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Abstract
To preserve rich detail information and high contrast, a novel image fusion algorithm is proposed based on rolling-guided 
filtering combined with deep feature extraction. Firstly, input images are filtered to acquire various scales decomposed images 
using rolling guided filtering. Subsequently, PCANet is introduced to extract weight maps to guide base layer fusion. For 
the others layer, saliency maps of input images are extracted by a saliency measure. Then, the saliency maps are optimized 
by guided filtering to guide the detail layer fusion. Finally, the final fusion result are reconstructed by all fusion layers. 
The experimental fusion results demonstrate that fusion algorithm in this study obtains following advantages of rich detail 
information, high contrast, and complete edge information preservation in the subjective evaluation and better results in 
the objective evaluation index. In particular, the proposed method is 16.9% ahead of the best comparison result in the SD 
objective evaluation index.
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1  Introduction

Image fusion is an indispensable technique for various com-
puter vision tasks, which has significant applications in tar-
get recognition, video surveillance, and image enhancement 
[1–4]. Image fusion technology can also serve the internet 
of things [5, 6] domain and sensing technology [7, 8].The 
visible images have higher spatial resolution and provide the 
most visual detail but are more susceptible to factors such as 
surrounding environment and climate. The infrared images 
depict objects through thermal radiation and are resistant to 
interference from factors such as environment and climate 
but have lower resolution and poorer texture information. 
Infrared and visible images share complementary character-
istics, which can produce robust and information rich fused 
images [9]. In the past five years, there are a lot of efficient 

algorithms have been designed to integrate features from 
multiple input images into a single fused image [10]. The 
most representative image fusion algorithms are in view of 
traditional algorithms named multi-scale transformation 
(MST) and deep learning (DL).

In MST domain, a number of universal image fusion 
algorithms are known, such as curvelet transform(CVT) 
[11], dual-tree complex wavelet transform(DTCWT) [12] 
and non-sampled contourlet transform (NSCT) [13] etc. By 
using these methods, input image is filtered into a diverse 
range of scale factors, such as multiple detail parts and 
single base part. Following that, based on the information 
contained in different layers, fusion rules suitable for each 
are designed. Ultimately, the final fusion result is produced 
by inverse transformation corresponding fusion layer. The 
fusion results obtained by the MST method are very much 
in line with the vision of the human visual system [14]. But 
these methods process the input images using a predefined 
basis function, making it challenging to recover useful tex-
ture feature of input image well and increasing computa-
tional complexity. But Fu et al. [15] used Rolling Guided 
Filtering (RGF) [16] for image fusion, which well preserved 
the salient and useful edge information of input image.

As for DL-based fusion methods, many novel networks 
structure are specially designed to learn feature information 
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from the input images to produce single fusion image. Li 
et al. [17] used VGG- 19 networks to extract features from 
detail layer information, which makes the fusion result 
obtain more detailed feature information. Ma et al. [18] used 
Generative Adversarial Network (GAN) for infrared and vis-
ible image fusion, generating the fused image with a genera-
tive network. In contrast, the adversarial network makes the 
final fusion result with more detailed feature information. 
Although these DL-based methods are more capable of fea-
ture extraction, selecting network parameters is more com-
plex. And Chan et al. [19] proposed a common and efficient 
deep learning network-PCANet, that has good performance 
in extracting feature information for image processing.

In all, this research presents a rolling filtering 
framework based on deep feature extraction for preserving 
preserve rich detail information and high contrast in fusion 
image. Firstly, we introduce a multi-level decomposition 
framework for the input images using rolling-guided 
filtering to retain more edge detail information. Then, 
a PCANet network is trained to extract useful object 
information and salient area feature in base layer to 
obtain fused weight map. And an obtained weight map 
is employed for guiding base part fusion. As for detail 
part fusion, we use Laplace filtering and Gaussian filtering 

to extract the saliency map. Next, initial weight map is 
generated by comparing the obtained saliency map, but 
there is noise and artifacts. So we apply guided filtering 
to refine initial weight map with the input image as the 
guided image to produce the according detail layers. In 
the end, the fused different layers obtained by above fusion 
rule are reconstructed to obtain a final fused image. The 
remainder of this study is as follows. Section 2 describes 
our proposed algorithm for fusing the input images 
in detail. In Sect. 3, the experiments are provided. For 
the conclusion of the methods of this paper is shown in 
Sect. 4.

