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Abstract
Software-Defined Networking (SDN) offers a global view over the network and the ability of centrally and dynamically

managing network flows, making them ideal for creating security threat detection and mitigation solutions. Industrial

networks possess specific characteristics that make them well-suited for such solutions, leading to extensive research

efforts in this area. However, due to the high economic cost and potential risks associated with real equipment interaction,

most studies rely on testbeds for demonstration purposes. Therefore, it becomes crucial to understand the limitations and

safe operating ranges of testbed environments to ensure the development of scientifically rigorous experiments and

accurate result measurements. This study focuses on analyzing MiniCPS-based testbeds in terms of network performance,

experiment replicability, and the effects of different attacker implementation modes. The findings demonstrate that uti-

lizing MiniCPS on actual hardware enables the development of highly replicable and high-performance testbeds, as long as

they operate within the predefined safe operating ranges. Additionally, this work provides an in-depth analysis of various

attacker implementation techniques and their impact on the network.

Keywords Industrial Control Systems � Software-Defined Networking � Network security � Industrial testbeds �
MiniCPS � Mininet

1 Introduction

The term Industrial Control System (ICS) encompasses

various types of control systems, including Supervisory

Control and Data Acquisition Systems (SCADA), Dis-

tributed Control Systems (DCS), and other control systems

such as Programmable Logic Controllers (PLC) that are

commonly found in industrial sectors and Critical Infras-

tructures (CIs) [1]. CIs are essential for the functioning of

modern societies and the well-being of the people within

them. Examples of CIs include transportation systems,

power grids, hydroelectric dams, and nuclear power plants.

The security of computer and communication networks

that supervise and control physical systems is becoming a

top priority as many systems and technologies become

increasingly interconnected and software-controlled [2].

The number of vulnerabilities threatening CIs is constantly

on the rise [3]. In the past, several security incidents have

revealed the magnitude of the problem [4], ranging from

the destruction of industrial equipment, as in the case of

Stuxnet [5], to attacks on the power grid that resulted in a

blackout in three provinces of Ukraine [6].

Traditionally, ICSs have been deployed in isolated

environments, using proprietary communication protocols

and hardware [7, 8]. Compared to Information Technology

(IT) networks, industrial network topologies are generally

static, and control traffic is inherently repetitive and pre-

dictable, as most of the traffic is generated by automated

processes [9]. The nature of ICSs makes it challenging for

IT security solutions to meet the requirements of these

systems. Thus, specific security solutions need to be
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Iñaki Garitano

igaritano@mondragon.edu

Mikel Iturbe

miturbe@mondragon.edu

Urko Zurutuza

uzurutuza@mondragon.edu

1 Electronics and Computing Department, Mondragon

University, Goiru 2, 20500 Arrasate-Mondragón, Spain

123

Wireless Networks
https://doi.org/10.1007/s11276-023-03647-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8241-7453
http://orcid.org/0000-0002-0387-9167
http://orcid.org/0000-0001-9641-5646
http://orcid.org/0000-0003-3720-6048
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03647-4&amp;domain=pdf
https://doi.org/10.1007/s11276-023-03647-4


developed for these environments. According to the pub-

lication NIST SP 800-82 Rev 2 [1], ICSs differ from IT

systems in the following aspects:

• ICS are used to control and monitor physical processes.

• Interruptions in ICSs are unacceptable. Availability is

prioritized over confidentiality.

• Time is critical in many ICS, and communication

latency must remain within established values.

• The replacement and updating period for devices in

ICSs is much longer compared to IT devices.

• The application of security patches is often postponed

due to availability and reliability needs.

• In many cases, ICSs lack the capability to integrate

security mechanisms.

Generally, ICSs are established and designed using strict

policies and rules in order to meet high-performance and

resilience requirements in critical operations. In many

cases, this is achieved through the manual implementation

of functions and management rules in custom Command

Line Interfaces (CLIs) provided by devices from various

industrial vendors. Since most existing industrial network

infrastructures are designed for specific applications and

implemented in a fixed manner, they are not capable of

supporting diverse types of industrial applications with

different requirements. This calls for a network infras-

tructure that allows for dynamic configuration and inter-

operability between different industrial applications, giving

Software-Defined Networking (SDN) the opportunity to be

the key technology in building ICSs [10]. RFC 7426 [11]

defines SDN as a network programmability approach,

which means the ability to dynamically initialize, control,

change, and manage network behavior through open

interfaces. For this purpose, the control plane is separated

and centralized in an external entity called the SDN con-

troller, while the data plane remains in the network devices,

focusing its functionality on packet forwarding.

Currently, the integration of SDN in industrial envi-

ronments is in an early stage of development and requires

extensive testing and validation work [12]. However,

SDNs have been successfully deployed in IT (e.g., data

centers) and telecommunications environments (e.g., wide

area networks, 5 G mobile networks), and some studies

have already demonstrated their usefulness for developing

intelligent and reliable security solutions in ICS, particu-

larly in the field of attack detection and response [13–16].

