	 Service rates: Service times are exponentially distributed 
[11, 30, 31], and the service rates for stages one and 
two are denoted by �1 and �2 respectively. Packets from 
stage one may be forwarded to stage two with the prob-
ability �1 , or the packets may depart with the probability 
(1 − �1).

3.	 Forwarding probabilities: The probabilities are repre-
sented as �1 and �2 for stages one and two, respectively.

4.	 Queue lengths: The queue capacity of the first stage is 
N, and the second stage is L.

A two-dimensional Markov process can be used to rep-
resent the tandem system shown in Fig. 3. The Markov 

Fig. 3   Two-stage queuing model with feedback for the proposed framework

Table 2   Notations and their 
definitions

Notations Definitions (trace-based)

�1 Mean arrival rate at the UAV relay node (from stranded UEs)
�2 Mean arrival rate at the (operational) Base Station (from its assigned 

ground devices)
�1 Mean service rate at the UAV relay node
�2 Mean service rate at the (operational) BS
�1 Probability of packet forwarding at the UAV-RN stage
�2 Probability of packet feedback at the operational BS stage
�1�1 Forwarding rate of packets from stage one (UAV-RN) to stage two (BS)
�2�2 Feedback rate of packets from stage two (BS) to stage one (UAV-RN)
(1 − �1)�1 Departure rate of packets from stage one (due to packet loss)
(1 − �2)�2 Departure rate of packets from stage two (due to service completion)
u1 System utilisation/non-idle time portion at stage one
u2 System utilisation/non-idle time portion at stage two
�1 System throughput at stage one
�2 System throughput at stage two
N Queue capacity at the UAV-RN stage
L Queue capacity at the operational BS stage
� Limit governing convergence (in the iterative solution, Sect. 4.3)
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process can be expressed on a finite or semi-finite lattice 
strip as Z = [I(t), J(t)] for t ≥ 0 having a state space of size 
[0, 1, 2, ...,N] × [0, 1, 2, ..., L] [11, 31, 32]. Z is an irreduc-
ible Markov process to represent the number of packets 
in the UAV-RN and BS queuing stages, respectively. The 
state diagram is illustrated in Fig. 4. In the state transition 
diagram, the system state is denoted/described by the vari-
ables i (the instantaneous number of packets in the UAV-
RN stage of the tandem queues) and j (the instantaneous 
number of packets in the BS stage of the tandem queue). 
The horizontal transitions represent a change in the first 

stage, while vertical transitions represent a change in the 
second stage.

For a rough idea of the logic of the transition diagram, 
consider the state labelled (i, j) in Fig. 4. The upward tran-
sition would increment j. This translates to an originating 
packet within the cell of the operational base station, i.e., 
a primary arrival in the second stage denoted by �2 . This 
transition logic spawns the two-dimensional lattice that 
allows us to trace the behaviour of our queuing model 
given different stimuli denoted in Table 2.

Considering the two-dimensional Markov process in 
Fig. 4, it is possible to derive the balance equations that 

Fig. 4   State transition diagram for two-dimensional Markov processes
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can be used to compute the state probabilities, P(i, j), for 
each region of the state transition diagram as follows:

Region 1: where i = 0, j = 0 Region 9: where 0 < i < N (maximum capacity for the 
up-link stage), 0 < j < L (maximum capacity for the relay 
stage);

All possible states in the lattice fall under one of the 
above nine regions whose state probabilities are expressed 
in Eqs. 1 to 9.

3.2.1 � System of simultaneous equations solution

It is possible to solve the system of balance equations with 
(N + 1) × (L + 1) state probabilities using various methods. 
A can be defined as a matrix of instantaneous transition 
rates that holds the coefficients of the system of simultane-
ous equations of all state probabilities. We can solve this 
system for the state probabilities by considering the equation 
AX = B , where the matrix X holds the state probability vari-
ables ( Pi,j’s) and matrix B holds the result of the equations 
(in our case, this matrix will hold zeros for all the equations 
except normalisation equation which states that the sum of 
all Pi,j ’s is 1).

In this study, we employed the effective numpy librar-
ies in Python to implement this particular method and 
solve for state probabilities from the system of simultane-
ous equations. This solution requires solving the system 
of (N + 1) × (L + 1) simultaneous equations to obtain the 
(N + 1) × (L + 1) state probabilities. Although the perfor-
mance measures computed using this solution are within the 
desired error margin of 5% consistent with the confidence 
interval of the simulation program, the method proves to 
be severely computationally heavy for queue sizes above 
(150 + 1) × (150 + 1) . To this effect, we shall introduce a 
more computationally sound iterative solution.

