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Abstract
Channel state estimation (CSE) is essential for orthogonal frequency division multiplexing (OFDM) wireless systems to

deal with multipath channel fading. To attain a high data rate with the use of OFDM technology, an efficient CSE and

accurate signal detection are required. The use of machine learning (ML) to improve channel estimates has attracted a lot

of attention lately. This is because ML techniques are more adaptable than traditional model-based estimation techniques.

The present study proposes a receiver for low-spectrum usage in OFDM wireless systems on Rayleigh fading channels

using deep learning (DL) long short-term memory (LSTM). Before online deployment and data retrieval, the proposed DL

LSTM estimator gathers channel state information from transmit/receive pairs using offline training. Based on the sim-

ulation results of a comparative study, the proposed estimator outperforms conventional channel estimation approaches like

minimum mean square error and least squares in noisy and interfering wireless channels. Furthermore, the proposed

estimator outperforms the DL bidirectional LSTM (BiLSTM)-based CSE model. In particular, the proposed CSE performs

better than other examined estimators with a reduced number of pilots, no cycle prefixes, and no prior knowledge of

channel statistics. Because the proposed estimator relies on a DL neural network approach, it holds promise for OFDM

wireless communication systems.

Keywords OFDM � Channel state estimation � Signal detection � Channel state information � Machine learning �
Deep learning � LSTM � BiLSTM

Abbreviations
CSE Channel state estimator

OFDM Orthogonal frequency division multiplexing

SD Signal detector

ML Machine learning

DL Deep learning

LSTM Long short-term memory

CSI Channel state information

MMSE Minimum mean square error

LS Least square

BiLSTM Bidirectional long-short term memory

CP Cyclic prefix

ISI Intersymbol interference

DNN Deep neural network

LMMSE Linear minimum mean square error

BER Bit error rate

SNR Signal-to-noise ratio

CNN Convolutional neural network

FFNN Feed-forward neural network
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MSE Mean squared error

RNN Recurrent neural network

SER Symbol error rate

Adam Adaptive moment estimation

QPSK Quadrature phase shift keying

AWGN Additive white Gaussian noise

1 Introduction

In wireless data communication systems, there is an

increased requirement to boost data throughput and effec-

tively use the available spectrum. One of the techniques

that have been employed to attain these goals is the OFDM

modulation technique [1, 2].

In most modern high-speed wireless communication

technologies, OFDM is rapidly becoming the preferred

modulation technique [3]. This is because of its robustness

to multipath fading and its capability to alleviate the

intersymbol interference (ISI) caused by wireless channel

delay spread [4, 5].

Generally, CSE is vital in communication systems

because it has a direct impact on system quality. CSE is a

crucial challenge in OFDM systems since the channel

response varies significantly over time owing to the

mobility of the transmitter, receiver, or dispersion obstacles

[6, 7].

CSE is achieved by inserting pilot carriers, which are

known in advance on both sides but consume additional

spectrum resources, during the transmission of OFDM

signals. On the other hand, the CSE and its impacts must be

estimated and compensated at the receiving end to accu-

rately retrieve the desired signal [8].

Although increasing the number of pilots in the OFDM

symbol results in more accurate estimates, the inserted

pilot signals occupy more spectrum resources and are more

likely to be affected by noise, resulting in a degradation of

original signal recovery and bandwidth loss [9].

In the context of traditional channel estimation tech-

niques, the LS estimator is well-known for its low com-

putational complexity, requiring no prior channel statistics.

However, in many practical applications, especially for

multipath channels, LS estimation produces relatively

significant channel estimation errors [9, 10].

As an alternate option, the MMSE estimation approach

produces significantly higher channel estimation quality

than the LS estimator. However, operational noise power

and statistics of the channel are required in MMSE, making

it have significant computational complexity [11, 12].

DL techniques are a recent trend in various wireless

communication applications [13–17]. Channel equaliza-

tion, radio resource allocation, physical security, channel

decoding, and channel estimation are just a few of the

applications [18–23].