Therefore, it is necessary to have test environments that

accurately and deterministically provide real-world condi-

tions in ICS, including network topology, devices, proto-

cols, and different attack scenarios.

In this work, we investigate the necessary characteristics

for conducting scientifically rigorous security experiments

within test environments based on MiniCPS [17]. Our

main goal is not only to provide guidelines for practitioners

using MiniCPS, but also to provide a methodology that can

be applied to other test environments, including physical

testbeds, to provide behavioral insights and identify the

limitations and safe operating ranges of the testbed under

study. First, we perform a thorough analysis of the network

performance to identify the limits and safe operating ranges

for various configurations of packet sizes, bandwidths,

delays, and packet queue sizes. Second, we evaluate the

ability of MiniCPS to consistently reproduce results over

multiple runs and with hardware changes. Finally, we

examine the network interference caused by various sim-

ulated attacker implementations to gain insight into their

impact on the network. All of the tools used to perform the

experiments are open source and publicly available to

practitioners.

The remainder of the paper is structured as follows:

Sect. 2 provides an in-depth analysis of the MiniCPS

platform, highlighting its key features and functionalities.

In Sect. 3, we present a comprehensive overview of the

various experimental scenarios employed in this study,

outlining their specific characteristics. Section 4 offers a

detailed presentation of the experimental results, including

the data analysis and key findings. Lastly, Sect. 5 con-

cludes the paper by summarizing the main insights

obtained from the study and discussing their implications

for future research in the field.

2 MiniCPS framework and its characteristics

Emulation testbeds enable the creation of complex scenarios

in a controlled and secure manner, which may be difficult or

impossible to physically recreate due to various factors,

including economic constraints. Supervisory Control And

Data Acquisition (SCADA) systems, along with their net-

works, are an example of such scenarios. The recreation of

these scenarios, even through emulation, provides the nec-

essary means for conducting research at an affordable cost.

Furthermore, the versatility they offer allows for testing

systems in a wide range of situations without compromising

physical installations or human safety. Simulated environ-

ments, on the other hand, leverage software to accurately

replicate the behavior of systems.

Unfortunately, real-world industrial topologies and

systems are not always accessible to security researchers

and developers. An increasingly prevalent trend in indus-

trial environments is the use of emulation, virtualization,

and simulation testbeds [18], which provide researchers

with the capability to thoroughly test new security mech-

anisms in a controlled environment before the deployment

in real-world systems. This approach allows for the
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validation of their effectiveness and minimizes potential

errors and disruptions during the implementation in real

systems.

To achieve this, tools such as MiniCPS offer a frame-

work for developing extensible and reproducible security

research environments focused on simulating network

communications and physical layer interactions of indus-

trial systems. MiniCPS is built upon Mininet [19, 20], a

tool that emulates a complete network of hosts, links, and

switches on a single machine, utilizing process-based vir-

tualization and network namespaces available in the Linux

kernel. Mininet is particularly useful for interactive

development, testing, and demonstrations, especially those

involving OpenFlow [21] (a communication protocol that

provides access to the data plane of a switch over the

network) and SDN. This makes MiniCPS an ideal choice

for testing detection and response mechanisms to attacks in

SDN-based industrial environments. Furthermore, the dif-

ferent SDN controller implementations provided by Mini-

net (and subsequently by MiniCPS) can easily be

transferred to production industrial SDN networks once the

necessary testing has been completed. Figure 1 depicts the

architectural relationship between MiniCPS and Mininet.

The main components of MiniCPS are the following:

• Hosts: Hosts are emulated as bash processes running in

a network namespace. This setup enables the execution

of any code that would typically run on a Linux server,

such as a web service, within one of these hosts. Each

host possesses its own network interface and can solely

access its own processes. Moreover, hosts have the

capability to execute any command or application

accessible to the underlying Linux system, along with

its file system. Within MiniCPS, these emulated hosts

are leveraged to run various real-time ICS simulation

Python scripts. The accuracy of MiniCPS simulations of

physical systems depends on the precision of the user-

developed code. Researchers have the flexibility to

progress from basic scripts for simple simulations to

complex models that faithfully represent physical

systems and closely resemble their real-world counter-

parts. In network-based experimentation scenarios

where process dynamics are not the primary focus,

simple simulations may be sufficient. However, for

experiments that require precise, real-world-like simu-

lations, MiniCPS allows the extension and implemen-

tation of new logic to achieve this goal. Furthermore, it

is worth noting while MiniCPS provides a framework

for ICS simulations, researchers can extend its capa-

bilities by integrating other physical system simulations

into the framework. Examples of simulations that could

be implemented inside MiniCPS include pyTEP [22],

ICSSIM [23] or DHALSIM [24], to name a few. This

integration can be accomplished by running the corre-

sponding code on the hosts deployed within the

MiniCPS environment.

• Switches: Thanks to its integration with Mininet,

MiniCPS allows the deployment of software-based

switches, including options such as Open vSwitch

(OVS) [25] or Indigo Virtual Switch (IVS). Unlike

hosts, switches are deployed by default in the main

namespace, but gives the option to assign their own

namespace.

