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Abstract
Mobile communications systems are affected by what is known as fading, which is a well-known problem largely studied 
for decades. The direct consequence of fading is the complete loss of signal (or a large decrease of the received power). 
Rayleigh fading is a reasonable model for wireless channels although, Nakagami-m distribution seems better suited to fitting 
experimental data. In this paper we obtain the Nakagami-m distribution as a composite (mixture) of the Rayleigh distribu-
tion, a result which as far as we know it has not been shown in the literature. This representation of the Nakagami-m distri-
bution facilitates computations of the average BER (Bit Error Rate) for DPSK (Differential Phase Shift Keying) and MSK 
(Minimum-Shift Keying) modulations for this distribution and higher moments of them, which is of great applicability to 
modeling wireless fading channels. Furthermore, a simple, not depending on any special function, apart of the Gamma func-
tion, bivariate version of the Nakagami-m distribution is also proposed as a special case of the multivariate version which is 
also presented. The proposed composite distribution is simulated through the standard procedure of summation of phasors, 
and results for the new closed-form measures for the MSK modulation are also shown. From that it is clear that the alterna-
tive formulation of the Nakagami-m distribution allows for easier modeling of fading fading-shadowing wireless channels 
through the new explicit second order statistics metrics. is well suited for modelling fading-shadowing wireless channels.
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1  Introduction

Mobile communications systems are affected by what is known 
as fading, which is a well-known problem largely studied for 
decades. The fading comes from the fact that there is no direct 
radio path between the emitter (the antenna) and the mobile 
terminal (the receptor), therefore the radio signal is scattered 
by surrounding elements (buildings, trees, cars, and so) and 

more scattered even in the vicinity of the receptor (receptors are 
commonly far from the emitters). As a consequence of these so 
complex stochastic scattering mechanisms, the signal exhibits 
rapid signal level fluctuations. The direct consequence of fading 
is the complete loss of signal (or a large decrease of the received 
power). For a mobile radio channel characterized with a fixed 
gain and a linear phase response across the bandwidth greater 
than the bandwidth of the transmitted wave (what is the common 
real situation), the received signal will show what is known as 
at flat fading [1]. This is the most common situation and con-
sequently the most researched and also the one accounted for 
in this paper.

As mentioned above, fading is associated to wireless com-
munications. UAV (unmmanned aerial vehicles extensively 
use wireless signals for many purposes (i.e., transmission of 
acquired data from on-board systems, transmission of guidance 
parameters, among others). Due to UAVs operate in complex 
scenarios, frequently urban areas and following 3D arbitrary 
trajectories, correct modeling of fading is of great interest. Sev-
eral works have been published, see for instance [2] for a mod-
eling multiple-input multiple-output (MIMO) channel for UAV 
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to vehicle (U2V) communications considering UAV heaving 
motion or [3] for a complete modeling of a non-stationary UAV 
to ground MIMO channel regarding 3D pose estimation of the 
UAV.

Rayleigh fading is a reasonable model for wireless chan-
nels that contain many objects that scatter the radio signal 
between the emitter and the receiver [4]. In such a case, the 
envelope of the channel response will be Rayleigh distrib-
uted, with probability density function (PDF) and cumula-
tive distribution function (cdf),

respectively, where IE(R2) = 1∕� is the expected value of 
R2 being 𝛽 > 0 . In this situation we will denote R ∼ R(�).

Several alternatives to the Rayleigh modelling have been pub-
lished such as the Nakagami-m distribution [5–7], the K distri-
bution (a mixture of the Rayleigh distribution with the gamma 
one) [8], the Rician distribution (a mixture of the Rayleigh dis-
tribution with the lognormal one) [9] and the mixture Rayleigh-
inverse Gaussian distribution [10]; among others. Most of these 
alternatives pretend to compare with the first one which was 
initially proposed in the early 1940’s [11].

However, as pointed out in [5], it is generally accepted that 
the Nakagami-m distribution is more versatile, allowing to mod-
eling a variety of fading environments (including those mod-
eled by one-sided Gaussian distributions and by the standard 
Rayleigh distribution). So, the need for a new mathematical 
formulation of this fading distribution is justified.

