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Abstract
For many wireless sensor networks applications, a powerful localization algorithm is required to determine the exact

positions of sensor nodes. In this paper, a new localization algorithm is presented which combines the distance vector hop

(DV-Hop) algorithm with the shuffled shepherd optimization algorithm to determine the position for each unknown node

within 3-D space. Studying the localization problem in 3-D space is more realistic, but more challenging due to the

enlarged search space. Comparison of our proposed algorithm with its alternatives in literature shows that it offers

improved accuracy and more stable performance with respect to changes in nodes density and communication range.

Keywords DV-Hop algorithm � Shuffled shepherd optimization algorithm � Wireless sensor networks � Anchor nodes

1 Introduction

Wireless sensor networks (WSNs) have many applications

such as in forest fire detection, area monitoring to identify

the position of the enemy, and also in monitoring the

conditions of patients. Wireless sensor networks consist of

small devices which are called sensors and one of their

important functions is collecting and sending data. For

sending data, it is essential to know the location of the

transmitting node, which is done by using techniques of

localization [1, 2]. The objective of localization techniques

is to determine the coordinates of each node in a specific

sensing area.

There are many different ways for node localization, one

of these is to add a Global Positioning System (GPS) to

each sensor node [3]. Adding a GPS receiver to each node

is not a good solution due to its large power consumption,

and high cost. Different localization algorithms for sensor

networks have been reviewed in [4], where only a few

nodes are equipped with GPS with known locations

referred to as anchor nodes, and the remaining nodes are

referred to as unknown nodes.

The localization techniques can be categorized as:

• Centralized localization techniques.

• Distributed localization techniques.

Where the distributed techniques can be further classified

into:

• Range-based schemes.

• Range-free schemes.

In centralized localization techniques, all the measure-

ments are collected at a central base station (BS), where the

computation takes place [5–7]. Subsequently, the results

are forwarded back to the nodes. The transmission of data

through the network causes latency, more energy and

bandwidth consumption [8]. The benefit of this technique is
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the elimination of the problem of computation at every

node, which is usually a device with limited resources. The

disadvantage of this scheme is the lack of the ability to

access data in a proper way as well as inadequate scaling

properties. The popular centralized scheme employs Semi-

Definite Programming (SDP).

In distributed localization, sensor nodes perform the

required computation themselves and communicate with

each other to get their own location in the network [9–12].

The range-based schemes are defined by protocols that use

absolute distance estimation for the location computation.

Range- based techniques compute the precise distance

between transmitting and receiving nodes on the basis of

distance estimation methods [13, 14]. Thus, these tech-

niques involve diverse estimation methods to compute the

inter-node distance to measure their locality and then to

calculate the position with the help of some principles of

geometry. The range-free schemes make no assumptions

about the accessibility of such information [8, 15]. Due to

hardware restrictions of sensor nodes, solutions in range-

free schemes are considered as cost effective such as the

distance-vector (DV)-hop algorithm.

Many different optimization techniques are used to

solve the problem of localization in wireless sensor net-

works. The most well-known optimization techniques for

estimating coordinates of unknown nodes are bees opti-

mization algorithm, bat algorithm, particle swarm opti-

mization (PSO), butterfly optimization algorithm, genetic

algorithms, squirrel search algorithm, shuffled shepherd

optimization algorithm, etc.

In this paper, we focuse on the three-dimensional space

localization problem and choose the DV-Hop localization

algorithm among other existing alternatives for the fol-

lowing reasons. First, three-dimensional (3-D) space in

WSNs research is more realistic but is computationally

more complicated. In real applications sensor nodes are

distributed in 3-D space like in forests, in buildings, on

mountains and in deep water. So, we were determined to

stick to 3-D models and search for an approach that would

reduce their computational complexity to an accept-

able level. Second, the DV-Hop algorithm is our preferred

localization algorithm because it is range free and

distributed.

The contributions of this paper can be summarized as

follows:

• Proposing an algorithm to solve the challenges of

localization in 3-D space and obtaining better solutions

in terms of accuracy compared to other existing

standard algorithms. As a result of the improved

accuracy, the cost is reduced since fewer number of

anchor nodes is required which in turn leads to

minimizing the power consumption as well.