• SDN Controller: An SDN controller is responsible for

managing the control flow to switches using specific

protocols like OpenFlow. Although Mininet includes

several default SDN controller implementations (e.g.,

NOX, ovs-controller), allows users to use any other

controller by explicitly specifying the use of an external

SDN controller and providing the IP address and port

where it is deployed (whether on the same machine or

on an external server). Similar to switches, if a

controller included in Mininet is used, the SDN

controller will be deployed in the main namespace.

• Links: The links in MiniCPS, whether between host-

switch, switch-switch, or host-host, are established as

virtual Ethernet pairs (vEth). It is possible to customize

the characteristics of each link, such as bandwidth,

delay, packet loss, among others, using the system

management program in the user space Traffic Control

(TC). This way, different network conditions can be

simulated to evaluate the performance and effectiveness

of experiments in a controlled environment.

When conducting scientifically rigorous experiments on an

emulated and simulated testbed using MiniCPS, it is nec-

essary to ensure their usage within confidence boundaries.

In other words, it is necessary to guarantee that the

Fig. 1 Architectural relationship between MiniCPS and Mininet
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obtained results correspond to reality and not to an out-of-

bounds usage that may alter the results, such as running

experiments with the CPU or RAM at 100%. To achieve

this, it is essential to establish confidence margins before

conducting any experiment. This work analyzes these

properties through the following features:

• Performance: Network performance is critical as it

allows evaluating the capacity and quality of the

network under controlled situations. If the network

does not perform well, issues such as latency, packet

loss, congestion, and other problems may arise, nega-

tively impacting both the overall network performance

and the performance of applications and services

running on it, thus altering the results. Therefore, it is

essential to continuously measure and optimize network

performance to ensure optimal and reliable operation in

the testing environment.

• Reproducibility: Reproducibility refers to the ability to

repeat an experiment and obtain consistent or statistically

coherent results. To achieve reproducibility, the

researcher must be able of configuring the experimental

platform to its initial state and perform all required actions

in the established order and appropriate moments. This

ensures that any changes in the results are due to variations

in the variables being studied and not to external factors or

experimental errors. Reproducibility is essential to guar-

antee the validity and reliability of the results.

• Simulated Attacker’s Interference: Researchers can

conduct security experiments in MiniCPS by imple-

menting and simulating attackers with different tech-

niques and locations. It is crucial for researchers to

consider that different implementation approaches can

affect the accuracy and reliability of the measurements

of the obtained results. Therefore, researchers must take

measures to minimize for the interference caused by

different attacker implementations and ensure the

reliability of the results.

3 Experimental scenarios

The topology used in the conducted experiments has been

deployed using the MiniCPS tool and its simulation of the

SWaT (Secure Water Treatment) testbed [26]. The SWaT

dataset is one of the most popular in the field of industrial

cybersecurity [18]. Part of the SWaT test environment

simulation is already implemented within MiniCPS. As

depicted in Fig. 2, the industrial topology consists of the

following devices:

1. End-devices: Three hosts (PLC1, PLC2, and PLC3)

implemented through three Mininet hosts where

different Python scripts are running to simulate indus-

trial PLCs and their corresponding physical processes.

2. Switch: An OpenFlow switch (Open vSwitch) that

interconnects all the devices in the topology.

3. SDN Controller: An SDN controller responsible for

controlling network flows by installing (or removing)

flow rules in the OpenFlow switch. In the experiments,

the Ryu1 controller has been used, which communi-

cates with the switch using the OpenFlow protocol.

4. Attacker: A network attacker capable of intercepting

and modifying network traffic between PLC1 and

PLC3.

For the experimentation, we defined four scenarios

(shown in Fig. 2). Three of them involve different loca-

tions and implementation techniques of an attacker, while

one scenario is configured in the absence of an attacker:

• Scenario 1 (Fig. 2a): The attacker is deployed on a

Mininet host and connected to a port on the OpenFlow

switch. We developed a script using the Ettercap2 tool

to intercept the network traffic between PLC1 and

PLC3 through an ARP spoofing attack. This forces the

network traffic between PLC1 and PLC3 to pass

through the attacker’s host before reaching its

destination.

• Scenario 2 (Fig. 2b): The attacker is deployed in the

middle of the link between PLC3 and the OpenFlow

switch. The attacker has two network interfaces, one for

connecting to PLC3 and another for connecting to the

OpenFlow switch. Using the Scapy3 tool, the attacker

bridges the two interfaces so that PLC3 can commu-

nicate with the rest of the network, while allowing the

attacker to collect or manipulate network traffic.

• Scenario 3 (Fig. 2c): The attacker is implemented as a

module in the SDN controller. By installing different

flow rules in the OpenFlow switch, the traffic is sent to

the SDN controller to execute any attacker’s actions

and make decisions regarding the forwarding of

network traffic.

• Scenario 4 (Fig. 2d): This topology is considered as a

reference in our experimentation. It is assumed that this

is the normal operation of the network in the absence of

an attacker.