4 � The iterative solution

Having presented the queuing model and an accompanying 
solution, it would be prudent to expand the solution to fit a 
more realistic implementation. The general procedure for the 
iterative solution [12] can be given as follows: 

(8)

Pi,j =
Pi−1,0 ∗ �1 + Pi,1 ∗ �2 + Pi+1,0 ∗ �1 + Pi−1,1 ∗ �2

�1 + �2 + �1 + �1

(9)
Pi,j =

Pi,j−1 ∗ �2 + Pi−1,j ∗ �1 + Pi−1,j+1 ∗ �2 + Pi,j+1 ∗ �2 + Pi+1,j ∗ �1 + Pi+1,j−1 ∗ �1

�1 + �1 + �2 + �1 + �2 + �2

Region 2: where i = 0, j = L (maximum capacity for the 
relay stage);

Region 3: where i = N (maximum capacity for the up-
link stage), j = L (maximum capacity for the relay stage);

Region 4: where i = N (maximum capacity for the up-link 
stage), j = 0;

Region 5: where i = 0, 0 < j < L (maximum capacity for 
the relay stage);

Region 6: where 0 < i < N (maximum capacity for the up-
link stage), j = L (maximum capacity for the relay stage);

Region 7: where i = N (maximum capacity for the up-link 
stage), 0 < j < L (maximum capacity for the relay stage);

Region 8: where 0 < i < N (maximum capacity for the 
up-link stage), j = 0;

(1)P0,0 =
P1,0 ∗ �1 + P0,1 ∗ �2

�2 + �1

(2)P0,L =
P0,L−1 ∗ �2 + P1,L ∗ �1 + P1,L−1 ∗ �1

�1 + �2 + �2

(3)PN,L =
PN−1,L ∗ �1 + PN,L−1 ∗ �2

�2 + �1

(4)PN,0 =
PN−1,0 ∗ �1 + PN−1,1 ∗ �2 + PN,1 ∗ �2

�1 + �1 + �2

(5)

P0,j =
P0,j+1 ∗ �2 + P1,j ∗ �1 + P0,j−1 ∗ �2 + P1,j−1 ∗ �1

�2 + �2 + �1 + �2

(6)

P
i,L =

P
i,L−1 ∗ �2 + P

i−1,L ∗ �1 + P
i+1,L ∗ �1 + P

i+1,L−1 ∗ �1

�1 + �1 + �2 + �2

(7)PN,j =
PN−1,j ∗ �1 + PN,j−1 ∗ �2 + PN,j+1 ∗ �2 + PN−1,j+1 ∗ �2

�2 + �1 + �2 + �1
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1.	 Initial conditions for P(i,  j) for i = 0, 1, 2, 3, ...,N 
and j = 0, 1, 2, 3, ..., L are calculated using various 
approaches and Markov process logic.

2.	 The balance equations given in Eq. 1 to Eq. 9 are used 
to calculate the correct steady state probabilities.

3.	 Various performance measures, such as Mean queue 
length (MQL), can be calculated for the queuing system 
considered.

4.	 Second and third steps are repeated until the selected 
performance measure (MQL for our case) converges suf-
ficiently as per the chosen limit of convergence, �.

4.1 � Initial conditions

Consider an example with the state transition diagram shown 
in Fig. 5 for a simple Markov M/M/c/L queue with Markov 
exponentially distributed inter-arrival times and service 
times.

Taking constant arrival ( � ) and service ( �i’s, for 1 ≤ i ≤ c , 
and �i = i� ) rates, we can derive the state probabilities as 
follows;

We can then calculate the state probabilities of the individual 
M/M/1/L (noting that c = 1 in our case) queues that consti-
tute our tandem queuing model in Fig. 3 as follows:

for i < c,

(10)P0 =
1

�

∑c−1

i=0

1

i!
∗ �i

�

+

�

∑L

i=c

1

c!
∗

1

c

(i−c)
∗ �i

�

and for i ≥ c

Using the state probabilities, Pi ’s for i = 0, 1, 2, 3, ...,N 
and Pj ’s for j = 0, 1, 2, 3, ..., L , we can obtain the initial 
values of the state probabilities for our two-dimensional 
Markov process, Pi,j’s, by following the well known Markov 
Reward Modelling approach [33] and cross multiplying the 
state probabilities of the up-link and relay stages such that 
Pi,j = Pi ∗ Pj for i = 0, 1, 2, 3, ...,N and j = 0, 1, 2, 3, ..., L.

4.1.1 � Accounting for relaying and feedback

Please note that the approximate state probabilities com-
puted to set the initial conditions do not account for the for-
warding and feedback probabilities ( �1 and �2).

It is possible to adapt the use of an effective arrival rate 
(denoted as �e ) from [11] similarly maintained below c�1 
(i.e., �1 since c = 1 ) for the system to be at stable state. 
Another imperative point to note is that we will apply the 
use of �e in calculating the initial Pi and Pj state probabilities 
using Eqs. (11) and (12) to propagate the effect of �1 and �2 
throughout the queue contrary to its application to the first 
stage only in [11]. The derivation of �e for the introduced 
tandem system comprising two M/M/c/L queues (where 

(11)Pi =
1

i!
∗ �i ∗ P0

(12)Pi =
1

c!
∗
1

c

(i−c)

∗ �i ∗ P0

Fig. 5   State transition diagram for M/M/c/L queue

Table 3   Derivation of effective 
arrival rate, �

e

Iteration Feedback Effective arrival rate, �
e

0 �

1 �� � + �� = �(1 + �)

2 �(1 + �)� � + �� + ��2 = �(1 + � + �2)

3 �(1 + � + �2)� � + �� + ��2 + �3 = �(1 + � + �2 + �3)

. . .