2 � The proposed method

In this section, a novel multi-modal infrared and visible 
image fusion method is proposed. The framework diagram 
of the process is shown in Fig. 1. We will describe the details 
of the proposed method in the following.

Fig. 1   The overview of the proposed infrared and visible image fusion method
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2.1 � Step 1: MST based on RGF

It is known to all that several challenges of image fusion based 
on MST are to decompose complementary feature between 
the source images effectively. So it is crucial to select a suit-
able decomposition method. The base layer is obtained by 
smoothing corresponding input images with the help of filter-
ing techniques, which includes brightness and contour infor-
mation. And detail layer have complementary feature of base 
layer ,that includes abundant detail and texture information. 
Edge-preserving filtering is used as decomposition methods 
for image fusion algorithms that has achieved excellent results, 
which can preserve valuable structural and edge information 
while blurring the source image. In this study, an effective 
decomposition algorithm is introduced based on RGF com-
bined joint bilateral filter. We assume that the layer after being 
decomposed by the filter are the two most significant features 
for input images. Inspired by it, a flash decomposition method 
is raised, which contains two steps of smoothing input image 
structure and recovering the edge feature.

2.1.1 � Smoothing the small structure

The motivation for our smoothed image is to fully transfer 
the detailed information from input image into detail part. 
This operation is able to be implemented by Gaussian 
filtering, which can be defined as:

where a and b denote the central and adjacent pixels, respec-
tively, and N denotes their set. �s is minimum standard devia-
tion. G means input guide image.

2.1.2 � Edge recovery

The process of iterative edge enhancement utilizes a joint 
bilateral filter known for its computational efficiency 
and superior edge-preserving capabilities. This filter is 
mathematically defined as:

In this formula, M serves as the normalizing factor. The 
terms �s and �r are argumentations that govern spatial 
and intensity area value, respectively. The symbol Jt+1 is 
outcome after t-th iteration, with a typical setting of t = 4 
for the iteration count.
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This study applies repeated decompositions to the source 
images using the RGF technique. For the two distinct source 
images of infrared and visible light, denoted as Ik where k is 
in the set 1, 2, we define the base layer as Ib,i

k
 . Subsequently, 

the detail layers are derived using the formula:

Here, Ib,0
k

 is corresponding input image represents Ik , and Id,i
k

 
signifies the i-th detail layer of that source image.

2.2 � Step 2: Integration of fundamental and detailed 
layers

Through the above decomposition operation, multiple detail 
layers containing rich details and a base layer with luminance 
information are generated.To retain more components in the 
source images, two fusion rules should be elaborately designed.

2.2.1 � Fusing base layers

As depicted in Fig. 1, the foundational layer also contains 
residual useful low-frequency information. As the PCANet 
can efficiently extract the image information, it is wise to 
use PCANet to extract low-frequency information. The 
extraction results produced by PCANet are shown in Fig. 1. 
The PCANet uses principal component analysis(PCA) to 
learn multilevel filter clusters. The PCA filter is given by:

where map(⋅) denotes that maps it to the matrix W ∈ RK1K2 , 
pl(XXT ) denotes the l − th principal eigenvector of XXT . This 
size of sliding window is k1 × k2.S1 indicates the number 
of PCA filters, which is established as 8 in this study. 
Subsequently, the map of weights Wb

k
 is obtained by using 

nuclear-norm to integrate feature maps, which is extracted 
by PCA filter. Finally, the fused base layer is obtained by:

where Ib
n
 represent corresponding base layer. Wb

n
 represents 

this weighting map for foundation a part, while Fb signifies 
the combined foundational layer.

2.2.2 � Fusing detail layers

It is observable in Fig. 1 that the detailed layer is displayed 
by different feature information such as texture, edge and 
corner et al. Owing to the detailed information provided by 
the saliency map in input image, we employ a weight map that 
is derived from the saliency map for merging the detail layers.
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At first, each source image undergoes Laplace filtering to 
yield a high-pass image denoted as Hk.

where L represents a 3 × 3 Laplacian filter. Following this, 
the saliency map Sk was con-structed by:

where g represents a Gaussian low-pass filter with 
dimensions (2rg + 1) + (2rg + 1) , and the parameters rg 
and �g are both assigned the value of 5. Subsequently, to 
formulate the weight map, the saliency map undergoes a 
comparative analysis, which is described as follows:

where K denotes the total count of source images, and Si
K
 rep-

resents the saliency value at pixel i in this K − th input image. 
A preliminary weight map corresponding to a saliency map is 
denoted as P1

k
 . Nevertheless, the initial weight map acquired 

according to the above method is usually not aligned with the 
target and contains noise, which may introduce artifacts in this 
detail layer fusion images. To improve the saliency detection 
performance and process the shortcomings, we employ the 
guided filtering to optimize the initial weight map.