The experiments were conducted on an HP computer with

an Intel i5-10210U processor and 16 GB of RAM, running

Ubuntu 22.04 as the operating system. To minimize the

impact of potential hardware dependencies on the results,

we employed a single computer. For the reproducibility

study, we added a second MSI computer and a server to the

1 Available at https://github.com/faucetsdn/ryu.
2 Available at https://www.ettercap-project.org/
3 Available at https://scapy.net/

Wireless Networks

123



experimentation, resulting in a total of three devices with

different hardware. The MSI computer, equipped with an

Intel i7-10710U processor and 16 GB of RAM, and the

server, equipped with an Intel Xeon E5-2630 processor and

8 GB of RAM, were both running Ubuntu 22.04.

4 Experimental results

This section studies the MiniCPS framework as a tool

for conducting rigorous scientific experiments through three

fundamental characteristics: (1) network performance,

(2) reproducibility, and (3) the interference caused by the

implementation of different attackers. Based on the obtained

results, we developed a list of guidelines and warnings for the

useofMiniCPSas an experimentationplatform.Drawing from

the results and experiences obtained, the aim is to provide

guidance and useful recommendations for future users of

MiniCPS.

4.1 Network performance

In this section, we present an in-depth analysis of network

performance in the context of MiniCPS. Our investigation

Fig. 2 The four scenarios used in the experimentation. Figures 2(a), 2(b) and 2(c) represent different implementations of attackers within

MiniCPS. Figure 2(d) represent the reference scenario without attacker
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encompasses several configurable features, enabling us to

assess the system’s behavior under different scenarios.

Specifically, we delve into three key aspects: bandwidth

analysis, the effect of delay configuration on bandwidth

and packet loss, and the impact of varying packet queue

sizes.

4.1.1 Bandwidth analysis

To analyze network performance, we have considered the

traffic sent by a source host (PLC1) and the traffic received

by the destination hosts (PLC2 and PLC3). By default,

Mininet does not impose bandwidth limits, relying on the

hardware used for experimentation. To ensure that per-

formance measurements are independent of the hardware,

we have defined specific bandwidth limits in the network.

In this setup, we configured a bandwidth limit of 10Mbps

between PLC2 and the switch, and a limit of 100Mbps

between PLC3 and the switch. For testing the bandwidth,

we generated UDP traffic by utilizing Iperf4 tool, PLC1

acting as the client and PLC2 and PLC3 as the servers. We

generated network traffic for 120 s, varying the packet

sizes with payloads of 64, 128, 256, 512, 1024, and 1472

bytes, and bandwidths ranging from 0 to exceeding the

limit of each scenario (10Mbps and 100Mbps). It is

important to note that the maximum size of an Ethernet

frame is 1518 bytes (which can reach up to 1522 bytes with

a VLAN tag), with 18 bytes allocated to the frame header

and checksum. Consequently, the maximum transmission

unit (MTU) is 1500 bytes. The minimum Ethernet frame

size is 64 bytes. Industrial protocols implemented over

Ethernet operate with packets within these size ranges. In

our tests, a packet with a payload of 1472 bytes represents

the limit before packets are fragmented for transmission.

For each packet size and bandwidth, we performed mea-

surements 30 times on 3 different days to ensure that the

results were not affected by specific system states. Addi-

tionally, we halted unnecessary processes to prevent

interference with the measurements. The network perfor-

mance experienced in the reference scenario and the two

emulation strategies with different bandwidths is depicted

in Fig. 3(a, b), respectively.

The ideal behavior would be a straight diagonal line

(x ¼ y) that reaches the maximum speed of the interface,

followed by a horizontal line once the theoretical band-

width limit is reached (taking into account the overhead

introduced by header bytes transmission). In reality, as

shown in Fig. 3, the behavior of the configuration without

an attacker approximates the ideal, at least for packets with

a payload larger than 256 bytes, reaching over 80% of the

available bandwidth. In the worst-case scenario, with a

payload size of 64 bytes, the performance reaches 60% of

the interface speed. When the bandwidth limit is exceeded,

packets are buffered and transmitted at the maximum speed

achievable by the hardware used for experimentation.

Based on these results, we can conclude that MiniCPS

realistically replicates good performance quality within the

specified limits for each tested packet size and type, as long

as the condition x � y is satisfied. In the worst-case sce-

nario of 64-byte packets, the bandwidth usage reaches

approximately 60% of the maximum available capacity.

4.1.2 Delay analysis

ICSs are comprised of interconnected devices, including

sensors, actuators, controllers, and computational units,

which rely on wired or wireless connections to interact

with each other. The delay experienced during this com-

munication process can vary based on factors such as

component distance, network connection quality, and

traffic volume. Longer distances can introduce higher

latency, potentially impacting real-time responsiveness and

synchronization. Unstable network connections may result

in increased latency and data loss, leading to disruptions in

system operation. Furthermore, higher traffic volumes can

cause congestion and delays in data transmission.