. . .

. . .
i �(1 + � + �2 + ... + �i) �

∑i

n=0
�n
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c = 1 ) follows the iterative logic in Table 3 and the subse-
quent Eqs. (13) to (19) below:

From the above, we can arrive at the conclusion that;

which we can then express as,

Expanding this notation for the two-stage queuing for which 
we are modelling, we can express the effect of �1 and �2 as;

since the above series notation can be expressed as

�e can ultimately be contracted into the formula;

This hitherto derived effective arrival rate, �e , is the value 
used to calculate the initial state probabilities, Pi ’s and Pj ’s 
(of the individual M/M/1/L queues comprising our two-stage 
model) required for step (i) mentioned in the description of 
the iterative solution at the start of Sect. 4. We now have the 
parameters required to set up the initial conditions that will 
kick off our iterative model.

4.2 � Performance measures

The performance measures tracked to verify the validity 
of the proposed queuing model in this study are the mean 
queue length, throughput and response time. Equations 
(20) to (25) are used to obtain the analytical results of the 
above queuing performance from the state probabilities, 

(13)�e = �

∞
∑

n=0

�n;

(14)�e = � ∗
1

1 − �
=

�

1 − �

(15)�e =�1 + �1�1�2 + �2�2...

(16)�e =�1 + �1�1�2 + �1(�1�2)
2 + �2�1�

2

2
+ �2�2...

(17)
�e =�1 + �1�1�2 + �1(�1�2)

2 + �1(�1�2)
3 + �2�

2

1
�3
2
+ �2�1�

2

2
+ �2�2...

(18)

�
e
= �1

i
∑

n=0

(�1�2)
n + �2�2

0
∑

n=i

(�1�2)
n;�

e

= �1

l
∑

n=0

(�1�2)
n + �2�2

0
∑

i=n

(�1�2)
n

L
∑

n=0

(�1�2)
n =

1

1 − �1�2
,

(19)�e =
�1 + �2�2

1 − �1�2

Pi,j’s, at which the model will have converged at the end 
of the iterative run.

Mean queue length at the UAVRN stage,

Mean queue length at the BS stage,

Throughput at the UAVRN stage,

Throughput at the BS stage,

Response time at the UAVRN stage,

Response time at the BS stage,

4.3 � Convergence

Following step (iv) of the iterative method, the next phase of 
the iterative solution simply involves running the loop that 
is used to assign the state probabilities, Pi,j’s, using the Eqs. 
(1) to (9) with the term Pi,j as the subject of the formulae. 
As explained in 3.2, the aforementioned balance equations 
cater for all the possible regions in the 2d transition lattice in 
Fig. 4 that results from the implementation of the proposed 
two-stage queue.

The number of iterations required is governed by the for-
mulae used to check for convergence after each iteration; 
( |MQLold −MQLnew| < 𝜖 ). It would be prudent to note that 
the stability of the system, i.e., utilisation u ≤ 1 and the sum 
of all state probabilities, Pi,j ’s ≈ 1.0, is maintained through-
out the run of the iterative analytical solution.

4.4 � The simulation program

The in-house simulation program used to validate the results 
of the analytical model and the iterative solution approach 

(20)MQLUAVRN =

L
∑

j=0

j

N
∑

i=0

Pi,j

(21)MQLBS =

N
∑

i=0

i

L
∑

j=0

Pi,j

(22)�1 = �1(1 −

L
∑

j=0

P0,j)

(23)�2 = �2(1 −

N
∑

i=0

Pi,0)

(24)RTUAVRN =
MQLUAVRN

�1

(25)RTBS =
MQLBS

�2
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in terms of accuracy as well as efficacy is similar to the ones 
used in studies such as [1, 11, 34, 35]. The results obtained 
from the analytical model and the iterative solution approach 
are presented comparatively with the results from simulation 
software written in C++ language and validated to simu-
late the actual system. The simulation program developed 
is validated using established queuing theory models such 
as M/M/1, and M/M/c as well as results from the literature 
[34, 35].

We use a discrete event simulation program that relies on 
an event-based scheduling approach. This approach depends 
on events and their impact on the system state. We use rela-
tive precision, a commonly employed stopping criterion 
in simulations. In this approach, we halt the simulation at 
the first checkpoint once the condition � ≤ �max is satisfied. 
Here, �max represents the highest allowable value for relative 
precision of confidence intervals at a 100(1 - �)% signifi-
cance level, where 0 < 𝛿max < 1 . Our simulation results fall 
within the 5% confidence interval with a 95% confidence 
level. As a result, we set both � and � to 0.05 as the default 
values in the simulation.