Thus, using a mixture of the Rayleigh distribution in fading 
literature is generally accepted. As it is known, this procedure 
facilitates computations of the average BER (Bit Error Rate) 
for DPSK (Differential Phase Shift Keying) and MSK (Min-
imum-Shift Keying) modulations of the resulting distribution 
obtained by mixing, which is of great applicability to modeling 
wireless fading channels. In a similar way as the K, Rician, and 
Rayleigh-inverse Gaussian are received in this work, we derive 
the well-known Nakagami-m distribution by a composite (mix-
ture) argument from the classical Rayleigh distribution. Based 
on an exponential decay hat function, [12] presents a simple 
and highly efficient rejection method for generating independent 
Nakagami sequences with an arbitrary fading parameter. The 
methodology proposed here is different; it is based on a mixture 
procedure, and as in [12], the fading parameter can take arbitrary 
values.

The rest of the work is structured as follows. First, in Sect. 2, 
we obtain here the Nakagami-m distribution by mixture the Ray-
leigh distribution with a PDF which is not well-known in the 
literature. This facilitates computations of the BER for DPSK 
and MSK for the Nakagami-m distribution (see Sect. 2.1). Sec-
tion 3 is concerning with the proposal of a multivariate version 

(1)gR(r;�) =2 � r exp
(
−� r2

)
, r ≥ 0,

(2)GR(r;�) =1 − exp(−�r2), r ≥ 0,

of the Nakagami-m distribution. Here, we pay special attention 
to the bivariate case. Some further results, extending the previ-
ous methodology to the three-parameter generalized Nakagami-
m distribution and its bivariate version are also discussed herein. 
Main numerical results are shown in Sect. 4 and some conclu-
sions and future lines of research are drawn in Sect. 5.

2 � The composite Nakagami‑m distribution

The Nakagami distribution (also called Nakagami-m distri-
bution) with shape or fading parameter m ≥ 1∕2 and scale 
parameter Ω > 0 has PDF given by

where Γ(⋅) is the Euler gamma function. It is well-known 
that this distribution becomes Rayleigh distribution when 
m = 1 and the half-normal density for m = 1∕2 . Further-
more, for m = (k + 1)2∕(2k + 1) the distribution in (3) is 
approximately Rician fading with parameter k. Thus, the 
Nakagami-m distribution can model Rayleigh and Rician 
distributions, as well as more general ones. It is also well-
known that for support values of the m parameter lower than 
one the Nakagami-m fading causes more severe performance 
degradation than Rayleigh fading. As [11] has pointed out 
the Nakagami-m distribution is able to fit empirical data in 
a better way than either the Rayleigh, Rician, or lognormal 
distributions. Its cdf is written in terms of the incomplete 
gamma function as

For a comprehensive study of the Nakagami-m distribution 
see [13, 14] and [15], among others.

Consider now the PDF given by

where m̄ = 1 − m . This PDF was introduced with different 
parameters by [16] in order to write the gamma distribution 
as a composite of the exponential distribution. Since the 
Nakagami-m distribution is related with the gamma one and 
the Rayleigh distribution with the exponential one, this sug-
gests that the Nakagami-m distribution can also be written 
as a composite of the Rayleigh distribution when (4) is used 
as a mixing PDF.

The next result will be needed later.

Proposition 1  Let 𝜑 > 0 and k > 0 . Then, the following rela-
tion is satisfied,

(3)hR(r;m,Ω) =
2mm

Γ(m)Ωm
r2m−1 exp

(
−
m

Ω
r2
)
, r ≥ 0,

HR(r;m,Ω) =
Γ(m,mr2∕Ω)

Γ(m)
.

(4)

𝜋(x) =
am

x(x − a)mΓ(m̄)Γ(m)
, 0 < m < 1, a > 0, x > a,
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where U(�, �, �) , 𝛿 > 0 , 𝜏 > 0,

is the confluent hypergeometric function (see for instance, 
[17]) and m̄ = 1 − m.

