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Abstract
Due to its high spectral efficiency and various other advantages, filter bank multicarrier/offset quadrate amplitude modulation 
(FBMC/OQAM) has long been considered as a candidate waveform for the fifth generation (5G) and beyond telecommuni-
cation technologies. On the other hand, it is possible to both increase the data rate and alleviate the channel fading effects 
by using the multiple-input multiple-output (MIMO) antenna structure in the FBMC/OQAM transceiver. However, since 
the symbol detection is an indispensable task to be fulfilled in wireless communication, it is crucial to employ an efficient 
symbol detector at the MIMO-FBMC/OQAM receiver. Maximum likelihood (ML) detector, which always finds the optimal 
symbols by trying all of the possible symbol combinations likely to be transmitted, is known for its extremely high compu-
tational complexity making it impractical to be used in any system. On the other hand, it is possible to both considerably 
reduce the ML complexity and achieve the near-ML performance by optimizing the symbol vectors instead of implementing 
an exhaustive search. Since searching for the optimal symbol combination in discrete space is a combinatorial optimiza-
tion problem, we developed a novel discrete harmony search (disHS) algorithm to perform this operation. According to the 
simulation results, the newly developed disHS algorithm not only achieves near-ML performance with lower computational 
complexity, but also clearly leaves behind the other symbol detectors considered in this paper.
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1  Introduction

Ever-increasing demands for achieving the fifth generation 
(5G) and beyond wireless network scenarios such as massive 
machine-type communications, ultra-reliable and low 
latency communications and enhanced mobile broadband 
[1–4] have made it inevitable to develop new waveforms 
as an alternative to the conventional orthogonal frequency 
division multiplexing (OFDM) [5, 6], which has some 
limitations reducing its chance to be employed in the future 
wireless systems. Even though the long-term evolution 
(LTE)/4G systems employ the OFDM waveform, there is no 
guarantee that it will not be replaced by another waveform in 
the future due to its deficiencies like the requirement of strict 
frequency synchronization process, having limited spectral 
efficiency with large amount of out-of-band emission and 

the need for using cyclic prefix, which reduces the data 
transmission rate. Filter bank multicarrier/offset quadrate 
amplitude modulation (FBMC/OQAM) [7–10] is one of the 
prominent waveform candidates which have the potential 
to replace the conventional OFDM in the next generation 
wireless systems. FBMC/OQAM stands out with its unique 
features eliminating the shortcomings of OFDM. The 
main advantages of FBMC/OQAM over the conventional 
OFDM can be summarized as follows [7–10]: First of all, 
the lower side lobes achieved by the usage of filter banks 
lead to almost negligible inter-symbol interference (ISI) in 
the FBMC/OQAM system, while having the high-level side 
lobes, which causes a significant ISI, is one of the main 
drawbacks of the OFDM system. Besides, there is no need 
to use cyclic prefix in the FBMC/OQAM. For this reason, 
it becomes possible to achieve higher data rates compared 
to the OFDM system. Apart from this, well localized pulse 
shape in both frequency and time makes the FBMC/OQAM 
a more suitable scheme for mobile environment. Moreover, 
FBMC/OQAM is fully compatible with the cognitive radio 
applications thanks to a very low adjacent channel leakage 
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ratio of its transmission signal. Besides all these advantages, 
it is possible to utilize multiple-input multiple-output 
(MIMO) technology in the FBMC/OQAM system [11–14]. 
Employing a multi-antenna structure in the FBMC/OQAM 
transceiver not only makes the system more robust against 
the channel fading effects, but also leads to a significant 
capacity enhancement. In consequence of this, while the 
bit error rate (BER) of the system is reduced owing to the 
alleviation of multipath fading effects, the communication 
is carried out at higher data rates due to the aforementioned 
capacity increase [11–14].

1.1 � Problem statement

In order to be able to coherently recover the transmitted 
symbols, symbol detection is an indispensable process 
to be carried out at the receiver side of any transmission 
scheme in wireless communication. Zero forcing (ZF) and 
maximum likelihood (ML) are the two popular algorithms 
widely utilized for symbol detection in various transmis-
sion systems [15–17]. However, although both of the afore-
mentioned algorithms have some advantages, they also have 
significant drawbacks making them far from being an ideal 
symbol detector. For example, ZF algorithm is known with 
its low complexity and easy implementation. These are note-
worthy features that an ideal symbol detector should have. 
But the related algorithm is also known with being vulner-
able to severe channel conditions, which cause its perfor-
mance to reduce considerably. Furthermore, the efficiency 
of the ZF algorithm is negatively affected by the increase 
of antenna number in MIMO systems [15]. Unlike the ZF 
algorithm, ML algorithm has the capability of delivering a 
flawless symbol detection performance in all circumstances. 
However, because of the exhaustive search procedure used 
for detecting the optimal symbols, its computational com-
plexity can reach extremely high levels depending on the 
system parameters. In the ML algorithm, it is tried to find 
the optimal symbol vector, the size of which is equal to the 
number of antennas, via exhaustive search. To this end, the 
Euclidean distance of the received symbol vector to each of 
the possible symbol combinations likely to be transmitted to 
the receiver is calculated. Later on, the symbol combination 
that has the minimum Euclidean distance to the received 
symbol vector, which is distorted by the channel, is deter-
mined as the optimal symbol vector by the ML detector [16, 
17]. Searching for the optimal symbol vector by trying all of 
the possible symbol combinations causes ML algorithm to 
have extremely high computational complexity. Moreover, 
since the increase in the number of antennas and modulation 
order leads to an exponential growth in the search space, the 
complexity of ML algorithm becomes even higher with the 
enhancement of these parameter values.

1.2 � Motivation

On the other hand, there is the possibility of achieving near-
ML performance with significantly lower computational 
complexity by integrating an optimization algorithm to the 
ML scheme in place of its exhaustive search procedure. To 
put it another way, instead of trying each symbol combi-
nation available in the discrete search space, it is possible 
to reach near-optimal solution with substantially smaller 
processing load by optimizing the symbol vectors via an 
efficient optimization algorithm. Metaheuristic optimization 
algorithms widely utilized in numerous engineering prob-
lems especially in recent years can also be considered for the 
optimization of symbol vectors. For example, after convert-
ing the quadrate amplitude modulation (QAM) symbol vec-
tors from the combination of complex numbers to the binary 
bit sequences, it will be possible to carry out the optimiza-
tion process directly in discrete space. To this end, discrete 
versions of the metaheuristic optimization algorithms are 
needed. Motivated by the possibility of reaching near-ML 
performance with considerably lower computational cost 
via an efficient symbol optimizer that has the capability of 
optimizing the symbol vectors directly in discrete space, 
we have developed a novel and quite efficient discrete ver-
sion of harmony search (HS) algorithm [18] called disHS in 
this paper and integrated it to the ML algorithm to obtain 
an efficient symbol detector named disHS-ML, which has 
not only considerably lower computational complexity, but 
also near-optimal performance. The newly developed disHS-
ML symbol detector was then applied to the MIMO-FBMC/
OQAM system to make it more suitable to be employed in 
the forthcoming wireless technologies. The performance and 
complexity of the proposed disHS-ML strategy in MIMO-
FBMC/OQAM system were compared with not only those 
of the classical symbol detectors like ZF and ML, but also 
the heuristic-based detectors such as BPSO-ML, disABC-
ML and DBHS-ML, which were developed by integrating 
the binary particle swarm optimization [19], discrete artifi-
cial bee colony [20] and discrete binary harmony search [21] 
algorithms to the conventional ML scheme, respectively.