Through using guided filtering, we can make neighboring 
pixels which are similar in brightness have the same weight 
value. The source image Ik serves as a reference for guided 
image processing, and guided filtering is subsequently applied 
to Pk , as demonstrated in?

In this context, Wdi
k

 symbolizes the refined saliency weight 
map, enhanced through guided filtering. The function. GF(⋅)
signifies the guided filtering process. The parameters. riand 
�i are pivotal in guiding the filtering technique. Excessive 
smoothing might lead to a diminished visibility of edges and 
features in the image. Therefore, we should select a small 
filter size riand �i.

Utilizing the refined saliency weight map from the input 
images, this composition of detailed fusion layer is achievable 
by the following method:

2.3 � Step 3: Reconstruction

Ultimately, the final fusion result is generated by summing 
Fb and Fd:
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3 � Experiments

3.1 �  Experimental settings

To thoroughly verify the proposed fusion strategy and 
decomposition method, we randomly selected three pairs 
of input images from TNO dataset [20]. Five typical and 
excellent image fusion algorithms published in the last 
five years are compared in the experiments. They are 
based on MST method DTCWT and LatLRR, the sparse 
representation method NSCT-SR and the DL method VGG-
19 and Resnet50. EN quantifies the level of information 
retained in the input image in the fusion result through 
theoretical knowledge of information theory; MI mainly 
calculates the feature size of the information transferred 
from the input image to the fusion result; MS-SSIM 
focuses on evaluating the results by calculating the degree 
of structural similarity between the fused images obtained 
at different scales; SCD considers the results of evaluating 
the input image and the fused result in terms of overall 
correlation; and SD calculates the distribution and contrast 
of the fused result in relation to the input image to measure 
the fusion effect. All evaluation indicators used in this 
paper, a higher value indicates a better fusion result. Five 
mainstream infrared and visible image fusion quantitative 
metrics  :  en-tropy (EN) [21], mutual information (MI) [22], 
multiscale structure similarity measure (MS-SSIM) [23], 
sum of correlations of differences (SCD) [24] and stan-dard 
deviation (SD) [25], are used to evaluate the fused images 
produced by dif-ferent methods. EN quantifies the amount 
of information present in the fused image using information 
theory; MI measures the amount of information transferred 
from the source image to the fused image; MS-SSIM focuses 
on assessing the structural similarity of the fused image at 
different scales; SCD evaluates the fusion performance 
based on the overall correlation between the source image 
and the fused image; SD takes into account the distribution 
and contrast of the fused images to gauge the quality of the 
fusion result. In all these metrics, a higher value indicates 
a better fusion result. Here two groups of parameters on 
the proposed method are installed. We use RGF to perform 
a five-level (N = 5) decomposition of the source image. 
The val-ues of the smoothing control parameters for RGF 
are �i

s
= {648, 108, 18, 3} , i = 1, 2, 3, 4 , all �r values are set 

to 0.2. The parameter values of GF are r1 = 45 , �1 = 0.3 , 
r2 = 15 , �2 = 0.1 , r3 = 5 , �3 = 0.03 , r4 = 1 , �4 = 0.01.

The fusion algorithm experiments were conducted using 
MATLAB R2020a on a system. The system is equipped with 
a GeForce RTX 2070 SUPER 8 G graphics card.