There are several factors supporting the use of DL in

diverse fields. One of these critical facets is that DL-based

algorithms are data-driven, making them more suited to

handle real-world application challenges. Furthermore, the

DL-based approaches have lower computational complex-

ity, requiring numerous layers of basic operations, includ-

ing matrix–vector multiplications. Additionally, the

implementation of DL algorithms can be highly paral-

lelized and constructed simply using low-precision data

types.

In terms of the CSE and SD applications, the authors in

[24] proposed a deep neural network (DNN) model that

employs hyperparameter optimization to estimate the CSI

in OFDM wireless systems and symbol detection over the

winner II channel. The proposed DNN model provides

higher performance than the conventional MMSE estima-

tion approach. This article [25] proposes an LSTM NN

model to estimate the CSI in OFDM wireless systems. The

comparative analysis revealed that the suggested estimator

outperformed the MMSE and LS estimators with a

restricted number of pilots and previous uncertainty in

channel conditions. The authors in [26] proposed DNN-

based CE for doubly selective fading channels. The sim-

ulation outcomes demonstrate that the suggested DNN

estimator performs superior to the linear MMSE (LMMSE)

estimator regarding robustness and efficiency. The authors

in [27] introduced two DNN model architectures in a 5 G

MIMO-OFDM system with frequency selective fading,

used for channel estimation. In addition, the performance

of the proposed DNN estimators was compared to the

traditional LMMSE and LS estimation methods in terms of

bit error rate (BER) versus signal-to-noise ratio (SNR) and

channel estimate errors. The suggested DNN-aided esti-

mate outperformed other methods in lowering channel

estimation errors. The authors in [28] introduced the

employment of several DNN architectures, including con-

volutional neural network (CNN), bi-LTSM, and a fully

connected DNN, to aid in the CSE procedure in a MIMO-

OFDM system with various cases of fading multi-path

channel models based on the TDL-C model outlined in 5 G

networks. The simulation results demonstrate that the

proposed DNN estimators perform better than the tradi-

tional LMMSE and LS estimation techniques. The article

[29] introduced the use of a one-dimensional (1D) CNN for

CSE in the OFDM system. The simulation results showed

that the proposed estimator outperformed the feed-forward
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neural network (FFNN), LS, and MMSE estimators for

BER and mean squared error (MSE). The authors in [30]

proposed a recurrent neural network (RNN) with BiLSTM

architecture integrated with CNN and a batch normaliza-

tion (BN) layer for signal detection tasks in uplink OFDM

systems over time-varying channels. The article [31] pro-

posed applying DL LSTM-based data-pilot aided (DPA)

estimation followed by temporal averaging (TA) process-

ing as a noise alleviation technique to the IEEE 802.11p

standard and employed it in a vehicular channel scenario

under different mobility conditions. The authors in [32]

employed the DL BiLSTM architecture to perform symbol

detection tasks in a MIMO-OFDM system and study the

impact of the number of pilots on the system’s

performance.

To the best of the author’s knowledge, none of the

studies cited [24–32] addressed the impact of the absence

of CP on the efficacy/accuracy of the employed DL

methods, which is essential for improving spectrum effi-

ciency, energy efficiency, and transmission data rates.

When comparing our proposed DL LSTM model to others

in the DL domain, we focus on using LSTM architecture

for both CSE and SD tasks, rather than utilizing LSTM for

CSE alone, as seen in [31], or combining BiLSTM with

other DL architectures for SD, as in [30], or incorporating

other processing units for SD, as in [32]. This approach

enhances receiver functionality while reducing computa-

tional complexity.

The simulation results show that the proposed DL

LSTM estimator beats the conventional LS and MMSE

channel estimation approaches, in addition to the DL

BiLSTM model. Furthermore, the proposed estimator

offers robust performance when the CP is omitted, limited

training pilots are utilized, and without prior channel

statistics knowledge.

The rest of the paper is structured in the following way:

Sect. 2 describes the study’s aims and methods and the

architecture of the OFDM system used. Section 3 illus-

trates the proposed DLNN-based CSE framework and the

model training approach. Section 4 demonstrates the sim-

ulation results that examine the suggested estimator’s

performance and compare it to other standards. Finally,

Sect. 5 summarizes and concludes the paper, along with

future directions.