• Our proposed algorithm is an enhancement to the

existing DV-Hop algorithm that uses the shuffled

shepherd algorithm in 3-D space in place of the least

squares method employed in the traditional DV-Hop

algorithm.

• In our model, a weighting factor of the squared error is

included in the fitness function. This factor increases

the accuracy of our proposed algorithm compared to

other algorithms such as [16, 17] and [18].

The rest of this paper is organized as follows. Section 2

presents a literature review for some techniques used for

solving the localization problem. The DV-Hop algorithm

and the shuffled shepherd optimization algorithm are

described in Sect. 3. Our proposed model is introduced in

Sect. 4. Localization algorithms related performance

measures and simulation results are provided in Sect. 5.

Section 6 concludes the main results of the work.

2 Literature review

In this paper, our main focus is range-free based localiza-

tion algorithms. Range-free schemes include five well-

known schemes, which are the base for all more recent

developments. These five schemes are:

• Approximate Point in Triangle (APIT) scheme.

• Distance Vector (DV)-Hop scheme.

• Multi-Hop scheme.

• Centroid scheme.

• Gradient scheme.

Approximate Point in Triangle scheme (APIT) performs

localization in an area by dividing it into triangular zones

between anchor nodes. The locations of anchor nodes are

received and tested to determine whether they are outside

or inside a common triangle. If it is inside, add to the set of

insiders. When the target accuracy is reached, estimate the

position of the unknown node as the center of gravity [19].

This paper focuses on the DV-Hop localization algo-

rithm, which is considered as the classical distance vector

routing method. Dragos Niculescu proposed the basic idea

is to estimate the distance between the unknown nodes and

the reference or anchor nodes as the product of the average

hop size by the hop count. Each anchor node broadcasts a

message which contains its position with hop count ini-

tially set equal to 1. Each receiving unknown node re-

transmits the received message to its neighbors after

adjusting the hop count appropriately. Each unknown node

keeps the minimum value received regarding the hop

count. Consequently, it ignores other messages with higher

values for the hop count [16, 20, 21]. Messages are
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broadcast out with an increment of the hop count value at

every middle hop.

Multi-Hop algorithm [22] uses connectivity information

considering the nodes which are within the communication

range. This scheme has three steps. First, the distance

estimation between each viable pair of nodes is done. After

that, multi-dimensional scaling (MDS) is used for deriving

the locations to fit the estimated distance. Finally, opti-

mization is done by putting the known locations into

account. In large scale sensor networks, there are several

kind of MDS methods such as metric, non-metric, classical,

and weighted methods. In the centroid algorithm [23], a

node location is computed on the basis of several neigh-

boring anchor nodes positions. After receiving the location

of all anchor nodes, an unknown node estimates its position

as the average of the coordinates of all neighboring anchor

nodes [8]. In the gradient localization algorithm [24, 25],

unknown nodes obtain their locations through multi-later-

ation. It also uses hop count, which is initially set to zero

and incremented as it is propagated to other nearby nodes.

This algorithm consists of the following steps. First, each

anchor node sends a message containing its coordinates

and hop count value. Then, an unknown node determines

the shortest path between itself and anchor nodes from

which it receives beacon messages. The estimated distance

can then be calculated and finally, minimum error is

evaluated for each unknown node.

To solve the localization multi-dimensional optimiza-

tion problem, numerous bio-inspired algorithms [26] have

been considered. PSO is a population-based search algo-

rithm in which individual particles work together to solve a

given optimization problem [27]. The search is guided

based on the global best fitness and all personal best fitness

values. A genetic algorithm (GA) is another population-

based algorithm that consists of four steps: initialization of

population, fitness function evaluation for each individual,

selection according to the fitness function, and finally

recombination (mutation and crossover) [28]. As for the

squirrel search algorithm (SSA) [29], it mimics the

behavior of flying squirrels foraging. The squirrels search

for food resources by gliding from one tree to the other

when the weather is bad. There are three types of trees

which are a hickory tree, acorn trees, and normal trees.

SSA consists of the following stages: Random initializa-

tion, fitness evaluation, sorting, declaration, random

selection, generation of new locations, seasonal monitoring

condition, and random relocation at the end of the winter

season. SSA has been successfully applied to solve the

localization problem in [18].