Proof  We have that

Now, by making the change of variable z = � + a we get that 
(7) can be rewritten as

and by taking � = at we have that (8) is written as

where we have compared the last integral with (6). From 
here, (5) is easily obtained. 	�  ◻

Specifically, assume that in (1), 𝛽 > a > 0 and that this 
� parameter is not constant and varies according to the 
continuous and non-negative PDF given in (4), say �(�) . 
Then, we have next stochastic representation,

Then, we have the following result.

Theorem 1  Let gR(r;�) the PDF of the Rayleigh distribution 
with parameter 𝛽 > a , and a = m∕Ω . Then, the composite 
of this PDF with the PDF given in (4) is the PDF of the 
Nakagami-m distribution given in (3).

(5)
∫

∞

a

zk exp(−𝜑z)𝜋(z) dz =
ak exp(−𝜑a)

Γ(m)
U(m̄, k + m̄,𝜑a),

(6)U(�, �, �) =
1

Γ(�) ∫
∞

0

t�−1(1 + t)−�+�−1 exp(−�t) dt

(7)
∫

∞

a

zk exp(−𝜑z)𝜋(z) dz =
am

Γ(m̄)Γ(m)

∫
∞

a

zk−1(z − a)−m exp(−𝜑z) dz.

(8)
am

Γ(m̄)Γ(m) ∫
∞

0

(𝜔 + a)k−1𝜔−m exp [−𝜑(𝜔 + a)] d𝜔

ak exp(−𝜑a)

Γ(m̄)Γ(m) ∫
∞

0

t−m(1 + t)k−1 exp(−𝜑at) dt

=
ak exp(−𝜑a)

Γ(m̄)Γ(m)

× ∫
∞

0

t1−m−1(1 + t)−1+m+k+1−m−1 exp(−𝜑at) dt

=
ak exp(−𝜑a)

Γ(m̄)Γ(m)
Γ(m̄)U(m̄, k + m̄,𝜑a),

(9)R|� ∼R(�), ( Rayleigh PDF),

(10)� ∼�(�).

Proof  Assume that for the PDF in (1) 𝛽 > m∕Ω . Then, hav-
ing into account the stochastic representation given in (9)-
(10) we have

Now, using (5) with k = 1 we have that (11) results

a n d  h a v i n g  i n t o  a c c o u n t  t h a t 
U(m̄, m̄ + 1,mr2∕Ω) = (mr2∕Ω)−m̄ we can write (12) as

Hence the result. 	� ◻

In word of [8] the mixture representation above describes 
local and global spatial variations of a signal envelope, and/
or short-term and long-term temporal fluctuations of a sig-
nal envelope in fading-shadowing wireless channels.

Observe that in practise the parameter m in (13) is 
allowed to take values larger than 1.

2.1 � Metrics to characterize the fading channel

This mixture representation of the Nakagami-m distribution 
facilitates computations of its moments and other features. 
For example, as it was expected, the squared envelope for the 
Nakagami-m distribution can be computed for its correspond-
ing for the Rayleigh distribution as the unconditional mean, 
IE[IE(r2;�)] = Ω . In particular and connecting with signal 
processing we can compute in an easy way moments of order 
k ∈ {1, 2,…} of the BER for different modulation schemes, say 
M . Let � = Eb∕N0 , being Eb the transmitted energy per bit and 
N0 accounts for the spectral density of the noise power. Then, the 
moments of order k ∈ {1, 2,…} of the BER for the Rayleigh 
distribution provided in (1) will be a function of the parameter 
� , say Pb,M(�) , and using the composite argument we have that 
the corresponding moments of the BER for the Nakagami-m 
distribution can be computed as

(11)∫
∞

m∕Ω

gR(r;�)�(�) d� = 2r ∫
∞

m∕Ω

� exp(−�r2)�(�) d�.