In MiniCPS, the delay parameter on a link can be set to

a specific value to emulate a desired delay to simulate

different network conditions. The delay parameter is used

to model the time it takes for data to propagate from the

sender to the receiver over a particular link. It represents

the time delay introduced by the physical characteristics of

the link, such as the transmission medium and network

congestion. Researchers and developers can simulate real-

world communication conditions and study the impact of

latency on the behavior of the ICS. Delays can affect the

timeliness and reliability of data transmission, and they can

have significant implications on the performance and sta-

bility of the ICS.

To assess the impact of the delay configuration in the

network performance, we conducted an analysis by

implementing various delay configurations on the link

between the switch and PLC3. We considered four distinct

delay scenarios: 5ms, 25ms, 50ms, and 100ms. In each

scenario, we utilized the Iperf tool to generate network

from PLC1 to PLC3, ranging from 0Mbps to 120Mbps and

with packet payload sizes of 64, 128, 256, 512, 1024, and

1472 bytes. The experimental results are illustrated in

Fig. 4(a–d). The results show that as the delay increases,

the traffic received by the target device decreases signifi-

cantly. When the delay increases, it generally leads to a

decrease in bandwidth due to the inherent relationship

between delay and data transmission rates. With a lower

delay, the sender can transmit packets more frequently.4 Available at https://iperf.fr/
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This results in a higher transmission rate and, therefore, a

higher bandwidth. Conversely, when the delay increases,

the transmission rate decreases due to the longer waiting

time. As a result, the bandwidth decreases.

When packets arrive at a network device for forwarding,

they are often stored in queues or buffers temporarily

before being forwarded to the next hop. If the queues

become full due to high network delay, subsequent

Fig. 3 Network performance in the base reference scenario configuration without attacker (Scenario 4)

Fig. 4 Impact on the network performance with different delays configurations in the base reference scenario configuration without attacker

(Scenario 4)
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incoming packets may be dropped, resulting in packet loss.

Therefore, the relationship between delay and packet loss is

fundamental to the development of rigorous experiments

within identified confidence values. Figures 5(a–d) repre-

sent the packet loss ratio on different bandwidth, delay and

packet payload sizes configurations. If the packet queue is

not fully populated during data transmission, no packet loss

occurs, ensuring that all packets generated at the source

successfully reach the destination device. This happens in

the scenario with 5ms delay configuration (Fig. 5a). Con-

trarily, in scenarios where the latency is set to 25ms, 50ms,

and 100ms, the packet queue becomes congested with

some packet payload size configurations, resulting in

packet loss when transmitting traffic.

In conclusion, understanding the interplay between

bandwidth usage, transmission delay, and packet loss is

crucial for the successful development of scientifically

rigorous experiments on MiniCPS. On one side, reducing

the packet payload size while increasing bandwidth and

delay leads to an increase in packet loss and a decrease in

bandwidth usage. On the other side, increasing the packet

payload size results in a decrease in packet loss and an

increase in bandwidth usage.

4.1.3 Packet queuing analysis

In networking, when a link becomes congested, meaning it

receives traffic at a higher rate than it can transmit, packets

are typically stored in a queue. The queue acts as a tem-

porary buffer, holding packets until they can be forwarded

or transmitted. However, if the queue becomes full and

reaches its maximum capacity, any additional incoming

packets will be dropped to avoid further congestion and

potential performance degradation. MiniCPS allows cus-

tomizing the packet queue size by configuring a link with

Traffic Control (TC) type interfaces. In our experiments,

we observed that if the packet queue size is not explicitly

configured on a link with TC interfaces, it defaults to a size

of 1000.

To evaluate the impact of various queue size configu-

rations on network performance, we conducted experi-

ments involving five scenarios with packet queue sizes of

50, 250, 500, 750, and 1000 slots. In each configuration, we

generated 120Mbps traffic from PLC1 to PLC3, surpassing

the maximum 100Mbps bandwidth of the destination node.

Throughout the experiments, we maintained a fixed packet

payload size of 64 bytes and introduced network delays of

5ms, 25ms, 50ms, and 100ms. We aimed to assess how

different queue sizes and network delays affect bandwidth

utilization and packet loss.

Figure 6(a) illustrates the maximum bandwidth utiliza-

tion achieved in our hardware. It indicates that a packet

queue size of 750 slots or larger results in optimal

bandwidth utilization. Conversely, reducing the packet

queue size leads to a significant decrease in bandwidth

usage across all scenarios with different delay configura-

tions. This decrease in bandwidth can be attributed to the

packet queue becoming overwhelmed, resulting in sub-

stantial packet loss. The observation is visually depicted in

Fig. 6(b). When a queue size of 50 slots is employed,

packet loss exceeds 90% in all network delay scenarios.

However, as the packet queue size is increased, the

occurrence of packet loss diminishes. For example, when a

queue size of 750 slots is coupled with a 5ms network

delay, the packet loss is reduced to 0%.