Another motivating factor to carry out this work is the 
lack of symbol detection study in which a metaheuristic-
based ML strategy is developed for the MIMO-FBMC/
OQAM system. This paper will make a significant contri-
bution to fill the related gap existing in the literature. Apart 
from this, the absence of any HS-based symbol detection 
study in the literature, which can be considered as a sig-
nificant motivation factor, played an important role in our 
decision to study on this subject.
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1.3 � Related works

As far as we know, no study has been performed yet regard-
ing the symbol detection using metaheuristic-based ML 
strategies in the MIMO-FBMC/OQAM system. However, 
some studies in which the heuristic approaches were utilized 
for symbol detection in different transmission schemes can 
be found in the literature [22–28]. In [22], genetic algorithm 
(GA) was utilized in the ML strategy to obtain more accu-
rate and computationally efficient symbol detector for the 
pulse amplitude modulation (PAM) system. In [23], both 
the standard and binary versions of the PSO algorithm were 
applied to the ML method to acquire near-ML detection 
performance with reduced complexity in MIMO commu-
nication systems. In [24], differential evolution (DE)-based 
ML detector was proposed for the MIMO-OFDM system. In 
[25], a symbol detector named MBER-BLAST, in which the 
PSO algorithm is employed for finding the detector weights, 
was proposed for the OFDM combined with space division 
multiple access (OFDM-SDMA) system. In [26], the authors 
benefited from the ABC algorithm to achieve a satisfying 
performance close to that of ML detector while reducing 
its computational complexity in massive MIMO system. In 
[27], a novel optimization method, which was generated by 
hybridizing the PSO and ant colony optimization (ACO) 
algorithms, was suggested to solve the problem of symbol 
detection in large MIMO systems. In [28], in order to effi-
ciently reduce the complexity of ML detector and obtain a 
sufficiently good bit error rate (BER) results in MIMO-non 
orthogonal multiple access (MIMO-NOMA) systems, the 
authors proposed the backtracking search algorithm (BSA) 
to be used as a symbol vector optimizer in the ML scheme. 
While there is no study related to symbol detection based on 
HS algorithm in the literature, it is possible to come across 
numerous studies, in which the HS or one of its modified 
versions was successfully applied to diversified telecom-
munication problems such as pilot tones design, peak-to-
average power ratio (PAPR) reduction, routing, data dissemi-
nation, etc. [29–36].

1.4 � Contributions

The main contributions of the paper can be listed as follows:

(1)	 A new and quite efficient version of the conventional 
HS algorithm has been developed in this paper to 
solve the problem of symbol detection encountered in 
MIMO-FBMC/OQAM system.

(2)	 The novel discrete HS variant called disHS has been 
integrated to the classical ML scheme. After this inte-
gration, an advanced symbol detector named disHS-
ML has been developed. Thanks to the usage of newly 
developed disHS algorithm as a symbol optimizer in 

the ML scheme, a great deal of complexity gain has 
been achieved.

(3)	 An extensive analysis on the convergence and BER 
performances of the considered symbol detectors was 
carried out. In addition to this, quite comprehensive 
complexity analysis with detailed mathematical expres-
sions and numerical comparisons was made. Accord-
ing to these analyses, the proposed disHS-ML strategy 
leaves behind the BPSO-ML, disABC-ML and DBHS-
ML, which are the other metaheuristic-based symbol 
detectors considered for comparison in this paper, with 
regard to not only BER and convergence performance, 
but also the computational complexity.

The remainder of the paper is organized as follows: In 
Sect.  2, MIMO-FBMC/OQAM system is described. In 
Sect. 3, after giving the matrix representation of the FBMC/
OQAM and its block frequency spreading approach, the 
symbol detection problem is formulated for the MIMO-
FBMC/OQAM system. In Sect. 4, after introducing the 
conventional HS and the newly developed disHS algorithms 
respectively, the proposed disHS-ML symbol detector is 
explained. In Sect. 5, a quite comprehensive analysis on 
the experimental results and computational complexities of 
the considered symbol detectors is carried out. Finally in 
Sect. 6, the paper is concluded.

2 � MIMO‑FBMC/OQAM system description

Adopting the MIMO technology to the FBMC/OQAM 
system, which already has the capability of solving many 
chronic problems in wireless communication, is very impor-
tant to make the related system more robust against the fad-
ing effects of the multipath channels. Apart from this, it 
becomes possible for the FBMC/OQAM system to provide 
communication at higher data rates in the case that it is com-
bined with MIMO technology. In this section, it is aimed to 
explain the MIMO-FBMC/OQAM transmission procedure 
in a simple and understandable way [11–13].

In the case of transmitting the real valued symbol am,n 
by using a single antenna in the FBMC/OQAM system, the 
demodulated signal at the receiver side can be defined as 
follows:

where hm,n represents the channel coefficients, um,n denotes 
the intrinsic interference and nm,n indicates the noise part of 
the demodulated signal symbolized by ym,n . The reason for 
multiplying the intrinsic interference by j is that the interfer-
ence part symbolized by um,n is pure imaginary while am,n 
symbols are real valued [11–13]. The subscripts m and n 

(1)ym,n ≈ hm,n ⋅
(
am,n + j ⋅ um,n

)
+ nm,n
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signify the subcarrier and time indices, respectively. On the 
other hand, when using Nt antennas at the transmitter and Nr 
antennas at the receiver to provide transmission over multi-
ple antennas in the FBMC/OQAM system, the demodulated 
y
(j)
m,n signal at the jth antenna of the receiver is expressed in 

the following way:

where the subscripts i and j are the indices of transmit and 
receive antennas, respectively. For example, while the sym-
bol a(i)

m,n
 specifies the real valued symbol at the ith transmit 

antenna, h(ji)m,n corresponds to the channel coefficient between 
the ith transmit antenna and jth receive antenna. The Eq. (2) 
can also be expressed in matrix form as follows:

where the channel coefficients are represented by the Nr × Nt 
sized �m,n matrix.

3 � Problem formulation

3.1 � Representation of FBMC/OQAM in matrix form

In order to simplify the problem formulation, FBMC/OQAM 
system was represented in matrix form as in [9, 14]. The 
prototype filter at the transmitter of FBMC/OQAM system 
can be defined by a transmit matrix G as follows:

The transmit matrix � ∈ ℂ
D×MN consists of the transmit 

vectors �m,n ∈ ℂ
D×1 where the symbol D represents the total 

number of samples in time. In the above equation, M and N 
denote the number of subcarriers and the number of time-
symbols, respectively. The transmit vector �m,n ∈ ℂ

D×1 repre-
sents the sampled version of the basis pulse that is obtained by 
shifting the prototype filter of the FBMC/OQAM scheme in 
time and frequency domains [14]. Namely, �m,n is the discrete 
time representation of the basis pulse with D time-samples. On 

(2)y(j)
m,n

=

Nt∑
i=1

h(ji)
m,n

⋅

(
a(i)
m,n

+ j ⋅ u(i)
m,n

)
+ n(j)

m,n

(3)

⎡⎢⎢⎣

y(1)
m,n

⋮

y
(Nr)
m,n

⎤⎥⎥⎦
⏟⏟⏟

�m,n

=

⎡⎢⎢⎣

h(11)
m,n

⋯ h
(1Nt)
m,n

⋮ ⋱ ⋮

h
(Nr1)
m,n ⋯ h

(NrNt)
m,n

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�m,n

⎡⎢⎢⎣

a(1)
m,n

+ j ⋅ u(1)
m,n

⋮

a
(Nt)
m,n + j ⋅ u

(Nt)
m,n

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

�m,n+j⋅�m,n

+

⎡⎢⎢⎣

n(1)
m,n

⋮

n
(Nr)
m,n

⎤⎥⎥⎦
⏟⏟⏟

�m,n

(4)�m,n = �m,n ⋅
(
�m,n + j ⋅ �m,n

)
+ �m,n

(5)� =
�
�1,1 �2,1 . . . �M,1 �1,2 . . . �M,N

�
=

⎡
⎢⎢⎢⎢⎣

g
(1)

1,1
g
(1)

2,1
⋯ g

(1)

M,1
g
(1)

1,2
⋯ g

(1)

M,N

g
(2)

1,1
g
(2)

2,1
⋯ g

(2)

M,1
g
(2)

1,2
⋯ g

(2)

M,N

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

g
(D)

1,1
g
(D)

2,1
⋯ g

(D)

M,1
g
(D)

1,2
⋯ g

(D)

M,N

⎤⎥⎥⎥⎥⎦

the other hand, it is possible to define the transmission symbols 
in the following form:

where � ∈ ℂ
MN×1 . The transmission signal represented by 

� ∈ ℂ
D×1 can then be written as follows:

If the multipath channel is modeled by a time-variant con-
volution matrix � ∈ ℂ

D×D , the signal that has reached the 
receiver is expressed as:

where � ∈ ℂ
D×1 denotes the signal at the receiver input and 

� ∼ CN
(
0, Pn �D

)
 represents the Gaussian noise in which 

the Pn and �D correspond to the power of white Gaussian 
noise and D × D identity matrix, respectively. Finally, the 
formulation of the received symbols can be carried out in 
the following way:

3.2 � Block frequency spreading approach for FBMC/
OQAM

The intrinsic interference caused by the constraint of orthog-
onality in FBMC/OQAM system prevents the straightfor-
ward implementation of MIMO methods, which can be 
easily applied to OFDM. On the other hand, it is possible 
to make the FBMC/OQAM system compatible with all 
MIMO methods used in OFDM by restoring its complex 
orthogonality with the help of block frequency spreading 
approach [14]. In this paper, in order to apply the MIMO 

detection methods to the MIMO-FBMC/OQAM, straight-
forwardly as in the classical MIMO-OFDM system, block 
frequency spreading approach was utilized in the FBMC/
OQAM scheme in the following manner [14]:

At the transmitter side, the real valued symbols � ∈ ℂ
MN×1 

are acquired by spreading the QAM modulated data symbols 
� ∈ ℂ

MN

2
×1 via a precoding matrix � ∈ ℂ

MN×
MN

2  as follows:

(6)

� = vec

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

a1,1 ⋯ a1,N
⋮ ⋱ ⋮

aM,1 ⋯ aM,N

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
=
�
a1,1 a2,1 . . . aM,1 a1,2 . . . aM,N

�T

(7)� = ��

(8)� = �� + � = ��� + �

(9)� = �H� = �H��� +�H�

(10)� = ��
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At the receiver side, the de-spreading operation is carried 
out on the received symbols by multiplying them with �H 
as expressed below:

If the above equation is written in a more expanded form, 
the following expression is obtained:

3.3 � Formulation of symbol detection

In the FBMC/OQAM system based on block frequency 
spreading approach, the QAM modulated data symbols to be 
transmitted are defined by a matrix � ∈ ℂ

MN

2
×1 , which has MN

2
 

components. When it comes to MIMO transmission, each 
component symbolized by xm,n becomes an Nt × 1 symbol 

vector as xm,n =
[
x(1)
m,n

, x(2)
m,n

, . . . , x
(Nt)
m,n

]T
 where m and n 

are the subcarrier and symbol indices, respectively. Likewise, 
the received version of the xm,n symbol vector at the receiver 

side can be defined as ỹm,n =
[
ỹ(1)
m,n

, ỹ(2)
m,n

, . . . , ỹ
(Nr)
m,n

]T
 . As 

can be realized from the related vectors, while the number of 
transmitted symbols is equal to the number of transmit anten-
nas, the number of received symbols is equal to the number 
of receive antennas. The task of ML-based symbol detection 
is to determine the symbol vector most likely to be transmit-
ted by utilizing the received symbols. Let’s symbolize the 
QAM modulation order by Z. Since each symbol in the vector 
xm,n can take Z different values (i.e., 4 different values for 
4-QAM), the ML algorithm has to find the optimal symbol 
vector among ZNt alternatives, each of which has the possibil-
ity of being transmitted. To this end, each alternative is tested 
by the ML algorithm via the following equation:

where Hm,n is the Nr × Nt channel coefficient matrix affecting 
the xm,n symbol vector. In the equation above, the optimal 
symbol combination making the Euclidean distance in the 
parenthesis minimum is found by testing ZNt alternatives 
one by one. For this reason, the increase of modulation 
order Z and the number of transmit antennas Nt will result 
in an exponential growth in the computational complexity 
of ML algorithm. In order to achieve near-ML performance 
with considerably lower computational complexity, we have 
converted the symbol detection problem to a combinato-
rial optimization problem and utilized the newly developed 
disHS algorithm for optimizing the Nt—length QAM sym-
bol vectors. By doing so, it has become possible to reach 

(11)�̃ = �H�

(12)�̃ = �H�H���� + �H�H�

(13)x∗
m,n

= arg min
xm,n

{‖‖ỹm,n − Hm,n ⋅ xm,n
‖‖2
}

near-optimal solution iteratively without causing too much 
processing load.

In the formulation of ML symbol detection given in 
Eq. (13), it is assumed that the receiver has the knowledge of 
perfect channel coefficients Hm,n . However, in practical sys-
tems, it is impossible to estimate the real channel coefficients 
without estimation errors. Therefore, we have modeled our 
MIMO-FBMC/OQAM system by taking into account the 
imperfect channel estimation. By doing so, the definition of 
ML detection becomes as follows:

In the equation above, the channel coefficients estimated 
imperfectly are represented by Ψm,n which can be expressed 
in the following way [37]:

where Hm,n corresponds to the actual channel coefficients 
and e ⋅ � indicates the estimation error, in which � is the zero 
mean and unit variance complex Gaussian variable and e 
specifies the accuracy of channel estimation.

4 � Methodology

4.1 � Harmony search algorithm

Not long after its introduction to the science community 
by Zong Woo Geem and his friends in 2001 [18], harmony 
search (HS) algorithm has rapidly increased its popularity 
among the researchers due to its successful implementations 
in wide variety of optimization problems encountered in dif-
ferent fields. As can be realized from its name, HS algorithm 
was developed by imitating the procedure that the musicians 
comply with while searching for the perfect harmony. It is 
possible to idealize the related searching process carried out 
by the musicians to achieve the best harmony in the follow-
ing way [18, 38–40]:

	 (i)	 Any of the popular pitches is played from the mem-
ory.

	 (ii)	 A new pitch is produced via the modification of any 
familiar pitch.

	 (iii)	 A new pitch is generated in a completely random 
manner.

The equivalents of the above operations in the HS algo-
rithm can be listed as follows:

	 (i)	 Any value existing in the harmony memory (HM) is 
selected.

(14)x∗
m,n

= arg min
xm,n

{‖‖ỹm,n − Ψm,n ⋅ xm,n
‖‖2
}

(15)Ψm,n = Hm,n + e ⋅ �
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	 (ii)	 A new value that is close to one of the existing ones 
in HM is produced.

	 (iii)	 A new value is generated, randomly in a predefined 
range.

In the HS algorithm, while the implementation of the first 
operation depends on the value of harmony memory consid-
eration rate (HMCR) parameter, the activation of the second 
operation is controlled by the parameter of pitch adjusting 
rate (PAR). The HMCR parameter cannot take any value out 
of the range [0, 1]. In order to effectively utilize the solu-
tions existing in the HM, the value of HMCR should not be 
determined too close to the lower limit of the aforementioned 
range. Otherwise, it becomes impossible to take the advan-
tage of good solutions that already exist in the HM. Similarly, 
choosing higher values close to the upper limit of the range 
[0, 1] for the HMCR parameter will not be the right approach 
either. Because, in case of determining the value of HMCR 
very close to 1, the algorithm will overuse the HM and the 
generated solutions will become quite similar to each other. 
Depending on this, the exploration capability of the HS algo-
rithm will be affected, negatively. Hereby, it is crucial to deter-
mine a reasonable HMCR value for the optimal performance.

The operation of pitch adjustment, which is controlled 
by the parameter PAR, is performed by using the following 
equation:

where xold is an old solution existing in the HM while xnew 
is a new solution produced in the neighborhood of xold . In 
the equation above, bw denotes the bandwidth of the pitch 
and � corresponds to a random number that takes the values 
in the range [− 1, 1].

The parameter PAR, which can take any value in the 
range [0, 1], determines whether or not the pitch adjustment 
operation will be carried out. How the HS algorithm oper-
ates can be explained in four steps as follows [18, 38–40]:

Step 1
A certain number of initial solutions are generated in a 

random way. These initial solutions named as harmonies in 
the HS algorithm are then assigned to a harmony memory, 
which can be expressed by n × D matrix in the following 
manner:

where n signifies the number of harmonies and D represents 
the dimension of each harmony in the HM matrix.

Step 2

(16)xnew = xold + bw ⋅ �

(17)�� =

⎡
⎢⎢⎢⎢⎣

x
(1)

1
x
(2)

1
⋯ x

(D)

1

x
(1)

2
x
(2)

2
⋯ x

(D)

2

⋮ ⋮ ⋱ ⋮

x(1)
n

x(2)
n

⋯ x(D)
n

⎤⎥⎥⎥⎥⎦

2.1	A random number represented by r1 is generated in the 
range [0, 1].

2.2	if r1 ≤ HMCR.

•	 One of the elements existing in the first column of the 
HM matrix is selected, randomly.

•	 For the selected component, another random number 
symbolized by r2 is generated in the range [0, 1].

•	 If r2 < PAR, pitch adjustment operation expressed in the 
Eq. (16) is applied to the selected element. By doing so, 
a new value adjacent to the related element is produced. 
The new value produced from the selected element is 
then assigned to the first dimension of the candidate 
solution represented by a 1 × D vector.

•	 If r2 > PAR, pitch adjusting process is not put into prac-
tice and the selected component is directly assigned to 
the first dimension of the candidate solution vector.

	2.3.	 if r1 > HMCR

•	 Without considering the HM, a totally random value in 
a predefined range is generated to form the first dimen-
sion of the candidate solution vector.