The bacterial foraging algorithm (BFA) has been

applied to solve the localization problem, where the nodes

which were localized in an iteration act as reference nodes

for localizing the remaining nodes [30]. The benefit of the

proposed technique was diminishing the amount of trans-

mitted information to the base station which conserves the

node energy.

To minimize the summation of the squared range error

between the unknown nodes and anchor nodes, two dis-

similar scattering of reference nodes were considered for

the simulation of bees optimization algorithm (BOA) [31].

Moreover, for localizing the nodes in a 3-D area, the

stochastic particle swarm optimization (SPSO) algorithm

was proposed and the results show that it was more

effective compared with PSO [32]. Furthermore, for

improving the convergence rate and localization accuracy,

the combination between particle swarm optimization and

bacterial foraging optimization (BFO) was proposed in

[33]. In addition, the genetic algorithm [34] was employed

to reduce the total cost by equipping a small number of

nodes with GPS systems. A variant of the cuckoo search

algorithm was introduced in [35] to find the global opti-

mum position of sensor nodes. Additionally, binary particle

swarm optimization was used to reduce the total time of

computation by using the received signal strength indicator

(RSSI) to calculate the distance between unknown nodes

and anchor nodes in [36].

For localizing more nodes and reducing the processing

time, an improved bat algorithm has been introduced in

[37]. A Parallel Firefly Algorithm (PFA) which uses the

received signal strength (RSS) measurements for accurate

self-localization of nodes was introduced in [38]. The

objective function of their suggested algorithm was modi-

fied by taking distance factor into account. The processing

time and global optimum value of the objective function of

the proposed method were reduced compared to the PSO

algorithm [38]. Artificial bee colony (ABC) is one of the

optimization algorithms, which also provided a higher

accuracy compared with PSO but with more processing

time [39]. Additionally, to improve the performance of

localization in WSNs, the butterfly optimization algorithm

(BOA) was used in [40]. The simulation results showed

that BOA improved the accuracy and decreased the com-

putational time compared with the other algorithms.

A range-free based firefly optimization method for

localizing the nodes in a 3-D environment was proposed in

[41]. The sensor nodes were placed randomly over three

levels. The reference nodes were scattered arbitrarily over

the top level and unknown nodes were positioned in the

intermediate and lowest levels. To decrease the computa-

tional complexity, the nonlinearity in the relation between

the received signal strength indicator and distance was

expressed using fuzzy logic. Furthermore, the location of
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an unknown node was calculated using optimized edge

weights between the anchor and unknown nodes. Their

proposed algorithm accurately localized more unknown

nodes as compared to existing techniques [41]. Moreover,

for minimizing the total estimation error and for increasing

the position accuracy, a modified DV-Hop algorithm was

presented in [42] which was based on an improved hop size

estimation.

3 Background

Localization approaches focus mainly on 2-D (two-di-

mensional) space. But, in real practice, nodes are often

deployed in three-dimensional (3-D) space in WSNs such

as in forests, in buildings, on mountains, in deep water, etc.

In [43], a comprehensive survey of WSNs deployment in

urban areas has been provided, from which it has been

noticed that in almost all practical applications, nodes are

deployed in 3-D space. Thus, localization in 3-D scenario

is of more practical significance. The 3-D node localization

problem in WSNs is much more complex and complicated

in terms of computations. In the proposed model, 3-D

space is considered, where the deployed area includes

unknown nodes and anchor nodes. The proposed algorithm

is based on the DV-Hop algorithm which is used to esti-

mate the distance between the unknown nodes and the

anchor nodes and it also determines the minimum hop

count between the nodes. For minimizing the error in

distance estimation between the nodes, we combined the

DV-Hop algorithm with the shuffled shepherd optimization

algorithm (SSOA), which is a newly developed swarm-

based algorithm [44, 45].

In this section, we review the two building blocks of our

proposed solution to the localization problem in 3-D space.

3.1 Basic DV-Hop algorithm

The DV-Hop algorithm is a popular, range-free, distributed

localization algorithm. This localization algorithm consists

of the following three stages [16].