5 � Results and discussions

This section presents the results obtained from the iterative 
analytical solution compared and contrasted with the simula-
tion results. Discussion of the trends observed in the results 
obtained and accompanying explanations are provided.

5.1 � System parameters

In line with proposed models used for heterogeneous net-
works, the radius of the cell is taken to be 1000 ms [36], 
and the line-of-sight range/radius of coverage of the UAV-
RN is taken to be that of a standard disaster management/
search and rescue drone at 1000 ms [37]. The maximum 
velocity, Vmax , of the Intel Aero Ready-to-Fly drone, is 
taken to be 15 m/s from [38]. Nonetheless, our assumption 
rests on the premise that the drone’s consistent and often 
overlapping coverage as it moves along the cell border, 
along with the minimalistic nature of the SOS packets, 
effectively mitigates the direct influence of the UAV-RN’s 
speed on the arrival and service rates, and thus, the perfor-
mance metrics of the queuing model.

Indeed, taking an example of a scenario where the prob-
ability of relaying from stage one to stage two, �1 , is 0.6, 
the probability of a miss (due to line-of-sight issues, poor 
physical conditions caused by the ongoing disaster or its 
aftermath, signal attenuation due to the UAV-RN having 
to fly at a higher altitude than the optimum, etc) would be 
1 − �1 i.e., 0.4. Each of the ground devices is broadcasting 

its SOS packet in a heartbeat rhythm every second (in this 
example) as indicated in the assumptions discussed in 
3.1, with the UAV traversing the sub-cell (ideally the 1km 
length of the side of the macro-cell) at a velocity, Vmax , 
of 15m/s consequently providing continuous coverage to 
the stranded devices. The UAV would provide coverage 
for up to 66.667s thus still being able to pick up the SOS 
packets. This follows the fact that the probability that all 
twenty tries (one for each second) are misses exponentially 
decreases towards a negligible value with each broadcast 
attempt (in this case, the probability of all twenty broad-
casts being misses would be 0.420 ). We can, therefore, 
safely assert that the likelihood of an SOS packet not 
being received during a traversal is down to factors not to 
do with the operational parameters of the UAV-RN, thus 
outside of our control as pertains to this study.

The physical layer parameters of the drone are incor-
porated in the system parameters, especially the UAV-RN 
service rate, �1 , specified throughout this section. As the 
available literature on queue modeling in this specific con-
text is scarce, we have chosen the majority of the queuing 
parameters in this study based on comprehensive research 
from which we developed the proposed solution, as ref-
erenced in [1, 11, 12]. This, naturally, assumes that the 
system’s stability aligns with the mathematical assump-
tions of Markov models.

Based on the assumption that the proposed framework is 
designed to be reliable and not reliant on the existing chan-
nel infrastructure, the UAV-RN and the base station have 
single channels, with the latter designated as an emergency 
channel that remains otherwise unused. We can allocate an 
unused channel to the base station because even with high 
queue capacities, the size of the SOS packets, as discussed in 
Sect. 3.1 is considerably smaller than standard data packets. 
Consequently, it is expected that the bandwidth required for 
this channel would be significantly lower, albeit consistently 
used. Therefore, the overhead cost associated with main-
taining this channel when not in use is anticipated to have 
a negligible impact on the performance of the base station 
link during normal operations.

The standard queue capacity for the emergency channel 
at the operational base station and the UAV-RN is set at 1500 
packets [39]. The usual arrival rate at the UAV-RN stage, 
denoted as �1 , is 500 packets per second, while at the emer-
gency channel of the operational base station, denoted as �2 , 
it is also 500 packets per second. The conventional service 
rate at the UAV-RN stage, labelled as �1 , is 2000 packets per 
second, while at the emergency channel of the operational 
base station, labelled as �2 , it is 1000 packets per second. 
In following subsections, we have examine various relaying 
probabilities ( �’s), arrival rates ( �’s), and service rates ( �
’s) within the limits of system stability when evaluating the 
iterative model.
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5.2 � Numerical results

The graphs are labelled and separated by order of per-
formance measure (mean queue length, throughput then 
response time) for ease of reading as well as compari-
son. Accompanying discussions are provided to aid in 
comprehension.

The set of graphs below (Figs. 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16 and 17) show the effect of relaying probability, 
�1 , and feedback probability, �2 , on the selected performance 
measures - mean queue length, throughput and response 
time. To investigate the effect of �1 , we have maintained the 
standard system parameters specified in the previous Sect. 
(5.1) while increasing the value of �1 until the system is no 
longer stable.