Step 3

3.1	The operations of Step 2 are reiterated for each of the 
remaining dimensions to complete the generation pro-
cess of the candidate solution, which can be expressed 
as follows:

3.2	Fitness calculation is carried out for the candidate solu-
tion by using the fitness function of the corresponding 
optimization problem to which the HS algorithm is 
applied. If the fitness value of the newly generated solu-
tion is better than that of the population member having 
the worst fitness quality in the HM matrix, the related 
worst member is replaced by the generated new solution. 
Otherwise, HM matrix is kept without any change for 
the next iteration.

Step 4	 The operations carried out from Step 2 to Step 3 are 
repeated up to the moment that the stopping criterion is 
provided.

(18)candidate solution =

[
x
(1)

i
, x

(2)

i
, . . . , x

(D)

i

]
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4.2 � The proposed discrete harmony search (disHS) 
algorithm

The classical harmony search is one of the most power-
ful and commonly used population-based metaheuristic 
algorithms. However, it was originally developed for the 
continuous optimization problems. Since the optimization 
of QAM symbol vectors in the ML detector is a type of 
combinatorial optimization problem to be solved in discrete 
space, we have developed an exclusive and unique discrete 
version of the conventional HS algorithm called disHS in 
this paper. Thanks to this novel discretized HS variant, it 
has become possible to optimize the symbol vectors directly 
and efficiently in discrete space. The population members 
corresponding to harmonies to be optimized in the disHS 
algorithm are defined as follows:

where h(d)
p

∈ {0, 1} , which means that each dimension of 
the solution vector can take the value of either 0 or 1. In 
the equation given above, P indicates the total number of 
harmonies existing in the harmony memory. The operations 
carried out step by step in the proposed disHS algorithm are 
given below:

Step 1	 The initial population is constituted by generating P 
harmonies in a random way. These randomly generated 
first solutions, each of which corresponds to a harmony 
in the disHS algorithm, are then placed to the P × D HM 
matrix as follows:

Step 2	 Fitness calculation is carried out for the initial 
population members. In order to save the fitness value 
of each harmony, an additional dimension is defined in 
the HM matrix. Apart from this, one more dimension 
is defined in the HM matrix to make each solution vec-
tor compatible with the process of cyclic bit flipping 
[41], which will be utilized to produce new adjacent 
solutions in the following step. In this extra dimension, 
the flipping index of each population member will be 
kept. So, the expanded version of the HM matrix can 
be expressed as follows:

(19)h(d)
p

=

[
h(1)
p

, h(2)
p

, . . . , h(D)
p

]
p = 1 , 2 , . . . , P
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 where �P symbolizes the flipping index of the Pth popula-
tion member. The flipping index � defined at the last dimen-
sions of the solution vectors existing in the HM matrix is the 
key parameter of the cyclic bit flipping procedure used for 
generating new solutions in the proposed disHS algorithm. 
This parameter is used to determine which dimension of 
the solution vector, that is selected randomly from the HM 
matrix to generate a new solution, will be flipped by the 
flipping operator given in the Eq. (23).

Step 3

3.1	The first random number denoted by r1 ∈ [0, 1] is gener-
ated.

3.2	if r1 ≤ HMCR

•	 One of the existing solutions is selected from the HM 
matrix in a random way. The randomly selected solution 
is defined as follows:

	 

where r is a random integer generated in the range [1, P].
•	 One adjacent solution is produced from S(d)

r
 by utiliz-

ing the cyclic bit flipping procedure [41]. To this end, in 
the first instance, the following bit flipping operation is 
applied to the selected solution:

	 
where the αrth component of the vector S(d)

r
 is flipped 

from 1 to 0 or vice versa. Note that the elements 
of h(d)

r
 in the vector S(d)

r
 consist of ones and zeros, 

and the initial flipping index values are assigned as 
�p =

[
�1 , �2 , . . . , �P

]
= [1 , 1 , . . . , 1] . Therefore, 

the first value of αr, which corresponds to the flipping index 
of the randomly selected solution vector existing in the P × D 
HM matrix, will be equal to 1 as well.

Right after the operation of bit flipping, the value of αr is 
updated as follows:

By doing so, it is provided that the flipping operation 
continues from the next bit in the case that the new solution 
is selected again for the generation of neighbor solution in 
the following iterations. For instance, let’s assume that the 
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p = 1 , 2 , . . . , P
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fifth population member represented by S(d)
5

 is chosen from 
the HM matrix for the flipping operation in a random way 
and its current flipping index value is equal to 10 ( �5 = 10 ). 
In the flipping operation carried out by the Eq. (23), 10th 
element of the related vector would be flipped from 1 to 0 
or vice versa. After that, the current flipping index of the 
related solution vector would be made equal to 11 via the 
Eq. (24) to keep going the flipping operation from the next 
element in the case that the related vector is selected again 
in the upcoming iterations.

In order to make certain that the flipping operation moves 
in a cyclic manner, the following operation is needed on the 
flipping index parameter subsequent to its increment by one:

where the value of αr is controlled by the modulo operation. 
Each time the αr exceeds the value of D, its value is returned 
back to 1. For example, when the value of αr becomes equal 
to D + 1, the Eq. (25) becomes as �r = mod(D , D) + 1 . In 
this case, since mod (D, D), which gives the remainder of 
dividing D by D, is equal to 0, the value of αr returns back to 
its initial value, which was determined as 1. In this way, as 
the iterations progress, the bit flipping operation is carried 
on, cyclically. Equations (24) and (25) are the two indispen-
sable parts of the proposed disHS algorithm. It is impossible 
to integrate the cyclic bit flipping procedure to the disHS 
algorithm without these two equations. For example, in the 
absence of Eq. (24), the bit flipping operation would be per-
formed on just the first dimension at each time since the 
initial flipping index values of the population members are 
appointed as �p =

[
�1 , �2 , . . . , �P

]
= [1 , 1 , . . . , 1] . 

In this case, the other dimensions of the solution vectors 
would remain unchanged throughout the optimization pro-
cess and in consequence of this, there would be no improve-
ment in the solution vectors. Similarly, if the Eq. (25) was 
not used in the disHS algorithm, the flipping index �r , which 
is increased by 1 via the Eq. (24) subsequent to each flipping 
operation, could not be prevented from exceeding D and as 
a result of this, the bit flipping process could not be kept 
moving in cyclic fashion from the beginning to the end of 
the optimization process.

The reason of using cyclic bit flipping procedure for the 
generation of new solutions in the proposed disHS algorithm 
is to carry out a more systematic and efficient search in dis-
crete space. Thanks to the integration of cyclic bit flipping 
procedure to the disHS algorithm, the possibility of leaving 
an unvisited position around the neighborhood of the exist-
ing solution vectors is minimized.

•	 Fitness value of the new solution is calculated.
•	 If the fitness of S(d),new

r
 is better than that of the popula-

tion member having the worst fitness quality in the HM 

(25)�r = mod
(
�r − 1 , D

)
+ 1

matrix, S(d),new
r

 is replaced by the related worst population 
member. Otherwise, no changes are made to the HM 
matrix.

3.3 if r1 > HMCR
The best solution is selected from the HM matrix. The 

related best solution having the best fitness value is defined 
as follows:

The selected best solution is then subjected to the muta-
tion operation in the following way: For each dimension of 
S
(d)

best
 in the range 1 ≤ d ≤ D, a random number r2 ∈ [0, 1] 

is generated. If r2 ≤ PAR, the related dimension is changed 
from 1 to 0 or vice versa. If r2 > PAR, the related dimension 
is not changed. The mutated version of the S(d)

best
 solution can 

be expressed as follows:

where αmutant is initialized from the value of 1.
After the implementation of mutation operation, while 

the best solution S(d)
best

 is kept without any change, its mutated 
version represented by S(d)mutant replaces the worst solution in 
the HM matrix.

Step 4 The operations of Step 3 are repeated until the 
termination criterion is provided.

Step 5 The population member having the best fitness 
quality is selected as the optimal solution.

The pseudocode of the proposed disHS algorithm is given 
in Fig. 1.