2 Methods and aims

Wireless networks have become increasingly sophisticated.

However, the latest wireless systems are designed utilizing

mathematical models. These mathematical models vary

based on the scenario and often fail to incorporate insights

from past experiences or system trends, limiting their

potential for offering general solutions. Using ML

approaches to wireless communication networks is the

focus of significant research to overcome the above con-

straints. A generic learning system can be created using

ML-based design’s prediction/estimation abilities. DL has

emerged as a viable option as wireless transmission chan-

nels have become more complex and unpredictable. DL is

ideally suited to problems like CSE because of the varying

channel conditions and the necessity for estimation/training

to determine channel parameters. In particular, the current

study focuses on developing a low-spectrum receiver for

OFDM wireless systems using DL LSTM RNNs.The most

important contributions of this study are the following:

• We utilize a DL LSTM-NN model to improve CSE in

OFDM systems operating over Rayleigh fading chan-

nels. LSTM architectures allow for the storage and later

use of data. When dealing with a sequence of data or a

time series, this feature is helpful.

• The proposed DL LSTM estimator is initially trained in

offline mode using the data set results from the

simulation. After that, the trained DL model is

employed online to retrieve the transmitted data.

• We evaluate the proposed DL LSTM estimator’s

performance in terms of symbol error rate (SER) versus

SNR in addition to comparing the efficiency of the

proposed DL LSTM estimator to that of the traditional

MMSE and LS channel estimation techniques.

• Furthermore, we compare the proposed DL LSTM

estimator to other DL options, including the BiLSTM

model mentioned in [30, 32].

• Under different CP durations and pilot densities, we

examine the performance of the proposed DL LSTM

channel estimator structure. Furthermore, the proposed

CSE does not require knowledge of channel details. As

a result, the proposed DL LSTM model offers a

practical means of reducing the spectrum resources

necessary for CSE.

In this study, the proposed DL LSTM-NN estimator is

trained using the adaptive moment estimation (Adam)

optimization approach. Additionally, the primary loss

function in this investigation is cross-entropy.

2.1 System model description

This section provides a brief overview of the OFDM sys-

tem. For the current study, we adopted an OFDM system

with a single user. Using the architecture of the system

depicted in Fig. 1, the transmitting and receiving compo-

nents are identical to those used in conventional systems.

Additional information about the processes carried out in

the transceiver can be found in [22].
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3 Deep learning neural networks-based
channel estimation

This section provides a detailed explanation of the archi-

tecture of the proposed DL-based channel estimation

approach. Then, we briefly describe how the training stages

are conducted.

3.1 Proposed DL-based CE architecture

RNNs are designed to learn sequential data and have been

shown to be highly effective in many time series applica-

tions. Nevertheless, when the sequence is much longer,

several critical challenges emerge, such as long-term

dependency issues and vanishing/exploding gradient

issues. The LSTM architecture was presented as an

enhanced version of RNN to address these issues [33].

Also, LSTMs can effectively use data from previous time

sequences and deal with the long-term dependencies of

time sequences, especially when making predictions and

classifying based on sequence data. A typical LSTM-NN

cell is described in Fig. 2, which consists of an input gate,

an output gate, and a forget gate, as well as a memory cell.

The LSTM-NN manages the flow of the training data

through the mentioned gates by adding data selectively

(input gate), discarding data (forget gate), or allowing it to

pass to the next cell (output gate) [34].

Specifically, in the first, the forget gate allows the LSTM

network to discard unwanted data before it passes through

the cell. This is achieved by using the current input xt and

the cell output ht of the previous step. Meanwhile, the input

gate determines the amount of information from the current

cell input xt and the previous cell output ht�1 that will be

combined with the previous LSTM cell state ct�1 to gen-

erate a new state for the cell ct. Finally, the output gate

finds the amount of information from the current cell input

xt and the previous cell output ht�1 that will be used in the

existing cell state ct to produce the current cell output ht.