Regarding the mean queue length at the UAV-RN stage, 
denoted as MQLUAVRN , a notable trend is the consistent 
increase in mean queue length as �1 increases. This is to be 
expected due to the high service rate at the UAVRN stage, 
�1 , capped at a constant value of 2000 packets per second. 
Moreover, from the graphs contrasting MQLUAVRN results 
for the analytical and simulation models (Fig. 6 for �1 ; 
Fig. 7 for �2 ), we can identify the jump point of each of the 
performance measures for each �1 value. The “jump point” 
(to which we have also referred interchangeably as critical 
�1 ) refers to the �1 value at which the mean queue length 
of the UAV-RN and/or the BS stage jumps to a value very 
close to the respective queue capacity limit (N or L respec-
tively) thus causing the system to approach instability. In 

Fig. 6   Effect of �1 on UAV-RN Mean Queue Length

Fig. 7   Effect of �2 on UAV-RN Mean Queue Length

Fig. 8   Effect of �1 on BS Mean Queue Length

Fig. 9   Effect of �2 on BS Mean Queue Length
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the graphs depicting the impact of �1 on the mean queue 
length of the UAV-RN stage, this point is marked by a 
clear divergence between the simulation and analytical 
model plots. At this �1 value, the mean queue length sub-
stantially approaches the maximum queue capacity, either 
in the first stage or both, signalling the system’s approach 
to instability. For the range of stable �1 values, the maxi-
mum discrepancy between the analytical and simulation 
values exhibited was 4.0313% . Upon further observation, 
it is also notable that the �1 value at which the jump occurs 
decreases with increasing �1 value; at 600 packets per sec-
ond when �1 = 0.4 , 500 packets per second when �1 = 0.5 , 
400 packets per second when �1 = 0.6.

The chosen �1 values and �1 range never push stage 
one’s MQL to the queue capacity limit, N, thanks to its 
constant high service rate of 2000 packets per second. In 
contrast, stage two consistently reaches the queue capac-
ity before stage one due to its lower service rate, which is 
limited to 1000 packets per second. The critical �1 value 
explored in this section is primarily determined by the 
sudden rise in stage two’s MQL values.

Regarding feedback probability �2 , in Fig. 7, the criti-
cal �1 value, where the simulation and analytical plots 
start to diverge, demonstrates a maximum discrepancy 
of 3.7391% for stable �1 values. This divergence occurs 
when the MQL of the second stage suddenly approaches 
the queue capacity limit L, leading to system instability. 
Maintaining a �1 value of 0.5 while studying the impact of 

Fig. 10   Effect of �1 on UAV-RN Throughput

Fig. 11   Effect of �2 on UAV-RN Throughput

Fig. 12   Effect of �1 on BS Throughput

Fig. 13   Effect of �2 on BS Throughput
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�2 yields identical critical �1 values as those obtained in 
the study of �1 . The choice of �1 = 0.5 is based on the pre-
viously discussed results, where an MQL value of 750 at 
the second stage with �1 = 500 packets per second strikes a 
balance between system utilization and stability. This con-
firms the suitability of the standard parameters mentioned 
in the “System Parameters” section (5.1).

Considering the mean queue length at the BS stage, 
denoted as MQLBS , the trends are highly predictable. 
Similar to the behaviour observed in previous work on the 
impact of vertical upward handover on femtocell mean 
queue length [11], the graphs (see Fig. 8 for �1 and Fig. 9 for 
�2 ) clearly show that as �1 increases, the MQL value rises 
until it reaches a critical point, after which it plateaus as it 
approaches the queue capacity limit L, resulting in system 

instability. In this analysis, the maximum deviation between 
analytical and simulation results was 4.0212%.

Similar to the impact of �1 , the noticeable effect of feed-
back probability �2 is that the critical �1 value is reached 
more rapidly with increasing �2 . This is particularly evident 
when �2 = 0.7 , where the system quickly becomes unsta-
ble. This reinforces the choice of the standard value of 0.5 
for our relaying and feedback probabilities. In this analysis, 
the maximum deviation between analytical and simulation 
results was 2.6687

UAV-RN stage throughput, denoted as �1 , is shown in 
Fig. 10 for �1 and Fig. 11 for �2 , both simulation and ana-
lytical model results indicate that the throughput at the first 
stage increases with rising �1 , but then diverges after reach-
ing the critical �1 . The critical �1 can be identified where the 

Fig. 14   Effect of �1 on UAV-RN Response Time (in seconds)

Fig. 15   Effect of �2 on UAV-RN Response Time (in seconds)

Fig. 16   Effect of �1 on BS Response Time (in seconds)

Fig. 17   Effect of �2 on BS Response Time (in seconds)
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simulation and analytical model values diverge. Up to this 
point, while the system is stable, the maximum discrepancy 
between the simulation and analytical approach is 3.78261.

The same observation applies to the effect of �2 , with the 
added observation that the steadily increasing high through-
put values approach the maximum queue capacity, N for the 
UAV-RN stage and L for the BS stage due to the relatively 
high service rates and the increasing incoming packets gov-
erned by �1.