4.3 � Discrete harmony search‑based ML strategy

As it is clear from the Sect. 4.2, the proposed disHS algorithm 
was designed for the combinatorial optimization problems that 
can be solved in binary search space. However, the QAM sym-
bol vectors to be optimized in symbol detection problem con-
sist of complex valued QAM symbol sequences, which is 
defined by xm,n =

[
x(1)
m,n

, x(2)
m,n

, . . . , x
(Nt)
m,n

]T
 in Sect. 3.3. On 

the other hand, it is possible to convert the related complex 
valued symbol vectors to binary bit sequences. In the QAM 
modulation technique, each QAM symbol carries a certain bit 
sequence, the length of which is determined by the modulation 
order symbolized by Z. For example, since the number of bits 
per QAM symbol is calculated by logZ

2
= k , the number of bits 

carried by each symbol in 4-QAM modulation will be equal 
to log4

2
= 2 . So, it is possible to represent each complex valued 

QAM symbol by its corresponding binary number. By doing 
so, the QAM symbol vectors can be transformed from the 
sequences of complex numbers to binary bit sequences. 
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Therefore, the optimization process can be performed directly 
in binary search space by using the proposed disHS algorithm. 
In the disHS-based ML strategy called disHS-ML in this 
paper, the complex valued symbol vectors and their binary 
equivalents to be optimized are expressed as harmony vectors 
in the Eqs. (28) and (29), respectively:

(28)
x(i)
p
=

[
x(1)
p

, x(2)
p

, . . . , x(Nt)
p

]
, p = 1 , 2 , . . . , P

(29)
b(j)
p
=

[
b(1)
p

, b(2)
p

, . . . , b(k⋅Nt)
p

]
, p = 1 , 2 , . . . , P

Since each symbol in the x(i)
p

 vector carries k bits, the 
length of its binary equivalent given in Eq. (29) is equal 
to k ∙ Nt. Step by step explanation of applying the disHS 
algorithm to the ML detector for the optimization of QAM 
symbol vectors is given below:

Step 1 In the first place, random initial symbol vectors 
are generated directly in binary search space as expressed 
in the Eq. (29). Subsequently, P initial binary solutions 
with the length of k ∙ Nt are placed to the P × (k ∙ Nt) sized 
HM matrix as follows:

Fig. 1   The pseudocode of 
disHS algorithm
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Step 2 Two more dimensions are defined in the HM 
matrix to keep the fitness values and flipping indices of the 
population members, respectively as shown below:

Later on, the fitness evaluation is carried out for the initial 
population members. Prior to each fitness calculation, the 
related binary bit sequence is converted to its equivalent 
complex valued sequence of QAM symbols to be used as an 
input parameter in the following fitness function:

where x(i)
p

 is the complex valued equivalent of b(j)p  . As the 
last operation of Step 2, the flipping index of each solution 
is given the value of 1.

Step 3
3.1 A random number r1 ∈ [0, 1] is generated.
3.2 if r1 ≤ HMCR
One of the solution vectors, each of which corresponds to 

a single row in the HM matrix, is chosen in a random way. 
The randomly selected solution vector existing in the rth row 
of the HM matrix is expressed as follows:

Bit flipping operation is carried out on S(j)r  to produce a 
neighbor solution via the following operator:

Subsequently, the following operations are performed to 
keep the operation of bit flipping running, cyclically:

The fitness quality of the new solution S(j),newr  is evaluated. 
To this end, the binary bit sequence existing in the vector of 
S
(j),new
r  is converted from b(j)r =

[
b(1)
r

, b(2)
r

, . . . , b
(k⋅Nt)
r

]
 to 

its equivalent complex QAM symbol sequence expressed as 
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]
 . The fitness value of S(j),newr  is 

then calculated by using the resulted QAM symbol vector 
x(i)
r

 in the fitness function as follows:

In the case that the new solution S(j),newr  has a better fitness 
quality compared to the worst population member existing 
in the HM matrix, S(j),newr  is located in place of the related 
worst member. Otherwise, the HM matrix is left unaltered.

3.3. if r1 > HMCR
The solution having the best fitness quality in the HM 

matrix is selected and then subjected to the mutation opera-
tion. The probability of mutating any dimension of the 
binary bit sequence belonging to the selected best solution 
is determined by the parameter PAR as explained elaborately 
in Sect. 4.2. The related best solution and its mutated version 
can be expressed in the following way:

Note that the initial value of �mutant is made equal to 1.
S
(j)

mutant produced from the S(j)
best

 takes the place of worst 
solution in the HM matrix while S(j)

best
 is preserved without 

any change for the next iterations.
Step 4 The operations carried out in the Step 3 are reiter-

ated up to the stopping criterion is met.
Step 5 The binary bit sequence belonging to the popu-

lation member that has the best fitness quality in the HM 
matrix is selected as the optimal bit sequence and then con-
verted to its equivalent QAM symbol vector to fulfill the 
symbol detection process.

The flow diagram of the disHS-based ML strategy is 
given in Fig. 2.

5 � Results and analysis

In this section, the performance evaluation of the 
proposed disHS-ML symbol detector was carried out 
by comparing its BER achievements with those of the 
other symbol detectors considered in this paper for 
4 × 4, 6 × 6 and 8 × 8 MIMO structures in the FBMC/
OQAM system. In addition to the BER comparisons, 
convergence analyses of the newly developed disHS and 
the other considered optimization algorithms integrated 
to the ML symbol detector were made for each of the 
relevant antenna structures. Furthermore, the considered 

(37)fr = fit
(
x(i)
r

)
=
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symbol detectors were extensively analyzed with 
regard to their complexities. For the aforementioned 
experimental analyses and system design, MATLAB 
2018a simulation tool was used in this study. In the 
simulations, “Cost 207 Hilly Terrain” channel model 
with [0, − 2, − 4, − 7, − 6, − 12] dB power paths and [200, 
400, 600, 15,000, 17200] ns relative delays was used. The 
reason for choosing one of the most challenging standard 
channel models called “Cost 207 Hilly Terrain” for the 
simulations is to make the performance comparisons 
of the considered symbol detectors in a more realistic 
environment. The other parameters determined for the 
MIMO-FBMC/OQAM system is given in Table 1.

5.1 � Search complexity analysis

In Table 2, the search complexities of both the conventional 
ML strategy and its intelligent optimization-based improved 
variants were obtained for 4 × 4, 6 × 6 and 8 × 8 antenna 
configurations, respectively. Overall computational 
complexities of the ML-based symbol detectors are directly 
determined by their search complexities. In other words, 
the search complexity is the main factor that makes the 
difference between the computational complexities of the 
aforementioned symbol detectors, each of which will also 
be obtained in Sect. 5.3. So, it is crucial to define the search 
complexities before making the computational complexity 

Fig. 2   Flow diagram of the disHS-ML strategy
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analysis. The search complexity of any ML-based strategy 
is defined by considering the number of Euclidean distance 
calculations performed throughout the search for the optimal 
QAM symbol vector. Note that the calculation of Euclidean 
distance between the received signal and the candidate 
QAM symbol vector multiplied by the channel coefficients 
is carried out via the expression in the parenthesis of arg min 
{ ∙} operator given in the Eq. (13).

In the classical ML technique, for the purpose of finding 
the optimal QAM symbol sequence, which provides the 
minimum Euclidean distance with the received signal, one 
Euclidean calculation is made for each symbol combination. 
According to this, the number of Euclidean calculations 

carried out during the symbol detection process in the ML 
technique will be directly equal to the number of possible 
QAM symbol combinations, which can be determined by 
the expression of ZNt . Hereby, the search complexity of 
ML strategy can be expressed as SC = ZNt , where Z is the 
modulation order and Nt is the number of transmit antennas.

In the improved ML strategies based on the metaheuris-
tic optimization algorithms, the search complexity will be 
directly equal to the total number of fitness calculations, in 
which the QAM symbol vectors to be optimized are evalu-
ated in point of their Euclidean distances to the received 
signal. Since all of the population members are subjected 
to the fitness evaluation process at each iteration or cycle 
of BPSO-ML and disABC-ML techniques, the number of 
population members is multiplied by the maximum number 
of iterations or cycles to determine the total number of fit-
ness calculations and accordingly the search complexities 
of the related techniques as shown in the Table 2. On the 
other hand, in both the DBHS-ML and disHS-ML strate-
gies, regardless of the harmony number or population size, 
one fitness evaluation is carried out for each search or itera-
tion. For this reason, the total number of fitness calculations, 
which corresponds to the search complexity, will be directly 
equal to the maximum number of searches or iterations in 
the related strategies.