The mathematical functions describing the architecture and

mechanism of the LSTM-NN cell are as follows [33]:

it ¼ rgðwixt þ Riht�1 þ biÞ ð1Þ

ft ¼ rgðwf xt þ Rf ht�1 þ bf Þ ð2Þ

gt ¼ rcðwgxt þ Rght�1 þ bgÞ ð3Þ

ot ¼ rgðwoxt þ Roht�1 þ boÞ ð4Þ

ct ¼ ft � ct�1 þ it � gt ð5Þ

ht ¼ ot � rcðctÞ ð6Þ

where i, f, g, o, rg, rc and � indicate the input gate, forget

gate, memory cell candidate, output gate, sigmoid (logistic)

activation function, tanh (hyperbolic tangent function)

Fig. 1 The architecture of the OFDM system [22] Fig. 2 Multi-gated LSTM cell architecture [34]

Wireless Networks

123



activation function, and element by element multiplication,

respectively.W ¼ ½wi wf wg wo�T , R ¼ ½Ri Rf Rg Ro�T and

b ¼ ½bi bf bg bo�T are the weight vectors for forget gate

(inputs), the weight vectors for the candidate (outputs), and

bias, respectively.

For the channel estimation task, we employed a DL

LSTM-based NN. The proposed estimator includes an

input layer with a size of 256, followed by an LSTM layer

with 16 hidden units. Afterward, the output of the LSTM

layer passes through a fully connected layer with a size of

4, then through a softmax layer, and finally to a classifier.

Figure 3 illustrates the architecture of the proposed DL

LSTM estimator.

3.2 Training of the proposed DL model

The proposed DL LSTM NN-based CSE is incorporated

into the conventional OFDM system to estimate the

channel conditions explicitly. DL approaches typically

involve two phases: model training and implementing the

learned model.

In this study, the DLNN model was initially trained with

simulated data offline before the implementation phase

online. Specifically, during the offline training phase, the

proposed CSE is trained with received OFDM signals that

are created with diverse information sequences and under

variant channel properties with particular statistical

characteristics.

The training dataset is designed for a single-user OFDM

system, where each OFDM frame includes both transmitted

data symbols and pilots. The necessary training dataset

consists of the received OFDM signal, which is corrupted

by existing channel characteristics and noise, as well as the

originally transmitted data.

During the online implementation phase, the previously

trained offline CSE produces output representing the

transmitted data without explicitly estimating the wireless

channel.

In this paper, the Adam optimizer is used to train the

suggested estimator. It adjusts both biases and weights to

minimize the difference between the estimator’s outputs

and the actual sent data, employing a specific loss function.

Cross-entropy (crossentropyex) is the main loss function

used in this study to enhance training speed, which for the

k mutually exclusive classes can be expressed as [25]:

crossentropyex ¼ �
XN

i¼1

XC

j¼1

XijðkÞlogðX̂ijðkÞÞ ð7Þ

where N represents the entire number of samples, C

denotes the entire number of classes, Xij denotes the ith

sample data sent for the jth category, and X̂ij is the pro-

posed estimator’s output for a sample i for category

j. Figure 4 depicts the procedures for constructing training

sets and conducting an offline DL to produce a learned

LSTM estimator.

4 Simulation results

In this study, the suggested DL LSTM-NN-based CSE is

trained offline with generated datasets. It is then utilized to

implicitly estimate the CSI and retrieve the transmitted

data in an OFDM wireless communication system. A

dataset for training and validation is created for a single

subcarrier. The received OFDM frame comprises data

symbols interspersed with pilot symbols. A comparative

analysis of SER at different SNRs is conducted to assess

the performance and efficiency of the proposed DL LSTM

model in comparison to the conventional wireless channel

estimation methods, MMSE and LS. Additionally, the

proposed framework’s performance is compared to the DL

BiLSTM model used in [30, 32]. The performance of the

investigated estimators will be evaluated at different CP

lengths (16, 8, and 0) and with varying numbers of pilots

(8, and 64). The proposed CSE will be trained using the

Adam optimizer and the cross-entropy loss function in the

last classification layer. A Rayleigh fading channel with 24

paths is considered. Finally, all investigations assume a

priori uncertainty about the channel model’s properties.