Overall, our findings highlight the importance of

appropriately sizing the packet queue to ensure optimal

network performance and minimal packet loss. With a

smaller queue size, the network experiences higher levels

of congestion and packet loss, resulting in decreased

bandwidth utilization. This is especially evident when

network delays are introduced, as the smaller queue size

struggles to handle the incoming traffic effectively. The

choice of queue size in research experiments should align

with the specific objectives and characteristics of the study.

It requires careful consideration of the network environ-

ment, traffic patterns, and performance requirements. By

taking these factors into account and appropriately con-

figuring the queue size, researchers can ensure that their

experiments yield accurate and reliable results.

4.2 Reproducibility analysis

To achieve scientifically rigorous experimentation, it is

necessary not only to obtain realistic performance but also

to be able to reproduce the results at any time, even by

another researcher using the same tools and configurations.

However, hardware can vary from one experiment to

another, which can affect the results obtained due to vari-

ous reasons such as resource constraints, system random-

ness, or different requirements for each use case. For this

reason, we conducted different tests to study the impact of

reproducibility with multiple runs and different hardware

configurations. To do this, we measured the network per-

formance using the Iperf tool in several repetitive experi-

ments (traffic sent from one device and received on another

device). In particular, we considered the following two

experiments:

• Same hardware: Involves multiple runs on the same

hardware. We used the HP computer to perform these

experiments.

• Different hardware: Involves multiple runs on different

hardware. We used three devices with different hard-

ware, as mentioned in Sect. 3.
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In all experiments, we utilized the Iperf tool to generate

UDP traffic ranging from 0Mbps to 120Mbps between the

PLC1 and PLC3 hosts, which had a maximum bandwidth

of 100Mbps. Each packet in the experiment consisted of a

64-byte payload. We conducted a total of 20 experiment

runs when using the same hardware setup. Additionally, we

performed 20 runs for each device in the case of different

hardware, resulting in a total of 60 runs. The obtained

results are presented in Fig. 7(a–b). Notably, we observed

consistent performance across all runs when the traffic

remained below 60Mbps. However, as the traffic exceeded

the maximum bandwidth of 60Mbps, packets started to

buffer, waiting for their turn to be transmitted. Conse-

quently, this led to increased variability in the obtained

results.

The obtained results were analyzed numerically by

calculating the coefficient of variation (Cv), which mea-

sures the relationship between the mean and standard

deviation of a given variable. An ideal Cv is 0, indicating

that the arithmetic mean accurately represents the dataset.

The coefficient of variation (Cv) is calculated using the

equation Cv ¼ r
�x � 100, where r represents the standard

deviation and �x represents the mean. Figure 7(c) illustrates

the Cv for each bandwidth configuration in the two con-

sidered scenarios: same hardware and different hardware.

The results clearly demonstrate that conducting experi-

ments on the same hardware leads to better reproducibility

compared to using different hardware. It is crucial to

emphasize the high precision of these experiments, with a

coefficient of variation (Cv) below 0.2 when the bandwidth

utilization remains at or below 40Mbps. However, as the

bandwidth increases to 60Mbps, the Cv progressively rises,

reaching relatively high values in both scenarios. In the

case of the same hardware, Cv exceeds 0.3, while when

different hardware is used, Cv surpasses 0.6. Notably, the

maximum value of Cv in the same hardware scenario is

0.62, whereas in the different hardware scenario, it reaches

1.01.

The obtained results show that MiniCPS provides pre-

cise reproducibility capabilities in experiments. Under

Fig. 5 Packet loss with different delays and packet sizes configurations in the base reference scenario configuration without attacker (Scenario 4)
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moderate network load conditions, the variation in the

results is very low, ensuring high reproducibility regardless

of the hardware used. However, as the network load

increases, it is recommended to use the same hardware for

conducting the experiments, as this offers better replica-

bility with lower variation among different runs.

4.3 Evaluating attacker’s implementation
interference

When testing attack detection or mitigation systems, it is

critical to integrate a device that can execute or launch

attacks. This integration is necessary to evaluate the

effectiveness of security systems. Various methods can be

used to simulate an attacker, especially in the context of

MiniCPS. However, these simulations can affect the mea-

surement of experimental results. In this section, we first

analyze the impact of different attacker implementations on

network latency. Then, we analyze the CPU utilization by

the SDN controller under different implementations.

4.3.1 Network latency interference analysis

To measure the network latency impact of different

attacker implementations, we focus on analyzing a well-

known attack in industrial environments known as Man-in-

the-Middle (MitM) attacks [18, 27]. In a MitM attack, the

attacker intercepts messages between two parties who

believe they are communicating directly. A major concern

is the use of unencrypted industrial protocols to transmit

data between ICS devices [28]. ICSs are used to control

and automate industrial processes, and a successful MitM

attack could disrupt, damage, or even compromise the

security of critical infrastructure. An attacker who is able to

intercept traffic through a MitM attack will be able to gain

extensive knowledge of the operational process and, in the

worst case, manipulate ICS traffic. An example of such

disruptive attacks are False Data Injection Attacks (FDIA),

where an adversary injects false or manipulated data into

the process [29–31], causing severe consequences.