Since the growing number of antennas leads to an 
enhancement in the search space, which corresponds to the 
number of possible QAM symbol combinations calculated 
by ZNt , higher number of searches and population members 
are needed for larger antenna configurations as demonstrated 

Table 1   MIMO-FBMC/OQAM system parameters

Number of subcarriers M = 64
Number of FBMC symbols N = 30
QAM modulation order Z = 4
Prototype filter model PHYDYAS
Subcarrier spacing 15 kHz
Carrier frequency 2.5 GHz
Overlapping factor 4
Antenna configuration 4 × 4, 6 × 6, 8 × 8
Channel model Cost 207 Hilly Terrain
Estimation error e = 25%
The number of multiplications per fitness 

evaluation for parameter updating in opti-
mization algorithms

μ = 2

Table 2   Search complexities of the considered symbol detectors based on ML strategy

Methods 4 × 4 6 × 6  8 × 8

BPSO-ML Number of particles NP = 20 NP = 30 NP = 40
Maximum number of iterations MaxIter = 10 MaxIter = 25 MaxIter = 45
Search complexity SC = NP∙MaxIter = 200 SC = NP∙MaxIter = 750 SC = NP∙MaxIter = 1800
BER (SNR = 12 dB) 0.06047 0.05013 0.04900

disABC-ML Colony size CS = 20 CS = 30 CS = 40
Maximum number of cycles MaxCycle = 10 MaxCycle = 25 MaxCycle = 45
Search complexity SC = CS∙MaxCycle = 200 SC = CS∙MaxCycle = 750 SC = CS∙MaxCycle = 1800
BER (SNR = 12 dB) 0.04792 0.02831 0.02347

DBHS-ML Number of Harmonies HarNum = 20 HarNum = 30 HarNum = 40
Maximum number of searches MaxSearch = 200 MaxSearch = 750 MaxSearch = 1800
Search complexity SC = MaxSearch = 200 SC = MaxSearch = 750 SC = MaxSearch = 1800
BER (SNR = 12 dB) 0.03237 0.01701 0.01579

disHS-ML Population size P = 20 P = 25 P = 30
Maximum number of iterations MNI = 160 MNI = 400 MNI = 900
Search complexity SC = MNI = 160 SC = MNI = 400 SC = MNI = 900
BER (SNR = 12 dB) 0.02148 0.01295 0.008008

ML Search complexity SC = ZNt = 44 = 256 SC = ZNt = 46 = 4096 SC = ZNt = 48 = 65536

BER (SNR = 12 dB) 0.01858 0.006892 0.003672
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in Table 2. For example, for 4 × 4, 6 × 6 and 8 × 8 antenna 
configurations, while the population sizes of the proposed 
disHS-ML strategy were selected as 20, 25 and 30, those 
of the other considered strategies were determined as 
20, 30 and 40, respectively. Likewise, while the search 
complexities of disHS-ML strategy were adjusted to 160, 
400 and 900 for the related antenna configurations, those 
of the other benchmark techniques were equalized to the 
values of 200, 750 and 1800. As it is clear from the Table 2, 
the proposed disHS-ML symbol detector outperforms the 
other intelligent optimization-based symbol detectors by 
reaching lower bit error rate for each antenna configuration 
with much less search complexity and population size. Note 
that 160, 400 and 900 are the numbers of fitness evaluations 
determined for 4 × 4, 6 × 6 and 8 × 8 antenna configurations 
by considering the trade-off between the search complexity 

and BER performance of the proposed disHS-ML strategy. 
In order to reveal the power of disHS-ML technique, the 
search complexities of the other benchmark methods were 
set to much higher values in their favor. In spite of being put 
in a disadvantageous position by giving its opponents more 
research opportunity, the proposed symbol detector clearly 
leaves them behind by reaching much better solutions in less 
number of searches. The other parameter values belonging 
to the intelligent optimization-based ML detectors are given 
in Table 3.

5.2 � Convergence and BER analysis

In Fig. 3, the convergence analysis of the considered symbol 
detectors based on metaheuristic algorithms was carried 
out for 4 × 4 MIMO-FBMC/OQAM system at 12 dB SNR 
value. The related convergence curves were obtained as 
follows: Each of the metaheuristic-based symbol detectors 
was operated for 10 times at each fitness evaluation. By 
doing so, 10 different BER values were acquired for each 
fitness evaluation. These BER values were then averaged to 
achieve the related convergence curves given in Fig. 3. The 
line given at the bottom of the convergence curves shows 
the lowest BER level reached by the ML symbol detector 
by performing an exhaustive search. Since the ML detector 
always reaches the best solution by trying all of the possible 
symbol combinations, the BER level achieved by the ML 
is considered as the best BER level to be reached by a 
symbol detector. So, for any intelligent optimization-based 
symbol detector, the goal should be to converge this level by 
performing as little fitness calculation as possible. As can be 

Table 3   Simulation parameters of the metaheuristic-based ML 
detectors

Methods Parameters Values

BPSO-ML Cognitive parameter c1 = 2
Social parameter c2 = 1
Inertia weight w = 0.9 to 0.4
Maximum velocity Vmax = 6

disABC-ML Trial limit 30
DBHS-ML Harmony memory consideration rate HMCR = 0.6

Pitch adjusting rate PAR = 0.05
disHS-ML Harmony memory consideration rate HMCR = 0.95

Pitch adjusting rate PAR = 0.5

Fig. 3   Convergence analysis of 
the symbol detectors based on 
heuristic approaches for 4 × 4 
MIMO-FBMC/OQAM system
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clearly seen from the Fig. 3, the proposed disHS-ML symbol 
detector converges very quickly to the optimal solution, 
while the other ones can’t even get close after 200 fitness 
evaluations. For instance, 0.06047, 0.04792 and 0.03237 
BER values that BPSO-ML, disABC-ML and DBHS-ML 
reach after 200 fitness evaluations can be achieved by the 
proposed disHS-ML strategy with only 79, 90 and 112 
fitness evaluations, respectively. As mentioned before, the 
number of fitness evaluations should be determined by 
considering the trade-off between the BER performance 
and search complexity. As can be seen from the Fig. 3, the 
convergence behavior of the proposed disHS-ML strategy is 
almost completed at 160 fitness evaluations. For this reason, 
taking into account the aforementioned trade-off, the search 
complexity of disHS-ML was set to the value of 160 while 
those of the other techniques considered for comparison 
were equalized to 200 for 4 × 4 MIMO configuration as 
stated in Table 2.

In Fig.  4, the BER performance of the proposed 
disHS-ML symbol detector was compared with not only 
the classical symbol detectors like ZF and ML, but also the 
improved ML variants based on intelligent optimization 
algorithms such as BPSO, disABC and DBHS. The 
related performance comparison was carried out in the 
4 × 4 MIMO-FBMC/OQAM system. As it is evident in the 
Fig. 4, while the ZF technique falls far behind the other 
strategies in terms of BER performance, the ML scheme 
becomes the best performing symbol detection strategy 
as expected due to its exhaustive search procedure, which 
causes an excessive increase in the system complexity. 

When it comes to the improved ML strategies based on 
metaheuristic algorithms, the proposed disHS-ML detector 
shows near-ML performance by clearly leaving behind 
the other ones. Over and above, the disHS-ML shows the 
aforementioned superior performance by carrying out 
considerably lower number of fitness calculations compared 
to the other metaheuristic-based ML symbol detectors. For 
instance, if 10 dB SNR value is taken as a reference point, 
the BER values reached by the ZF, BPSO-ML, disABC-ML, 
DBHS-ML, disHS-ML and the conventional ML symbol 
detectors are equal to 1.43 × 10−1, 6.77 × 10−2, 5.48 × 10−2, 
4.11 × 10−2, 3.23 × 10−2 and 2.82 × 10−2, respectively. As 
can be realized from these values, the proposed disHS-ML 
strategy gets very close to the optimal result, which is 
achieved by the ML detector, by making 0.88 × 10−2 BER 
difference to its closest competitor named DBHS-ML.

In Fig.  5, the convergence curves of the intelligent 
optimization-based ML strategies were obtained for 
6 × 6 MIMO configuration of the FBMC/OQAM system 
at 12  dB SNR value. With the increase in the MIMO 
configuration from 4 × 4 to 6 × 6, each strategy needs more 
fitness evaluations to converge the optimal solution as can 
be noticed by comparing the    Figs. 3 and 5 due to the 
fact that the search space becomes larger with the related 
increment in the antenna configuration. As it is evident in 
the Fig. 5, the convergence performance of the proposed 
disHS-ML strategy is significantly better than those of 
the other benchmark strategies. It is capable of reaching a 
better BER level by performing lower fitness calculations 
compared to the other three symbol detectors based on 

Fig. 4   BER performance of 
the symbol detectors for 4 × 4 
MIMO-FBMC/OQAM system
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heuristic approaches. From a different point of view, it is 
possible through the disHS-ML strategy to reach the same 
BER level with the other considered symbol detectors by 
carrying out much smaller number of fitness evaluations. For 
instance, BPSO-ML, disABC-ML and DBHS-ML need 750 
fitness evaluations to reach 0.05013, 0.02831 and 0.01701 
BER levels while 213, 261 and 314 fitness evaluations are 
sufficient for the disHS-ML to reach the aforementioned 
BER values, respectively. For an efficient symbol detection 
performance with considerably low search complexity, 
the number of fitness evaluations was determined as 400 
for the disHS-ML strategy since its convergence is almost 
completed at the related point.