Table 1 shows the simulation settings for the applied

OFDM system and the adopted channel model. Table 2

lists the specifications of the proposed DL LSTM-NN

architecture and its related training settings that were

determined through trial-and-error.

When we consider the absence of pilots (8 pilots) and a

CP length of 16, Fig. 5 shows that the proposed DL LSTM-

based CSE beats the conventional estimators starting from

0 dB, while the LS and MMSE estimators completely lose

their workability. Additionally, in the SNR ranges [0–7dB],

the proposed LSTM model is comparable to the BiLSTM

model. Beyond this range, the proposed LSTM estimator

beats the BiLSTM model.

The proposed LSTM estimator provides superior per-

formance compared to the BiLSTM model when the length

of CP decreases to 8, as shown in Fig. 6. Conversely, theFig. 3 The proposed DL LSTM estimator layout with variant layers
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SER curve for the conventional MMSE and LS estimators

saturates at all SNR values.

In the simulation scenario with 8 pilots and none of the

CP, the DL LSTM-based CSE still provides superior per-

formance in comparison to the conventional estimators,

starting at SNR = 6 dB, as shown in Fig. 7. It is also

noticeable that the MMSE has better performance than the

LS estimator, which offers the worst performance, starting

at 14 dB. On the other hand, the proposed LSTM estimator

achieves the same performance as the BiLSTM model over

an SNR range of [0–22 dB]. The BiLSTM model outper-

forms the LSTM estimator starting at 23 dB.

As observed in Figs. 5, 6, 7, the proposed DL LSTM-

CSE/SD-based model outperforms the conventional esti-

mators with any length of the CP and fewer pilot numbers.

Also, the proposed DL LSTM model outperforms the

BiLSTM model with long/short CP and fewer pilot num-

bers. In addition, it produces comparable performance to

the BiLSTM model when the CP is omitted. The above

demonstrates the effectiveness of the proposed DL LSTM-

CSE/SD-based model in terms of performance and spec-

trum savings. Moreover, it reinforces the DL-based esti-

mator’s outstanding generalization ability regarding the CP

and the number of pilots.

The performance of the proposed DL LSTM-based CSE

at 8 pilots and different CP lengths of 16, 8, and 0 is

summarized in Fig. 8. We can observe that the proposed

estimator with or without CP has identical performance at

low SNRs [0–8 dB]. Also, the proposed estimator’s per-

formance with CP has less variation than its performance

Fig. 4 The proposed estimator’s training dataset generation and

offline DL process

Table 1 Channel model and OFDM system settings

Parameter Value

Number of sub-carriers 64

Modulation type Quadrature phase shift keying (QPSK)

Carrier frequency 2.6 GHz

Cyclic prefix (CP) Length 16,8,0

Number of pilots 64,8

Number of paths 24

Channel model Rayleigh Fading

Noise model Additive white Gaussian noise (AWGN)

Table 2 The proposed DL LSTM-NN construction and the training

parameters

Parameter Value

Input layer size 256

LSTM layer size 16 hidden neurons

Fully connected layer Size 4

Number of epochs 1000

Mini batch size 1000

Optimization algorithm Adam

Loss function Crossentropyex

Fig. 5 SER performance of the proposed LSTM-based CSE and

competitive estimators at 8 pilots and a CP length of 16
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without CP over the SNR ranges [8–14 dB]. The provided

results demonstrate the effectiveness of the DL LSTM-

based CSE under the conditions of few pilots and the

absence of the CP.

When enough pilots (64 pilots) and the length of CP 16

are used, the proposed LSTM and DL BiLSTM models

perform similarly over the SNR ranges [0–10 dB], as

illustrated in Fig. 9. Beyond these SNR ranges, the pro-

posed LSTM estimator beats the BiLSTM model. In

addition, the proposed LSTM estimator beats the conven-

tional estimators. On the other hand, the MMSE estimator

outperforms the LS estimator in this situation.

At the length of CP of 8, Fig. 10 depicts the superiority

of the DL LSTM-based CSE/SD compared to the con-

ventional estimators, in addition to the BiLSTM model at

all SNRs. On the other hand, the MMSE estimator still

outperforms the LS estimator.