(12)
2r ∫

∞

m∕Ω

𝛽 exp(−𝛽r2)𝜋(𝛽) d𝛽

=
2rm∕Ω exp(−mr2∕Ω)

Γ(m)
U

(
m̄, 1 + m̄,

m

Ω
r2
)

(13)

2r ∫
∞

m∕Ω

𝛽 exp(−𝛽r2)𝜋(𝛽) d𝛽

=
2rm∕Ω exp(−mr2∕Ω)

Γ(m)

(
mr2

Ω

)−m̄

=
2r2m−1mm

ΩmΓ(m)
exp

(
−
m

Ω
r2
)
= hR(r;m,Ω).
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where �(�) is given in (4).
In particular, the BER of DPSK (differential phase shift key-

ing) and MSK (minimum shift keying) for the Nakagami-m dis-
tribution with PDF given by (3) will be obtained. This measures 
have been on interest in the last decades [18]. Recall that the 
BER is defined as the ratio between the number of bits in error 
between the total number of bits sent. Both measures are tools 
widely used in signal processing (see  [19, 20] and [21]; among 
others). In order to compute these metrics for the Nakagami-m 
distribution we need previously the following result.

Proposition 2  Let k > 0 and p > 0 . Then, the following expecta-
tions with respect to the PDF given in (4) are sustained:

where 2F1 is the hypergeometric function given by

Proof  We have that by using (14) we get,

where we have made the change of variable z = � − m∕Ω . 
Now, after the change of variable t = zΩ∕m we get

and identifying this with (17) and by taking a = k , b = m , 
c = 1 and z = −pΩ∕m we get directly (15). In order to get 
(16) we have that

(14)IE
{[

Pb,M(Ω,m)
]k}

= ∫
∞

m∕Ω

[
Pb,M(�)

]k
�(�) d�,

(15)IE

[(
�

p + �

)k
]
= 2F1(k,m;1; − pΩ∕m),

(16)
IE

[
1

(p + �)k

]

=
(
Ω

m

)k Γ(k + m)

Γ(m)Γ(k + 1) 2F1(k, k + m;1 + k; − pΩ∕m).

(17)
2F1(a, b;c;z) =

Γ(c)

Γ(b)Γ(c − b)

∫
∞

0

t−b+c−1(t + 1)a−c(t − z + 1)−a dt.

IE

[(
𝛽

p + 𝛽

)k
]
= ∫

∞

m∕Ω

(
𝛽

p + 𝛽

)k
(m∕Ω)m

𝛽

(
𝛽 −

m

Ω

)
Γ(m)Γ(m̄)

=
(m∕Ω)m

Γ(m)Γ(m̄) ∫
∞

0

(
z +

m

Ω

)k−1(
z +

m

Ω
+ p

)−k

z−m dz,

IE

[(
𝛽

p + 𝛽

)k
]
=

1

Γ(m)Γ(m̄) ∫
∞

0

(t + 1)k−1

(
t +

pΩ

m

)−k

t−m dt

from which by making the same changes of variables defined 
above we get (16) after some algebra. 	�  ◻

This last result can be used for getting moments of the 
BER of DPSK and MSK for the Nakagami-m distribtion. 
This is shown in the following Proposition.

Proposition 3  Let � = Eb∕N0 , being Eb the transmitted 
energy per bit and N0 accounts for the spectral density of 
the noise power. Then, the moments of order k ∈ {1, 2,…} 
of the measures BER of DPSK and MSK for the Nakagami-m 
distribution with PDF given by (3) result,

Proof  Taking into account that for the Rayleigh distribution 
with PDF as in (1) the BER of DPSK conditioned by � see 
[19] is given by

expression (18) follows by compounding using (15) and tak-
ing p = �.