In Fig. 6, the considered symbol detectors were compared 
with regard to their BER performance in the 6 × 6 MIMO-
FBMC/OQAM system. In case of comparing the Fig. 6 
with the Fig. 4, it will be seen that the BER performance 
of each technique improves with the expansion of 
antenna configuration from 4 × 4 to 6 × 6 except the ZF 
which is a type of linear symbol detector that is affected 
negatively by the increase in the number of antennas. As 
in the 4 × 4 MIMO-FBMC/OQAM system, the proposed 
disHS-ML symbol detector takes the lead among the 
metaheuristic-based ML strategies by showing the closest 
BER performance to that of the ML symbol detector. For 
instance, while the BER of the ML detector at 10 dB SNR 
is equal to 1.68 × 10−2, those of the disHS-ML, DBHS-ML, 
disABC-ML and BPSO-ML are equal to 1.96 × 10−2, 
2.33 × 10−2, 3.24 × 10−2 and 4.98 × 10−2, respectively for 
the same SNR value.

In Fig. 7, the convergence performance of the considered 
strategies were compared for 8 × 8 antenna structure at 12 dB 
SNR value. As can be understood from the convergence 
curves, disHS-ML symbol detector converges to the near-
optimal solution approximately at 900 number of fitness 
evaluations. For this reason, the search complexity of the 
proposed scheme was set to 900. On the other hand, even 
1800 fitness evaluations are not enough for the other three 
benchmark strategies to approach the BER result that is 
achieved by the proposed disHS-ML symbol detector with 
just 900 fitness evaluations. At the same time, substantially 
less number of fitness evaluations will be sufficient for the 
disHS-ML strategy to reach the BER values obtained by 
the other considered methods at the end of 1800 fitness 
evaluations. For instance, in order for the BPSO-ML, 
disABC-ML and DBHS-ML to reach 0.04900, 0.02347 and 
0.01579 BER levels, 1800 number of fitness evaluations are 
required while the same BER levels can be achieved by the 
proposed scheme with 396, 506 and 574 fitness evaluations, 
respectively.

In Fig.  8, the BER achievements of the considered 
symbol detectors in 8 × 8 MIMO-FBMC/OQAM system 
were compared. Since the antenna configuration used in 
this SNR (dB)-BER analysis is the largest one, the BER 
values achieved for each SNR value by the ML-based 
symbol detectors in the Fig. 8 are the lowest ones due to 
the fact that the increase of antenna configuration leads to 
the alleviation of channel fading effects and accordingly the 
improvement of BER performance in these symbol detectors 
excluding the ZF detector whose performance degrades 

Fig. 5   Convergence analysis of 
the symbol detectors based on 
heuristic approaches for 6 × 6 
MIMO-FBMC/OQAM system
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with the enlargement of antenna structure as mentioned 
before. The expansion of search space by increasing the 
number of antennas doesn’t prevent the proposed disHS-ML 
strategy from leaving behind the other metaheuristic-based 
symbol detectors considered in this paper in point of BER 
performance. For instance, while the classical ML needs 
8.05 dB SNR to reach 2 × 10−2  BER value, its three closest 
competitors disHS-ML, DBHS-ML and disABC-ML need 

8.53, 9.83 and 11.74 dB SNRs to reach the same BER 
level. As can be inferred from these results, the proposed 
disHS-ML strategy provides 1.30 and 3.21 dB SNR gains 
over the DBHS-ML and disABC-ML symbol detectors by 
needing only 0.48 dB more SNR value compared to the ML 
detector, which has an extremely high complexity to be used 
in any system.

Fig. 6   BER performance of 
the symbol detectors for 6 × 6 
MIMO-FBMC/OQAM system

Fig. 7   Convergence analysis of 
the symbol detectors based on 
heuristic approaches for 8 × 8 
MIMO-FBMC/OQAM system
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In Fig. 9, in order to test the robustness and consistency 
of the proposed disHS-ML strategy, its BER performance 
was compared with the other considered intelligent 
optimization-based ML detectors in more severe 
conditions. To this end, the estimation error symbolized 
by e was increased from 25 to 40%. As can be realized 
from the Fig. 9, 15% enhancement in the estimation error 

doesn’t prevent the disHS-ML from outperforming the 
other advanced symbol detectors based on metaheuristic 
algorithms. While the increase of e from 25 to 40% causes 
a certain performance loss in each symbol detector, the 
proposed disHS-ML strategy maintains its performance 
superiority by making a significant difference to each of 
the benchmark strategies even in 40% channel frequency 
response mismatch. For instance, when the conditions are 
made more severe by increasing the value of e to 40%, the 

Fig. 8   BER performance of 
the symbol detectors for 8 × 8 
MIMO-FBMC/OQAM system

Fig. 9   BER performance of 
the metaheuristic-based ML 
detectors for two different e 
values in 8 × 8 MIMO-FBMC/
OQAM system
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BER values of the BPSO-ML, disABC-ML, DBHS-ML 
and disHS-ML at 12 dB SNR become equal to 5.67 × 10−2, 
2.76 × 10−2, 2.28 × 10−2 and 1.57 × 10−2, respectively.

5.3 � Computational complexity analysis

In this section, the computational complexities of the consid-
ered symbol detectors were obtained in terms of the number of 
complex multiplications [23]. After that, the complexity gains 
achieved by the proposed disHS-ML scheme over the conven-
tional ML and the other considered metaheuristic-based ML 
strategies were calculated. Note that ZF symbol detector has 
the least computational complexity among the existing symbol 
detection methods. However, it is the most primitive method 
having the poorest symbol detection performance as well.

In the ZF symbol detector, 4N3
t
+ 2N2

t
Nr multiplications 

are required due to the calculation of pseudo-inverse matrix 
[23]. For this reason, the computational complexity of ZF 
detector can be expressed as follows:

In the ML symbol detector, while the matrix multiplica-
tions lead to ZNt ⋅

(
Nr ⋅ Nt

)
 multiplications, the square opera-

tions cause ZNt ⋅ Nr additional multiplications. Hereby, the 
total number of multiplications needed by the ML symbol 
detector will give its eventual computational complexity as 
follows:

where ZNt is the search complexity of ML, which was given 
in Table 2. The Eq. (41) can also be expressed as follows:

where SC represents the search complexity of ML, which 
is equal to ZNt . When it comes to the metaheuristic algo-
rithm-based ML symbol detectors, the number of multiplica-
tions required for each fitness evaluation becomes equal to (
Nt ⋅ Nr + �

)
 , where μ corresponds to the additional multipli-

cations required per fitness evaluation due to the parameter 
updating operations in the metaheuristic algorithms. It is 
known from the Table 2 that the search complexity of any 
metaheuristic-based strategy is actually equal to the num-
ber of fitness evaluations performed throughout the opti-
mization process of the metaheuristic algorithm employed 
in the related strategy. For this reason, the multiplication 
of 

(
Nt ⋅ Nr + �

)
 by the search complexity SC will give the 

total number of multiplications needed by the metaheuris-
tic-based ML strategies throughout the symbol detection 
process. Herewith, the computational complexities of the 
symbol detectors based on metaheuristic algorithms can be 
determined by using the following expression:

(40)CZF = 4N3
t
+ 2N2

t
Nr

(41)CML = ZNt ⋅
(
Nr ⋅ Nt

)
+ ZNt ⋅ Nr = ZNt ⋅

(
1 + Nt

)
⋅ Nr

(42)CML = SC ⋅
(
1 + Nt

)
⋅ Nr

After writing the search complexities of the metaheuris-
tic-based symbol detectors in place of the parameter SC in 
the Eq. (43), the computational complexities of the related 
detectors are obtained as follows:

In Fig.  10, the effect of antenna increment on the 
computational complexity of the proposed disHS-ML 
strategy for various MNI values was tested and compared 
with those of the ML and ZF detectors, respectively. As can 
be clearly seen from the Fig. 10, while the increase in the 
number of antennas leads to a relatively small increment 
in the computational complexity of the proposed strategy 
for each MNI value, the same cannot be said for the ML 
detector. As can be easily understood from the steepness of 
its complexity curve, a slightest increase in the number of 
antennas results in a huge enhancement in the computational 
complexity of ML symbol detector. ZF has been the least 
affected symbol detector by the related antenna increase as 
expected. However, even though the ZF is the method with 
the least computational complexity, having the poor symbol 
detection performance prevents it from being employed in 
any system.