We examine three scenarios (detailed in Section 3)

where an attacker capable of intercepting traffic between

PLC1 and PLC3 is implemented in three different locations

and follows different MitM attack strategies. To quantify

the impact of each implementation on the network, we

assume that the attacker is performing a passive MitM

attack. The attacker intercepts the communication between

PLC1 and PLC3, and vice versa, without making any

changes. The attacker collects the transmitted packets and

forwards them to their original destination without any

manipulation.

To evaluate the effect of different implementations, we

measured the Round-Trip Time (RTT) between PLC1 and

PLC3. RTT measures the time it takes for a packet to travel

from the sender to the receiver and back. We analyzed the

traffic for a duration of 10 min in each scenario and col-

lected the resulting data, which is shown in Fig. 8. To

provide a comprehensive overview of the RTT measure-

ments for each scenario, we calculated the average, stan-

dard deviation, and minimum and maximum values, all of

which are summarized in Table 1.

The observed differences in RTT measurements

between the various scenarios is attributed to the different

methods used in each attack strategy and their impact on

network traffic. The baseline scenario (Scenario 4) serves

as a reference point without any attacker-induced inter-

ference, allowing the impact of the different attack strate-

gies to be compared. The lower RTTs in this scenario

represent the baseline performance without any intentional

attacker implementation.

Fig. 6 Queue sizes configurations impact on the network performance in the base reference scenario configuration without attacker (Scenario 4)
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In Scenario 1, where the attacking device is connected to

the switch and ARP poisoning is used, the increased RTT

and variability is explained by the additional steps intro-

duced into the communication process. ARP poisoning

involves the manipulation of the ARP cache on the target

devices, resulting in potential delays in the normal flow of

network traffic. This interference results in increased RTT

and a less predictable communications environment.

Scenario 2, which utilizes a computer with two interfaces

and employs Scapy to bridge them for the MitM attack,

introduces a more controlled environment compared to Sce-

nario 1. The lower increase in RTT and reduced variation can

be attributed to Scapy’s management of the bridging process

and the elimination of the need to add new links, which can

introduce additional delays. However, it is important to note

that while this scenario is more stable, it still introduces some

level of interference due to the active manipulation (inter-

ception and forwarding) of network traffic.

In Scenario 3, where the attacker is located in the SDN

controller, the implementation of forwarding rules on

switches to control the traffic path results in a more opti-

mized MitM attack compared to Scenario 1. This approach

also minimizes variations in RTT, as the SDN controller

can efficiently manage and redirect the traffic flow without

introducing unnecessary delays. A longer delay in this

scenario compared to Scenario 2 is due to the traffic having

to go to and from the SDN controller. In Scenario 2, traffic

passes through a host without adding additional commu-

nication links.

In conclusion, the choice of attack strategy significantly

influences the RTT measurements and their variability.

While Scenario 1 (ARP poisoning) may be suitable in

certain situations, scenarios 2 and 3 demonstrate more

controlled and efficient approaches, with Scenario 2 having

the least impact on average RTT and variability. The

observed differences highlight the importance of consid-

ering the specific requirements and priorities of a given

network experiment or application when selecting the

attack implementation strategy.

4.3.2 SDN controller CPU usage interference analysis

In addition to evaluating the RTT between PLC1 and

PLC3, we conducted an analysis of the CPU utilization

Fig. 7 Reproducibility of network performance in different hardware usage scenarios
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within the SDN controller during each 10-minute experi-

ment. Figure 9 provides a visual representation of the

observed CPU utilization trends. We have grouped sce-

narios 1, 2, and 4 together because the role of the SDN

controller in these scenarios is limited to network provi-

sioning, which includes installing flow rules and estab-

lishing communications.

In scenarios 1, 2, and 4, CPU utilization remains con-

sistently low. This is due to the fact that once the flow rules

are installed in the OpenFlow switch, the traffic is

processed within the data plane without requiring the

involvement of the SDN controller.

In contrast, Scenario 3 shows a more intensive CPU

usage pattern. The attacker’s specific implementation for-

ces all traffic to be forwarded from the switch to the SDN

controller, resulting in a significant increase in CPU uti-

lization. This distinction highlights the impact of malicious

activity on the resource utilization of the SDN controller.

In conclusion, our evaluation shows that the CPU uti-

lization of the SDN controller is significantly affected by

the attacker implementation location. While network

packets processing in the data plane maintain low CPU

utilization, the introduction of an adversarial element in the

SDN controller, as seen in Scenario 3, causes a significant

increase in CPU usage. This finding highlights the impor-

tance of considering this resource demand in experiments

where the CPU usage of the SDN controller is critical.