In stage 1, each anchor node floods the network with a

beacon packet. This packet contains the coordinates of the

anchor’s position and hop-count which is initially set to 1.

Each node maintains a table for all the received packets.

This table contains the locations of the transmitting anchors

and the minimum hop-count between the node and each

anchor ðxi; yi; zi; hopcountiÞ [16].

In stage 2, each anchor node utilizes the gathered

information during the previous step to calculate its aver-

age hop size, where HopSizei is the average hop size of

anchor i, m is the number of neighboring anchors to anchor

i, HopCountij is the minimum hop-count value between

anchor i with coordinates xi; yi; zi and anchor j with

coordinates xj; yj; zj. When every anchor node calculates its

average hop size, it broadcasts it in the WSN [16]. Addi-

tionally, each unknown node will consider the first received

average hop size as its hop size ðHopSizeuÞ, which is

assumed to be to the nearest anchor node, and ignores any

latecomers.

HopSizei ¼
Pm

j6¼i;j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q

Pm
j 6¼i;j¼1 HopCountij

;

ð1Þ

The distance between each unknown node and every

anchor node can be estimated as follows:

dui ¼ HopSizeu � HopCountui; ð2Þ

where dui and Hopcountui are the distance and the mini-

mum hop-count value between the unknown node u and the

anchor node i, respectively.

In stage 3, trilateration or multilateration is used with the

least squares method to find the location of the unknown

node. Assuming that each unknown node identifies n

neighboring anchors with coordinates xi; yi; zi and with

distance dui, for i : 1; 2; 3; ...; n, and n[ 2,

ðxu � x1Þ2 þ ðyu � y1Þ2 þ ðzu � z1Þ2 ¼ d2u1;

ðxu � x2Þ2 þ ðyu � y2Þ2 þ ðzu � z2Þ2 ¼ d2u2;

..

.

ðxu � xnÞ2 þ ðyu � ynÞ2 þ ðzu � znÞ2 ¼ d2un:

ð3Þ

This linear system of equations can be written in matrix

form as

Ax ¼ B; ð4Þ

Aðn�1Þ�3 ¼

2ðx1 � xnÞ 2ðy1 � ynÞ 2ðz1 � znÞ
2ðx2 � xnÞ 2ðy2 � ynÞ 2ðz2 � znÞ

..

. ..
. ..

.

2ðxn�1 � xnÞ 2ðyn�1 � ynÞ 2ðzn�1 � znÞ

0

B
B
B
B
@

1

C
C
C
C
A
;

ð5Þ
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Bðn�1Þ�1 ¼

x21 þ y21 þ z21 � d2u;1 þ d2u;n � x2n þ y2n þ z2n

x22 þ y22 þ z22 � d2u;2 þ d2u;n � x2n þ y2n þ z2n

..

.

x2n�1 þ y2n�1 þ z2n�1 � d2u;n�1 þ dn�1
u;n � x2n þ y2n þ z2n

0

B
B
B
B
B
@

1

C
C
C
C
C
A
;

ð6Þ

x3�1 ¼
xu

yu

zu

0

B
@

1

C
A: ð7Þ

The solution of this inconsistent system represents the

estimated locations of unknown nodes which can be given

as:

x� ¼ ðATAÞ�1ATB: ð8Þ

3.2 Shuffled shepherd optimization algorithm

The shuffled shepherd optimization algorithm (SSOA)

[44, 45] is a new optimization algorithm that simulates

animal instinct to find the best way to go to pasture. A

shepherd uses one or more horses in a herd to move the

tools and find the way. Moreover, it tries to guide sheep

behind horses to pasture and bring them back. The sheep

are divided into a number of herds and all the sheep are

sorted by their objective function values in an ascending

order and distributed randomly in each herd. Each herd has

one shepherd and one horse and the movement of each

sheep is updated according to the fitness function value.

Next, based on that all the sheep in herds are merged again,

sorted in ascending order and all these steps are repeated

until the maximum number of iterations is reached.