In the simulation scenario of 64 pilots without CP, the

proposed DL LSTM estimator attains superior performance

over the conventional estimators, as described in Fig. 11.

In contrast, the LS estimator provides the worst perfor-

mance. On the other hand, the proposed LSTM estimator is

on par with the BiLSTM model over an SNR range of

[0–23 dB]. Furthermore, the proposed DL LSTM estimator

outperforms the BiLSTM model starting at 24 dB.

It can be observed from Figs. 9, 10, and 11 that the

proposed DL LSTM-based CSE provides the best perfor-

mance in comparison to the MMSE and LS estimators in

all CP scenarios. This is because of the DNN’s capability to

learn and adjust to the properties of the wireless channel.

Fig. 6 SER performance of the proposed LSTM-based CSE and

competitive estimators at 8 pilots and a CP length of 8

Fig. 7 SER performance of the proposed LSTM-based CSE and

competitive estimators at 8 pilots and without CP

Fig. 8 SER performance of the proposed LSTM-based CSE at 8 pilots

and CP lengths of 16, 8, and zero

Fig. 9 SER performance of the proposed LSTM and competitive

estimators at 64 pilots and a CP length of 16
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Also, the proposed LSTM CSE/SD outperforms the DL

BiLSTM model in most cases.

On the other hand, the LS estimator yields the worst

SER performance in all scenarios since its estimation

method doesn’t use any prior knowledge about the channel

statistics. The MMSE estimator, in contrast, uses the mean

and covariance matrices (channel statistics of the second

order), which gives it better performance than its LS

counterpart.

Figure 12 summarizes the performance of the proposed

DL LSTM-CSE/SD-based model with 64 pilots and dif-

ferent CP lengths of 16, 8, and 0. It is clear that the pro-

posed LSTM estimator with any CP length has comparable

performance over the SNR ranges [0–20 dB]. With

increasing SNR, the model with CP gained an advantage

over the model without CP because the ISI increased. Also,

in Figs. 8 and 12, it can be noticed that the CP length has

the same effect on the proposed DL LSTM-based CSE/SD

using either sufficient or fewer pilots.

Improving spectrum efficiency and transmission data

rates in OFDM wireless communication systems has

received significant attention in the literature. The pro-

posed model effectively attains this understanding by

reducing the length of CP to an acceptable level, resulting

in superior performance when compared to conventional or

other deep learning models, as demonstrated in Figs. 5, 6,

7, 8, 9, 10, 11, 12.

5 Conclusions and future work

This study develops a low-spectrum OFDM wireless

receiver using DL LSTM RNNs. The simulation results

show that the proposed DL-LSTM-based CSE/SD model is

highly effective in distorted and interfering wireless com-

munication channels. The simulation results proved the

robustness of the proposed model and demonstrated its

superior performance compared to the other examined

estimators, conventional CSEs, under the conditions of a

minimum number of pilots and none of CP. The conven-

tional LS and MMSE CSEs lose their workability with a

limited number of pilots. On the other hand, under the same

simulation conditions, the proposed CSE model beats the

DL BiLSTM peer model in every simulation scenario,

proving its efficacy both with/without CP, even with a

limited number of pilots. The proposed LSTM model is

recommended for OFDM wireless communication systems

to optimize spectrum, energy, and data transfer rates. The

following are some directions the authors have proposed

for further studies:

Fig. 10 SER performance of the proposed LSTM and competitive

estimators at 64 pilots and a CP length of 8

Fig. 11 SER performance of the proposed LSTM and competitive

estimators at 64 pilots and without CP

Fig. 12 SER performance of the proposed LSTM-based CSE at 64

pilots and CP lengths of 16, 8, and zero
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• Studying the performance of the proposed DL LSTM-

based CSE/SD model for MIMO Communication

systems.

• Investigating the use of Federated machine learning

techniques on the performance of the proposed DL

LSTM model.

• Analyzing the efficiency of the proposed DL LSTM

model using other optimization techniques, such as

stochastic gradient descent with momentum (SGdm)

and root mean square propagation (RMSProp).
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