5 Conclusion and future work

Testing and evaluating the resilience and security of

Industrial Control Systems (ICSs) pose significant chal-

lenges. In order to address these challenges, researchers

commonly employ testbeds such as MiniCPS, which are

designed for conducting research and security testing in

SDN-based industrial networks. This study aims to analyze

several crucial features of a MiniCPS-based testbed that are

essential for conducting scientifically rigorous experi-

ments. Specifically, it focuses on network performance,

replicability, and the impact of different attacker imple-

mentations. The experimental results demonstrate the fol-

lowing key findings regarding MiniCPS: (1) provides a

consistent performance within established confidence

intervals, (2) exhibits a high degree of reproducibility in

experiments, although it is recommended to use the same

hardware for experiments with high network load, and (3)

enables the use of different methods for implementing

attackers, thereby influencing the realism of experiments

and the resulting outcomes.

As part of future directions, this research aims to expand

its scope by analyzing the impact of employing various

measurement tools, SDN controllers, and software-based

switches. Additional investigations will further enhance the

understanding of the testbeds capabilities and provide

valuable insights into the broader applicability of MiniCPS.

Acknowledgements This work has been developed by the Intelligent

Systems for Industrial Systems group, supported by the Department of

Education, Language Policy, and Culture of the Basque Government

(IT1676-22). This project has received support from the Department

of Economic Development, Sustainability, and Environment of the

Basque Government, within the ELKARTEK 2023 call, under the

BEACON project (registration number 2023RTE00242510).

Fig. 8 RTT measurements in the considered four different scenarios

Table 1 RTT measurements between PLC1 and PLC3 in different

scenarios

Scenarios

4 (Normal) 1 2 3

RTT (ms) avg 0.110 15.029 4.325 6.163

stdev 0.062 3.776 0.713 0.796

min 0.033 8.384 1.031 1.542

max 0.560 24.084 6.865 9.255

Fig. 9 CPU usage of the SDN controller in the different scenarios
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27. Gómez, Á. L. P., Maimó, L. F., Celdrán, A. H., Clemente, F.

J. G., Sarmiento, C. C., Masa, C. J. D. C., & Nistal, R. M. (2019).

On the generation of anomaly detection datasets in industrial

control systems. IEEE Access, 7, 177460–177473.
28. Barbieri, G., Conti, M., Tippenhauer, N.O., Turrin, F.: Assessing

the use of insecure ics protocols via ixp network traffic analysis.

In: 2021 International Conference on Computer Communications

and Networks (ICCCN), pp. 1–9 (2021). doi: https://doi.org/10.

1109/ICCCN52240.2021.9522219

29. Huang, D., Shi, X., & Zhang, W.-A. (2020). False data injection

attack detection for industrial control systems based on both time-

and frequency-domain analysis of sensor data. IEEE Internet of
Things Journal, 8(1), 585–595.

30. Aoudi, W., Iturbe, M., Almgren, M.: Truth will out: Departure-

based process-level detection of stealthy attacks on control sys-

tems. In: Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. CCS ’18, pp. 817–831.

Association for Computing Machinery, New York, NY, USA

(2018). doi: https://doi.org/10.1145/3243734.3243781.

31. Giraldo, J. A., El Hariri, M., & Parvania, M. (2022). Moving

target defense for cyber-physical systems using iot-enabled data

replication. IEEE Internet of Things Journal, 9(15),
13223–13232. https://doi.org/10.1109/JIOT.2022.3144937

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Xabier Etxezarreta received the

bachelor’s degree in Computer

Engineering in 2019 and the

master’s degree in Data Ana-

lytics, Cybersecurity and Cloud

Computing in 2021, both at

Mondragon Unibertsitatea,

Arrasate-Mondragón, Spain.

During the course of his studies,

he has participated in numerous

research projects related to arti-

ficial intelligence and multi-ob-

jective optimization. He is

currently pursuing his doctoral

studies, researching on intrusion

detection and response techniques based on SDN for industrial control

systems.
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sitetssenteret på Kjeller (UNIK)

as postdoctoral researcher. In addition, he is the CTO of the Basic

Internet Foundation. His main research interest is in the area of

Cybersecurity applied to Industrial Automation and Control Systems

and Information and Communication Networks including Internet of

Things, and Application Container technologies. He currently par-

ticipates in several European, national and regional level public

funding projects.

Mikel Iturbe received the M.Sc.

degree in ICT security from the

Open University of Catalonia,

Barcelona, Spain, in 2013, and

the Ph.D. degree from Mon-

dragon Unibertsitatea, Arrasate-

Mondragón, Spain, in 2017,

where he worked on data-driven

intrusion detection in industrial

networks. He is a Lecturer and a

Researcher with Mondragon

Unibertsitatea. He is currently

part of the Data Analysis and

Cybersecurity Research Group.

His main research interest is

related to cybersecurity, primarily in the industrial sector. The main

lines he works on are industrial control system security, embedded

security, and software security. He also works in exploring novel

data-driven applications for cybersecurity.

Urko Zurutuza is the principal

investigator of the Intelligent

Systems for Industrial Systems

research group, and coordinator

of the Data Analysis and

Cybersecurity research team. He

obtained his PhD in January

2008 at Mondragon Unibertsi-

tatea, in collaboration with the
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