The throughput at the BS stage is denoted as �2 . Figure 12 
for �1 and Fig. 13 for �2 shows that the behaviour of the sec-
ond stage throughput remains consistent across different �1 
values. The throughput increases steadily with growing �1 
but levels off after surpassing the critical �1 values, coincid-
ing with the point where the MQL of stage two approaches 
the queue limit L as the system becomes unstable. This rise 
in throughput is attributed to the increasing packet flow 
through UAV-RN due to a continuous influx of packets. 
Similar to �1 , the impact of �2 on the second stage’s through-
put results in an earlier plateau with higher � values. This 
plateau aligns with the jump point observed in the graphs 
depicting the effect of �1 and �2 on mean queue length.

Concerning the response time at the UAV-RN stage, 
denoted as RTUAVRN , it consistently increases with higher 
�1 values, reflecting the greater influx of packets per unit of 
time. However, the response times at the first stage remain 
low due to the high service rate. The behaviour of response 
time closely mirrors the mean queue length (Fig. 14 for �1 
and Fig. 15 for �2 ). This similarity persists up to the critical 
�1 , after which the MQL of the second stage rapidly rises to 
values approaching the queue capacity limit as the system 
becomes unstable.

The impact of both �1 and �2 on the response time of stage 
one is comparable, as evidenced by Figs. 14 and 15. In both 
cases, simulation and analytical results diverge after reach-
ing the critical �1 for each � value. This divergence occurs 
as the system approaches instability, primarily due to the 

MQL of the second stage sharply rising to values near the 
maximum queue capacity.

The response time at the BS stage is denoted as RTBS and 
is considered in Figs. 16 and 17. It follows a steady increase 
with the growing influx of packets at stage one, reaching 
the critical �1 sooner due to the higher packet rate. This can 
be attributed to the effect of higher �1 values. With higher �1 
more packets are forwarded to the second stage, and since 
�2 is held constant at 0.5, more packets are fed back to the 
first stage, leading to system instability by accumulating 
packets and increasing response time. The same principle 
applies when increasing �2 . Raising �2 while maintaining �1 
at 0.5 results in more packets being fed back to stage one, 
causing packet accumulation and a corresponding increase 
in response time.

Increasing the relaying probability, �1 narrows the accept-
able range of primary arrival rates, �1 . This is anticipated 
because a higher �1 leads to more packets being relayed to 
the second stage, causing the second stage to reach insta-
bility at a lower �1 value. For example, with �1 = 0.4 , the 
range of arrival rates extends up to 1000 packets per sec-
ond, beyond which the system becomes unstable. This limit 
remains at 1000 packets per second with �1 = 0.5 , but it 
decreases to 800 packets per second when �1 = 0.6.

In the subset of graphs depicting the behaviour of the sec-
ond (BS) stage, the system quickly becomes unstable when 
both �1 and �2 are set to 0.7. This aligns with our earlier 
observation that the critical �1 steadily decreases with higher 
values of both �1 and �2 , making the use of 0.7 as the relay-
ing probability impractical.

Regarding the effect of �2 an increase in the feedback 
probability leads to a greater number of packets forwarded 
to the BS stage, even when �1 is held constant. This, in turn, 
fills the second stage more rapidly, especially consider-
ing the lower service rate, �2 , capped at 1000 packets per 
second.

Table 4   Effect of [stable range 
of] UAV-RN service rates, �1 , 
on Mean Queue Length

�1 MQL
UAVRN

MQL
BS

Iterative Simulation % discrepancy Iterative Simulation % discrepancy

1000 750 722.3676 3.825254621 750 717.3996 4.544245634
1100 10 9.9396 0.017913208 750 745.1917 0.645243365
1200 5 4.9855 0.016892853 750 723.9994 3.59124607
1300 3.3333 3.3254 0.018793531 750 745.9461 0.543457496
1400 2.5 2.4947 0.017092921 750 743.785 0.83559093
1500 2 1.9962 0.023135351 750 722.9704 3.73868695
1600 1.66667 1.6639 0.01640269 750 747.1679 0.379044656
1700 1.42857 1.4264 0.020054021 750 735.3434 1.99316401
1800 1.25 1.2484 0.016932867 750 739.9751 1.354761802
1900 1.11111 1.1095 0.020734298 750 733.5722 2.239425104
2000 1 0.999 0.018673486 750 730.4561 2.675574891



Wireless Networks	

Overall, the results for both the UAV-RN and BS stages 
exhibit similar trends when considering the effects of relay-
ing probability, �1 , and feedback probability, �2 . The reason 
for employing a lower standard service rate at the BS stage 
(1000 packets/second) compared to the standard service rate 
at the UAV-RN stage (2000 packets/second) is to illustrate 
the system’s behavior as it approaches the critical �1 and 
enters instability. This results in a gradual increase as the 
incoming packet rate approaches the critical rate, a sudden 
jump at the critical �1 and a subsequent plateau as the MQL 
of the BS stage nears the queue limit, L. This trend also 
applies to the response time. It is worth noting that the dif-
ference in service rates ensures that the UAV-RN stage is 
never overwhelmed, as the BS stage primarily determines 
the system’s stability. Consequently, the UAV-RN queue 
limit, N, is not reached, at least under the given parameters.