The complexity gains achieved by the disHS-ML strategy 
over the other considered methods can be computed by using 
the following equation:

where Cx symbolizes the computational complexity of the 
corresponding method.

In Table 4, after obtaining the numerical values of the 
computational complexities for both the classical ML and 
disHS-ML symbol detectors by using their complexity 
expressions given in the Eqs. (41) and (47), respectively, 
the complexity gains achieved by the proposed strategy 
over the ML detector were calculated for 4 × 4, 6 × 6 and 
8 × 8 antenna configurations. As it is evident from the 
Table 4, each increase of antenna configuration leads to an 
excessive enhancement in the computational complexity 
of classical ML detector. On the other hand, the related 
increments in the number of antennas cause significantly 

(43)CHeuristics = SC ⋅
(
Nt ⋅ Nr + �

)

(44)CBPSO−ML = NP ⋅MaxIter ⋅
(
Nt ⋅ Nr + �

)

(45)CdisABC−ML = CS ⋅MaxCycle ⋅
(
Nt ⋅ Nr + �

)

(46)CDBHS−ML = MaxSearch ⋅
(
Nt ⋅ Nr + �

)

(47)CdisHS−ML = MNI ⋅
(
Nt ⋅ Nr + �

)

(48)Complexity Gain (%) =
Cx − CdisHS−ML

Cx

× 100
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smaller enhancements in the complexity of the proposed 
disHS-ML strategy compared to the conventional ML 
detector. For this reason, the complexity gains achieved 
by the disHS-ML over the classical ML become greater 
with the increase of antenna configuration. For instance, 
while at least 43% complexity gain is achieved for 4 × 4 
MIMO-FBMC/OQAM system, the related complexity gain 
reaches to more than 98% in case of increasing the antenna 
structure from 4 × 4 to 8 × 8.

It is possible to analyze the disHS-ML strategy with 
regard to its complexity improvements over the other 
considered metaheuristic-based ML detectors. To this end, 
in the first place, the numbers of fitness evaluations (the 
search complexity (SC) values) sufficient for disHS-ML 
to reach the average BER values obtained by each of the 
considered methods for SC = 200, SC = 750 and SC = 1800 
were determined by the simulation study. After that, 

the computational costs of the benchmark strategies for 
SC = 200, 750, 1800 and those of the disHS-ML scheme 
for the determined SC values sufficient for the proposed 
strategy to reach the maximum performances of the related 
benchmark strategies were computed via the Eqs. (44–47). 
Finally, the complexity gains achieved by the disHS-ML 
strategy over the other considered methods were calculated 
by using the Eq. (48).

In Table  5, which was created by completing the 
aforementioned operations, the proposed disHS-ML strategy 
is compared with the other symbol detectors one by one 
for 4 × 4, 6 × 6 and 8 × 8 MIMO configurations. In the first 
three rows, disHS-ML is compared to the BPSO-ML with 
regard to computational complexity for 4 × 4, 6 × 6 and 8 × 8 
antenna structures while in the second and last three rows, 
it is compared to disABC-ML and DBHS-ML strategies, 
respectively for the related antenna configurations. As 

Fig. 10   The number of 
antennas versus computational 
complexity curves of the 
considered symbol detectors

Table 4   The complexity gains provided by the disHS-ML strategy over the ML symbol detector for varied antenna structures

Methods 4 × 4 6 × 6 8 × 8

Complexity of ML CML = ZNt ⋅
(
1 + Nt

)
⋅ Nr

= 4
4
⋅ (1 + 4) ⋅ 4

= 5120

CML = ZNt ⋅
(
1 + Nt

)
⋅ Nr

= 4
6
⋅ (1 + 6) ⋅ 6

= 172032

CML = ZNt ⋅
(
1 + Nt

)
⋅ Nr

= 4
8
⋅ (1 + 8) ⋅ 8

= 4718592

Complexity of disHS-ML CdisHS−ML = MNI ⋅
(
Nt ⋅ Nr + �

)

= 160 ⋅ (4 ⋅ 4 + 2)

= 2880

CdisHS−ML = MNI ⋅
(
Nt ⋅ Nr + �

)

= 400 ⋅ (6 ⋅ 6 + 2)

= 15200

CdisHS−ML = MNI ⋅
(
Nt ⋅ Nr + �

)

= 900 ⋅ (8 ⋅ 8 + 2)

= 59400

Complexity gain (%) 43.750% 91.164% 98.741%
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obviously seen from the Table 5, quite high complexity gains 
are achieved by the disHS-ML strategy over each of the 
other considered symbol detectors. With the increase in the 
number of antennas, the complexity gains become greater. 
For instance, while disHS-ML achieves 44% complexity 
gain over its closest competitor DBHS-ML for 4 × 4 MIMO 
structure, the related complexity gain goes up to at least 68% 
in the case that antenna configuration is made 8 × 8.

6 � Conclusion

In this study, in the first stage, a novel discrete HS variant 
called disHS was developed. After that, the newly developed 
disHS algorithm was integrated to the classical ML to create 
an advanced symbol detector named disHS-ML, which 
has the capability of reaching the near-ML performance 
with considerably lower computational complexity. The 
proposed disHS-ML strategy was then applied to the 
MIMO-FBMC/OQAM system and its BER performance in 
the related system was compared with not only the well-
known classical symbol detectors like ZF and ML, but 
also the modern metaheuristic-based ML strategies such 
as BPSO-ML, disABC-ML and DBHS-ML for 4 × 4, 6 × 6 
and 8 × 8 MIMO configurations. According to the simulation 
results, the proposed disHS-ML strategy leaves behind both 
the ZF and the other considered modern symbol detectors 
based on intelligent optimization algorithms by showing the 
closest BER performance to the ML scheme, which is a very 

complex and impractical symbol detector to be employed in 
any system. Apart from its successful BER performance, the 
complexity gain achieved by the proposed strategy over the 
conventional ML reaches to more than 98% for 8 × 8 antenna 
configuration. Moreover, it achieves at least 68% complexity 
gain over its closest competitor named DBHS-ML, which is 
a type of modern symbol detector as the proposed strategy. 
All these results show that the proposed disHS-ML strategy 
can be an efficient solution to the problem of symbol 
detection in the MIMO-FBMC/OQAM system.
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Table 5   The complexity gains achieved by disHS-ML over the other metaheuristic-based ML detectors

Antenna struc-
ture

Method Search complexity (SC) Average BER 
(SNR = 12 dB)

Computational complexity Complexity 
gain (%)

4 × 4 BPSO-ML NP ∙ MaxIter = 20 ∙ 10 = 200 0.06047 CBPSO-ML = 3600 60.500
disHS-ML MNI = 79 0.06047 CdisHS-ML = 1422

6 × 6 BPSO-ML NP ∙ MaxIter = 30 ∙ 25 = 750 0.05013 CBPSO-ML = 28,500 71.600
disHS-ML MNI = 213 0.05013 CdisHS-ML = 8094

8 × 8 BPSO-ML NP ∙ MaxIter = 40 ∙ 45 = 1800 0.04900 CBPSO-ML = 118,800 78.000
disHS-ML MNI = 396 0.04900 CdisHS-ML = 26,136

4 × 4 disABC-ML CS ∙ MaxCycle = 20 ∙ 10 = 200 0.04792 CdisABC-ML = 3600 55.000
disHS-ML MNI = 90 0.04792 CdisHS-ML = 1620

6 × 6 disABC-ML CS ∙ MaxCycle = 30 ∙ 25 = 750 0.02831 CdisABC-ML = 28,500 65.200
disHS-ML MNI = 261 0.02831 CdisHS-ML = 9918

8 × 8 disABC-ML CS ∙ MaxCycle = 40 ∙ 45 = 1800 0.02347 CdisABC-ML = 118,800 71.889
disHS-ML MNI = 506 0.02347 CdisHS-ML = 33,396

4 × 4 DBHS-ML MaxSearch = 200 0.03237 CDBHS-ML = 3600 44.000
disHS-ML MNI = 112 0.03237 CdisHS-ML = 2016

6 × 6 DBHS-ML MaxSearch = 750 0.01701 CDBHS-ML = 28,500 58.133
disHS-ML MNI = 314 0.01701 CdisHS-ML = 11,932

8 × 8 DBHS-ML MaxSearch = 1800 0.01579 CDBHS-ML = 118,800 68.111
disHS-ML MNI = 574 0.01579 CdisHS-ML = 37,884
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