Also, for the Rayleigh distribution, the BER of MSK see 
[19] and [11, eq. 5.72] is given by

Thus, making use of the Newton binomial expansion we 
have that

Now, by compounding, using (16) and taking p = � we get 
(19). 	�  ◻

Corollary 1  Let � = Eb∕N0 , being Eb the transmitted energy per 
bit and N0 accounts for the spectral density of the noise power. 
Then, the average BER of DPSK and MSK and their variance 
for the Nakagami-m distribution with PDF given by (3) result,

IE
[

1
(p + �)k

]

=
(m∕Ω)m

Γ(m)Γ(m̄) ∫m∕Ω
(p + �)−k�−1

(

� − m
Ω

)−m
d�,

(18)IE
{[

Pb,DPSK(�)
]k}

=
1

2k
2F1(k,m;1; − �Ω∕m),

(19)

IE
{[

Pb,MSK(�)
]k}

=
1

2k

k∑

j=0

(
k

j

)
(−1)j

(
�Ω

m

)(k−j)∕2

Γ((k − j)∕2 + m))

Γ(m)Γ((k − j)∕2 + 1)
×2 F1((k − j)∕2, (k − j)∕2

+m;(k − j)∕2 + 1,−�Ω∕m),

Pb,DPSK(�) =
�

2(� + �)
,

Pb,MSK(�) =
1

2

[
1 −

√
�

� + �

]
.

[
Pb,MSK(�)

]k
=

1

2k

k∑

j=0

(
k

j

)
(−1)j

[
�

� + �

](k−j)∕2
.
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respectively, where B(a, b) = ∫ 1

0
ta−1(1 − t)b−1 dt is the Euler 

Beta function.

Proof  Expressions (20) and (21) are obtained from (18) and 
(19), respectively by replacing k by 1 and taking into account 
that 2F1(0, b;c;z) = 1 and

Now, (22) and (23) are derived by using the well-
known expression for the variance of a random variable, 
var(Z) = IE(Z2) − (IE(Z))2 , by replacing k by 2 in (20) and 
(21) which together with the square of (20) and (21) provide 
the result after some straightforward algebra. 	�  ◻

3 � Multivariate version of the Nakagami‑m 
distribution

In some occasions wireless communications involve anal-
ysis using bivariate and correlated two random variables. 
In this sense, Rayleigh and Nakagami-m distribution have 
been used as appropriate distributions (see, for instance [22] 
and [23]). In this case, the target is to compute the effect of 
correlation in fading between diversity branches in dual-
diversity systems ([24] and [25]; among others). Based on 
the methodology provided in the previous section we pro-
pose a bivariate Nakagami-m distribution which can be con-
sidered as an alternative to the bivariate Nakagami-m distri-
bution appearing in [22]. The advantage of our proposal is 
that does not depends on any special function.

(20)P̄b,DPSK(Ω,m) =
1

2

(
m

m + 𝛾Ω

)m

,

(21)

P̄b,MSK(Ω,m) =
1
2

[
√

�Ω
m

2F1(1∕2,m + 1∕2;3∕2; − �Ω∕m)
22m−1B(m,m + 1)

− 1

]

,

(22)

var
[
Pb,DPSK(𝛽)

]
=

1

4

(
m

m + 𝛾Ω

)2m

[(
m

m + 𝛾Ω

)1−m
m + 𝛾Ωm̄

m
− 1

]
,

(23)
var

[
Pb,MSK(�)

]
=

1

4

[
1 −

(
m

m + �Ω

)m]

− m�Ω

(
2F1(1∕2,m + 1∕2;3∕2; − �Ω∕m)

22m(2m + 1)B(m + 1,m + 1)

)2

,

Γ(m + 1∕2)

Γ(m)Γ(3∕2)
=

1

22m−1B(m,m + 1)
.

We propose the next definition of a bivariate Nakagami-
m distribution which is a natural extension of definition 
(9)–(10). The bivariate Nakagami-m distribution can be 
considered as the composite of independent R(ri, �) , i = 1, 2 
combined with the distribution given in (4).

Definition 1  A multivariate Nakagami-m distribution 
(r1, r2,… , rs) is defined by the stochastic representation,

where 𝛼i > 0 , i = 1, 2,… , s . Observe that Ri ( i = 1,… , s ) 
share the same parameter �.