To track the effect of the service rates on the MQL, 
Tables 4 and 5 are used, with �1 = 500, �1 = 1000, �2 = 500, 
�1 = 0.5, �2 = 0.5, N = 1500, L = 1500. Table 4 shows that as 
�1 increases, MQLUAVRN decreases because more packets are 
served per unit of time. Meanwhile, MQLBS oscillates around 

750 (as discussed in the context of the effects of �1 and �2 
on MQL), indicating an optimisation point for the system’s 
resources with the standard parameters. The standard ser-
vice rate for the UAV-RN is set at 2000 packets per second, 
equivalent to 0.6 Mbps with 35 − byte SOS packets. This 
is a reasonable demand for a network expected to operate 
on 4G, 5G, or future-generation wireless infrastructure. As 
long as the parameters adhere to the study’s findings, the 
network is unlikely to become overwhelmed. To this effect, 
expecting the framework to facilitate this maximum service 
rate at the UAV-RN would not be a significant impediment 
as it improves efficiency by a great deal.

Table 5 shows that for the range �2 values for which both 
stages of the system are stable, the MQL of the BS decreases 
gradually with an increase in service rate as expected due to 
more packets leaving this stage per time unit. The MQL at 
stage one is, however, somewhat oscillates at 750 packets. 
Similar to the effect of �1 on the MQL explored in Table 4, 
this could be attributed to chosen �1 and �2 values, both 
capped at 0.5.

At this point, we can compare the temporal computational 
performance of the analytical solution against the custom 
simulation used for validating the model. Table 6 compares 
the CPU run-times of the iterative analytical model with 
that of the simulation program. The computer architectural 
specifications of the machine used for the analytical solution 
were as follows: Processor - 2.7 GHz Quad-Core Intel Core 
i7, Memory (RAM) - 16 GB 2133 MHz LPDDR3 (Low-
Power Double Data Rate 3). The results clearly show that 
the proposed iterative solution consistently outperforms 
the simulation program. The MQL values in the analytical 
solution converged within a few iterations, given � as 0.001. 
Further affirming the validity of this set of values as our 
standard operating parameters.

To track the effect of buffer length limit, N for the 
UAVRN stage and L at the BS stage, on queuing perfor-
mance, we used different capacity limits on both stages of 
the queue while varying �1 at the boundary of critical �1 
but maintaining the other parameters at the standard values. 
Table 7 shows the effect of N on MQL at both stages while 
Table 8 shows the effect of L on MQL at both stages.

Table 5   Effect of [stable range 
of] BS service rates, �2 , on 
Mean Queue Length

�2 MQL
UAVRN

MQL
BS

Iterative Simulation % discrepancy Iterative Simulation % discrepancy

1200 750 746.3011 0.495631053 5 4.997 0.645243365
1400 750 731.7714 2.491023836 2.5 2.4972 3.59124607
1600 750 738.2025 1.598138722 1.66667 1.6658 0.543457496
1800 750 734.7447 2.076272207 1.25 1.2489 0.83559093
2000 750 747.6664 0.023135351 1 0.9995 3.73868695
2200 750 748.6592 0.01640269 0.83333 0.8329 0.379044656
2400 750 743.0074 0.020054021 0.714286 0.7139 1.99316401

Table 6   Contrasting CPU run times (in seconds) for testing the range 
of stable �1

�1 RunTime
Iterative

RunTime
Simulation

700 0.386391 239.22
800 0.395816 250.77
900 0.388788 259.79
1000 0.385237 317.49
1100 0.386434 253.03
1200 0.366956 252.93
1300 0.385981 252.74
1400 0.394706 252.07
1500 0.387878 250.98
1600 0.353647 249.73
1700 0.459266 250.64
1800 0.476825 249.37
1900 0.438693 247.89
2000 0.346084 247.93
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For Table 7 the parameters are selected as �1 = 500, �1 
= 2000, �2 = 500, �2 = 1000, �1 = 0.5, �2 = 0.5, L = 1500. 
For Table 8, the same parameters are used with the addition 
of N = 1500.

As projected, in both cases investigating the bearing of 
buffer length limits on mean queue length, the effect of the 
higher �1 value (maintained at 2000 packets per second) 
meant that the BS stage of the queue governs the stability 
of the system. Owing to this, the mean queue length at the 
UAV-RN stage is still observed to be very low in comparison 
to that at the BS even after the critical �1 has been reached, 
the MQL at the BS stage is at a value very close to the set 
buffer length limit and the system is approaching instability.