(11)F = Fb + Fd
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3.2 � Visual assessment

It is commonly acknowledged that the most intuitive approach 
for assessing the effectiveness of infrared and visible image 
fusion methods is to directly evaluate the fusion results 
through the human visual system. Figure 2 illustrates the out-
comes of the initial pre-registered NATO Camp infrared and 
visible image fusion. Figure 2a and b depict the source infra-
red and visible images, respectively. Figure 2c–h showcase 
results obtained through various infrared and visible fusion 
methods. It is evident that the fusion result using the Dual-
Tree Complex Wavelet Transform (DTCWT) exhibits over-
all poor contrast, with blurred edges of the target object and 
weak fusion quality. The fusion outcome of Latent Low-Rank 
Representation (LatLRR) reveals deficiencies in plant details 
and exhibits artifacts around the target. Although the Non-
Subsampled Contourlet Transform with Super-Resolution 
(NSCT SR) effectively emphasizes the target object, the pix-
els of the plant differ from those in the source infrared image, 
suggesting an excessive introduction of visible image informa-
tion that degrades visual impact. Fusion results from VGG-19 
and Resnet50 display reduced noise and a cohesive structure, 
but the texture details of the target are not sufficiently clear. 
The fusion method proposed in this study, however, maintains 
superior edge information for houses and people, offers higher 
contrast, and preserves transparent texture details.

Figure 3c–h depict outcomes obtained through various 
infrared and visible fusion methods, respectively. Observ-
ing the results, it is evident that the aforementioned fusion 
method generally preserves the edge structure information 
of the target person and house in the fused image. However, 
the method proposed in this paper surpasses this, retain-
ing comprehensive and highly clear detailed information 

of both the people and house windows within the red box, 
thereby ensuring excellent visibility. Figure 4 illustrates the 
outcomes of the third pre-registered UN Camp infrared and 
visible image fusion set. Figure 4a and b depict the source 
infrared and visible images, respectively, while Figure 4c–h 
present results obtained through different infrared and vis-
ible fusion methods. Notably, the overall appearance of the 
fusion results using the DTCWT method appears whitish. 
Additionally, useful texture feature from the input infrared 
image is absent in the sky within the red box, and feature 
regarding the roof edge structure is also missing. The fusion 
outcome from Latent Low-Rank Representation (LatLRR) 
lacks detailed target information within the red box, result-
ing in a less clear display and poor contrast. In the case 
of the Non-Subsampled Contourlet Transform with Super-
Resolution (NSCT_SR) fusion method, the sky within the 
red box is distorted, introducing artifacts and lacking clarity. 
Fusion methods employing VGG-19 and ResNet50 main-
tain structural integrity with reduced noise but exhibit lower 
contrast. In contrast, our proposed algorithm is able to effec-
tively integrate complementary information from the source 
images, preserving the major of structural and salient texture 
information from the input images.

3.3 � Objective assessment

The data in Table 1 reveals that, in comparison to the 
other five methods, the method introduced in this paper 
demonstrates varying degrees of superiority across evalu-
ation metrics such as EN, MI, MS-SSIM, SCD, and SD. 
Notably, it exhibits the highest leadership in SD and SCD 
metrics, signifying that the fusion outcomes of the pro-
posed method exhibit pronounced contrast and a robust 

Fig. 2   Comparison of the results of different fusion methods for the first group of images
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correlation between the final fusion result and the cor-
responding input image. In conclusion, this method pre-
sented in this paper proves to be effective.

4 � Conclusion

In this research, we introduce a technique to conduct the 
image fusion of infrared and visible utilizing deep feature 
extraction and rolling-guided filtering. In contrast to alter-
native methods for merging infrared and visible images, the 
proposed approach adeptly preserves detailed information at 
image edges and highlights the target object. The experimen-
tal fusion outcomes reveal that the algorithm in this study 
exhibits clear advantages based on objective metrics includ-
ing EN, MI, MS-SSIM, SD, and SCD. These advantages 
can be advantageous for subsequent tasks such as target rec-
ognition and small object detection. The upcoming phase 
of our study will concentrate on how to adaptively select 

Fig. 3   Comparison of the results of different fusion methods for the second group of images

Fig. 4   Comparison of the results of different fusion methods for the third group of images

Table 1   Average of objective evaluation results of different fusion 
methods

Fusion method EN MI SD MS-SSIM SCD

DTCWT [12] 6.3751 12.7502 49.8968 0.9098 1.5791
LatLRR [10] 6.3195 12.6389 53.0318 0.8930 1.7404
NSCT-SR [13] 7.0084 14.0169 72.4143 0.8536 1.4284
VGG-19 [17] 6.1289 12.2578 43.8138 0.8842 1.5619
Resnet50 [19] 6.1782 6.1782 46.2323 0.8874 1.5632
Proposed 7.0707 14.1414 84.6325 0.9652 1.9828
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decomposition layers and formulating more effective fusion 
rules to mitigate noise, artifacts, and retain more pertinent 
detailed information.
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