With this definition, and using similar arguments to those 
used in Theorem 1 we get that the joint multivariate PDF is 
given by,

where r̃ =
∑s

i=1
𝛼ir

2
i
.

As a special case, from (24) and by tanking s = 2 we get 
the bivariate PDF which can be written as

where ̃r =
∑2

i=1
𝛼ir

2
i
 and provided that 1 + (m∕Ω)(r̃ − Ω) ≥ 0 . 

Its cumulative distribution function (CDF) is written in 
terms of the incomplete gamma function as

The marginal distributions obtained from (25) are obviously 
Nakagami-m distributions with PDF’s as in (3), but with 
parameters m and Ω∕�i ( i = 1, 2 ). Because the marginal dis-
tributions have an explicit expression, the conditional distri-
butions are obtained directly. Thus, marginal moments are 
the same of the Nakagami-m distribution and cross moment, 
covariance and correlation are given by,

Ri|� ∼R(ri, �i�), i = 1, 2,… , s independent ,

� ∼�(�),

(24)

fR1,R2,…,Rs
(r1, r2,… , rs)

= ∫
∞

m∕Ω

s�

i=1

�
2𝛼i𝛽ri exp

�
−𝛼i𝛽r

2
i

��
d𝛽

=

�∏s

i=1
2𝛼iri

�
(m∕Ω)s exp(−r̃m∕Ω)

Γ(m)
U

�
m̄, k + m̄,

mr̃

Ω

�
,

r1 > 0, r2 > 0,… , rs > 0,

(25)

fR1,R2
(r1, r2)

=

�∏2

i=1
2𝛼iri

�
(r̃)m−2mm

�
1 + (m∕Ω)(r̃ − Ω)

�

Γ(m)Ωm

exp
�
−
mr̃

Ω

�
,

r1 > 0, r2 > 0,

FR1,R2
(r1, r2) =

Γ(m,mr̃2∕Ω)

Γ(m)
.
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respectively. Note that the correlation depends only on m 
being a decreasing function and taking values approximately 
between 0.008 and 0.785. A graph of this expression is dis-
played in Fig. 1.

Values of the covariance and correlation for selected 
values of these parameters are shown in Table 1 and some 
graphics of the bivariate Nakagami-m distribution given 
in (25) are displayed in Fig. 2 for these parameters. Spe-
cifically, graphical representation of the bivariate case are 
plotted for values of m which provide a wide range of the 
correlation, near to zero, middle and near to 0.8. Values of 
the rest of parameters were selected in order to get a wide 
range of the covariance.

4 � Numerical experiments

First, we show the numerical agreement between the original 
Nakagami-m distribution (3) and the one obtained through the 
Rayleigh composite. In Fig. 3, two cases are illustrated. The 
integral has been numerically solved by the adaptive Simpson 

IE(R1R2) =
�Ω

4
√
�1�2

,

cov(R1,R2) =
Ω

√
�1�2

�
�

4
−

1

m

�
Γ(m + 1∕2)

Γ(m)

�2�
,

�(R1,R2) =
m�Γ(m)2 − 4Γ(m + 1∕2)2

4[mΓ(m)2 − Γ(m + 1∕2)2]
,

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

m

C
o
rr
e
la
ti
o
n

Fig. 1   Correlation of the bivariate distribution in front of the m 
parameter

Table 1   Values of the 
covariance and correlation 
for selected values of the 
parameters of the bivariate 
Nakagami-m distribution

Case m Ω �
1

�
2

Covariance Correlation

1 0.98 1.0 0.10 0.20 0.026 0.017
2 0.95 2.0 0.10 0.20 0.136 0.041
3 0.90 0.2 3.00 5.00 0.001 0.083
4 0.50 1.2 0.25 0.25 0.714 0.409
5 0.25 1.0 2.00 3.00 0.134 0.605
6 0.05 1.4 0.50 0.20 2.867 0.751
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Fig. 2   Bivariate PDF corresponding to the expression given in (25) 
for the following parameter values reading from left to right and from 
top to bottom for the cases 1–6 provided in Table 1
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quadrature (Simpson’s rule), which is done in Matlab with 
the method quad(⋅ ). As it can be seen, as expected, the fitting 
between the analytical distribution and its composite version 
is acceptable. Note that, the small differences are due to errors 
from the numerical approximation of the integral (Theorem 1 
assures the exactness of both distributions).