6 � Limitations and future work

While we have provided discussions on the main contribu-
tions of the model and the solution approach introduced in 
this study, it is essential to acknowledge the limitations as 
well. Some of these limitations raise important questions 
that inspire future research endeavours, underscoring the 
significance of this section.

One of the issues we observed is the extreme sensitiv-
ity of the model to system instability. In the case of con-
figurations close to unstable conditions, the discrepancy 
between the simulation results and the results of the ana-
lytical model is high. However, this does not tamper with 
the correctness of the results. It is also possible to fur-
ther enhance the initial conditions used for computing the 

Table 7   Effect of UAV-RN 
buffer length on MQL

UAVRN
 and 

MQL
BS

MQL
UAVRN

MQL
BS

�1 Iter Sim D% Iter Sim D%

N = 3000
400 0.7444 0.7645 2.629169392 13.6598 13.9929 2.380492964
500 0.9979 0.9991 0.120108097 750 730.7709 2.631344516
600 1.2417 1.2217 1.637063109 1495.998 1484.7462 0.757826489
N = 7500
400 0.7544 0.7644 1.308215594 13.6768 13.9764 2.14361352
500 0.9988 0.9992 0.040032026 742.83 737.2732 0.753696188
600 1.2445 1.2215 1.882930823 1496.7291 1484.7605 0.806096337
N = 10000
400 0.7584 0.7645 0.797907129 13.6838 13.9606 1.982722806
500 0.999 0.9994 0.040024014 720.8843 718.8501 0.28297972
600 1.2317 1.2216 0.826784545 1495.998 1484.74 0.758247235

Table 8   Effect of BS buffer 
length on MQL

UAVRN
 and 

MQL
BS

MQL
UAVRN

MQL
BS

�1 Iter Sim D% Iter Sim D%

L = 3000
400 0.7444 0.7645 2.629169392 13.6598 13.9929 2.380492964
500 0.9977 0.9987 0.100130169 1439.2315 1443.1317 0.270259464
600 1.2414 1.2214 1.637465204 2995.998 2984.6705 0.379522631
L = 7500
400 0.7544 0.7644 1.308215594 13.6598 13.9703 2.202971183
500 0.9988 0.9988 0.000000000 3789.2315 3788.7124 0.065001841
600 1.2445 1.2215 1.882930823 7495.998 7484.1805 0.122119763
L = 10000
400 0.7584 0.7645 0.797907129 13.6598 13.9675 2.202971183
500 0.999 0.9984 0.060096154 4582.2315 4579.2549 0.065001841
600 1.2313 1.2215 0.802292264 9995.998 9983.8058 0.122119763
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state probabilities ( Pi,j ) to further expedite convergence by 
reducing the required number of iterations.

Considering the energy sensitivity of the application, 
comprehensive energy consumption models for UAV-
assisted networking solutions can also be added specifi-
cally for frameworks that involve the use of UAVs solely 
as relay nodes and not as hovering base stations. Further-
more, concerning the queuing model, it is also possible to 
incorporate breakdowns and repairs of the UAV-RNs and 
BSs to stress-test the model.

7 � Conclusion

In this study, a relaying scheme is considered for wireless 
connectivity during disaster recovery and its performance 
is evaluated using an analytical solution. The scheme 
under study is modelled using a two-stage tandem queu-
ing system and used to investigate the effect of varying 
system parameters, particularly at the mobile relay node 
- arrival rates, service rates, relaying and feedback prob-
abilities - on key performance measures, namely mean 
queue length, throughput and response time. In addition, 
with a novel augmented approach to generating the initial 
conditions, an iterative method is employed to provide an 
analytical solution for the proposed queuing system with 
very large queue sizes to circumvent the state explosion 
problem that is characteristic of the generic matrix-based 
solutions. The solution is, in turn, used to explore the opti-
mum parameters under which the system would operate 
while maintaining its stability.

The model and analytical solution are particularly useful 
for identifying the critical primary UAV-RN arrival rate, 
�1 , which is the optimum primary arrival rate of packets at 
the UAV-RN for various relaying ( �1 ) and feedback prob-
abilities ( �2).

The results from the proposed analytical model are pre-
sented comparatively with the results from a discrete event 
simulation throughout the study. The results presented for 
stable system analysis were with a discrepancy less than 
5%, which is the confidence interval of the discrete event 
simulation.

The proposed iterative solution allows us to carry out 
performance analysis for large queue capacities. In our case, 
the standard size assumed in the iterative solution (1500 × 
1500) is ten times the maximum queue size computation-
ally permissible using matrix-based solutions (150 × 150). 
Additionally, for the standard set of parameters, the proposed 
iterative solution provides a significantly more efficient solu-
tion compared to the simulation program, as illustrated in 
Table 6. While the shortest simulation time encountered 
is around 239 seconds, the maximum time required by the 
iterative analytical solution was less than 0.48 seconds. The 

approach introduced for the initial computation of state prob-
abilities was very effective in providing early convergence.
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