In order to apply the distribution to modelling a fading chan-
nel, it is necessary to know how to simulate the distribution. In 
this case, although the composite version can be used to get the 
random variables, it is computationally more efficient to simu-
late the original Nakagami-m distribution. By using Matlab, a 
N × 1 vector with samples following the Nakagami-m distri-
bution with parameters ‘mu’ and ’omega’ is easily obtained 
by “pd = makedist(‘Nakagami’,‘mu’,m,‘omega’,omega)” and, 
“random(pd,N,1)”. If Matlab is not available, in the literature 

there is a plethora of methods to simulate a random variable 
following a statistical distribution. We follow the same method 
used in [20], applying the standard inverse transform method. 
This method can be efficiently programmed. In Algorithm 1 a 
simplified version of the inverse transform method is summa-
rized. The cdf (cumulative density function) is given by,

where P is the regularized (lower) incomplete gamma func-
tion. Indeed what is used is 1 − F(r;m,Ω) , which is obtained 
at low computational cost and can be even pre-calculated 
for a set of m and Ω parameters to speed up the numerical 
simulation.
Algorithm 1   Simulating the Nakagami-m distribution

F(r;m,Ω) = P
(
m,

m

Ω
r2
)
,
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Fig. 3   Comparison of the analytic Nakagami-m distribution and the composite one for two sets of parameters. The RMS error is 9.4593e−05 for 
the left plot and 6.6438e−04 for the right plot
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In Fig. 4, it can be seen the comparison for the Nakagami-
m PDF’s (evaluating directly its PDF) and the one obtained 
from Monte Carlo simulations, which clearly shows a good 
fit. Apart from the visual evaluation, a measure of its excellent 
fitting is provided by comparing the analytic mean (0.6094) 
and variance (0.1286) values and the corresponding ones from 
the numerical simulation (0.6046 and 0.1284, respectively). As 
expected, the error is significantly small ( ≈ 0.7% and ≈ 0.1% ) 
for both statistical measures. It is remarkable to note that, deep 
fading mechanisms (larger than 60 dB) are present, what, as it 
well-known assures that the Nakagami-m distribution naturally 
accounts for the presence of large fading, which implies that 
minimum power is reaching the receiver.
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Fig. 4   Comparison of the analytic Nakagami-m distribution and the numerical simulation (left) and, (right) simulated samples (200 000)
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Fig. 5   Comparison of the analytic BER for MSK modulation and 
the numerical simulation in Nakagami-m distribution AWGN fading 
channel

In Fig. 5, it can be seen the comparison for the MSK BER 
in Nakagami-m distribution AWGN (Additive White Gauss-
ian Noise) fading for the theoretical case (using (21)) and the 
numerical simulation of the fading channel. The bit length of 
the simulated signal is 200 000 and the bit energy is Eb = 1 . 
This figure clearly shows consistent fitting along the whole 
range for both curves.

5 � Conclusion and further results

A three parameter generalization of the Nakagami-m distribu-
tion was studied by [26] and also  [27] obtained from the latter 
by the change of variable r → r1∕s , s > 0 . This distribution 
can be obtained also by composite the Rayleigh distribution, 
after the previous change of variable, and calculate the integral

Finally, a bivariate generalized Nakagami-m distribu-
tion can be built in a similar way by using the same argu-
ment that the one provided in Sect. 3, but replacing in (25) 
2�sr2s−1 exp

(
−�r2s

)
�(�) by 

∏2

i=1
2�sir

2si−1 exp
�
−�r2si

�
�(�) 

in order to get a bivariate version of (26) with marginals 
being again generalized Nakagami-m distributions. This new 
formulations is going to fit experimental data in the tail bet-
ter that the bivariate Nakagami-m distribution.
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