The reasons for using the shuffled shepherd algorithm in

our proposed model are summarized in what follows. First,

the agents are distributed among more than one commu-

nity, which helps providing better exploration of the

enlarged search space due to the 3-D nature of the local-

ization problem under study. The agents are then merged in

each iteration and sorted according to the fitness function to

balance exploration and exploitation. Second, the shuffled

shepherd optimization algorithm considers both bad and

good agents which leads to an overall improved perfor-

mance [45].

A detailed description of the shuffled shepherd opti-

mization algorithm is provided in what follows. In SSOA

[44, 45], the sheep are divided into h herds and each herd

has n sheep and the total number of sheep is s ¼ h� n. All

the sheep are sorted in ascending order according to the

fitness function and the first h are selected and distributed

randomly in herds and this is repeated for the next h sheep

till all sheep are distributed. In each herd, sheep are sorted

according to their fitness values. One agent is selected and

considered a shepherd with an index i. There are some

sheep worse and others better compared with the shepherd.

The better are called horses and the others are considered

the remaining sheep which need a guide. The shepherd

leads the sheep to the horse which guides them to the

pasture. The horse is denoted by d and the remaining sheep

are denoted by j. The movement vector can be computed

for each sheep as follows:

stepsizei ¼ b� rand � ðXd � XiÞ þ a� rand � ðXj � XiÞ;
ð9Þ

where Xd;Xi;Xj are the position vectors of the horse, the

shepherd, and the selected sheep, respectively [45]. rand is

a random value in the interval [0, 1]; a parameter is equal

to a0 at the start of the algorithm, then it decreases with the

increment in the iteration number of the algorithm to zero

and can be obtained according to

a ¼ a0 �
a0

max iteration
� iteration; ð10Þ

b parameter is equal to b0 at the beginning of the algorithm

then increases with the advance in iteration number of the

algorithm until reaching bmax; b can be calculated as

b ¼ b0 �
bmax � b0

max iteration
� iteration: ð11Þ

Now, Xtemporary
i is computed as the temporary position

vector for each sheep after calculating the step size as

follows:

Xtemporary
i ¼ Xold

i þ stepsizei ð12Þ

If the objective function value of the temporary vector is

not worse than the old objective function value, then the

position of the sheep is updated, so we have

Xnew
i ¼ Xtemporary

i , otherwise Xnew
i ¼ Xold

i .

The Steps of the Shuffled Shepherd Optimization

Algorithm (SSOA) are summarized as follows:

1. The parameters a and b are initialized, and the initial

position of the ith sheep is determined randomly in an

m-dimensional search space according to the following

equation [44]:
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X0
i ¼ Xmin þ rand � ðXmax � XminÞ; i ¼ 1; 2; :::;m

ð13Þ

where X0
i is the initial position vector of the ith sheep,

Xmax and Xmin are the maximum and minimum

boundaries, respectively.

2. The fitness function for each sheep is evaluated and the

sheep are sorted in ascending order of their fitness

values.

3. Build the herds as we discussed before.

4. The step size for each sheep and the temporary position

vector are calculated and compared with the old

position depending on the fitness function.

5. Update the position of each sheep; if the temporary

objective function is not worse than the old objective

function, then the position of the sheep is updated,

otherwise keep the previous position.

6. Finally, merge the herds and sort the sheep in

ascending order according to the fitness function and

update the parameters values a and b.

These steps are repeated until the maximum number of

iterations is reached to obtain the best solution.

4 Proposed localization algorithm

The key step to developing our proposed localization

methodology is to select a suitable fitness function to guide

the search in the shuffled shepherd algorithm. Towards this

end, we proceed to evaluate the real or actual distance

between anchors i and j, which is given by

drij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2
q

; ð14Þ

and compare it with the estimated distance, which is

computed as in [46]

destij ¼ HopsizeIi � Hopcountij; ð15Þ

where HopsizeIi is the improved anchor node’s average hop

size. The improved average hop size of an anchor node is

defined by

HopsizeIi ¼
Pm

j 6¼i;j¼1 d
r
ij � Hopcountij

Pm
j 6¼i;j¼1 Hopcount

2
ij

: ð16Þ

The average improved hop size of the unknown node can

be calculated as:

HopsizeIu ¼
1

n

Xn

i¼1

HopsizeIi : ð17Þ

The expression for the improved anchor node hop size is

obtained by minimizing the sum of squared errors between

the real distances and the estimated distances for anchor

node i to all its m neighboring anchors:

Xm

j6¼i;j¼1
e2ij ¼

Xm

j¼1

drij � HopsizeIi � Hopcountij

� �2
: ð18Þ

The HopsizeIi can be evaluated by taking derivative with

respect to HopsizeIi and equating it to zero, then we get

Xm

j6¼i;j¼1
drij � Hopcountij � HopsizeIi � Hopcount2ij

� �
¼ 0:

ð19Þ

The fitness function for the proposed shuffled shepherd

based methodology is given as

f ðx�u; y�u; z�uÞ ¼
Xn

i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�u � xiÞ2 þ ðy�u � yiÞ2 þ ðz�u � ziÞ2
q

� dui

� �2

;

ð20Þ

where the number of neighboring anchor nodes is at least 2

for each unknown node. wi is a weighting factor of the

squared error, ðx�u; y�u; z�uÞ represents the coordinates of the

unknown node u and dui is the estimated distance between

anchor node i and unknown node u, respectively. The

weighting factor of anchor node i can be obtained as:

wi ¼
Hopcount2ij
n Hopcountui

 ! R

HopsizeIu

; ð21Þ

where R is the communication range [18]. The weighting

factor is used to increase the impact of nearby nodes and

diminish the effect of far away nodes.

The fitness value is then calculated for every sheep by

considering its position vector as the coordinates of the

unknown node ðx�u; y�u; z�uÞ. Algorithm 1 provides the

pseudo-code of our proposed method referred to as

SSOIDV-Hop in the rest of the paper.
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5 Experimental results

The proposed model is compared with the standard DV-

Hop algorithm, improved DV-Hop, and squirrel search

algorithm based improved DV-Hop algorithm in 3-D

space. The error in the estimated location for each

unknown node is evaluated. In our simulations, the nodes

are randomly located in a deployment region 100 m � 100

m � 100 m, as shown in Fig. 1.

5.1 Accuracy measures

Comparing the algorithms is important for some applica-

tions to prove the efficiency of the proposed model.

Moreover, accuracy is an important metric for measuring

the degree of matching between the estimated and actual

locations for each unknown node. The location error (LE)

is evaluated as follows:

LE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�u � xuÞ2 þ ðy�u � yuÞ2 þ ðz�u � zuÞ2
q

; ð22Þ

where ðx�u; y�u; z�uÞ and ðxu; yu; zuÞ are the estimated and the

actual location of the unknown node u, respectively. The

perfect indication for the accuracy is measured by finding
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the average localization error (ALE), which can be calcu-

lated as follows:

ALE ¼ 1

R N

XN

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�u � xuÞ2 þ ðy�u � yuÞ2 þ ðz�u � zuÞ2
q

;

ð23Þ

where N is the number of unknown nodes.

5.2 Simulation parameters

In the simulation, localization algorithms are implemented

using MATLAB R2017B. The average number of inde-

pendent runs of each result is 100. The parameters of the

WSN, the parameters of the proposed model, and the

parameters of SSA in 3-D are presented in Tables 1, 2, and

3, respectively. The parameters of other compared algo-

rithms are kept as in their original papers.

5.3 Simulation results

The effect of varying some parameters on the performance

of the proposed model is considered in this subsec-

tion. These include varying the ratio of the anchor nodes,

varying nodes count, and the communication range. The

comparison considers the proposed model, standard DV-

Hop, IDV-Hop, and squirrel search algorithm (SSA).

5.3.1 The effect of varying the ratio of anchor nodes

When the number of anchor nodes increases in a WSN, the

unknown node collects the data from more neighboring

anchor nodes. Therefore, the anchor nodes with a small

hop-count to the unknown node increase, and the hop-

count value decreases, which is expected to reduce the

ALE. In the simulation, 200 nodes are distributed with a

communication range of 30 m. The percentage of anchor

nodes is varied from 5% to 40%. Figure 2 presents a 95%
confidence interval (CI) variation with the anchor node

Fig. 1 Nodes distribution (anchor nodes and unknown nodes)

Table 1 The parameters of the WSN

Parameter Value

Deployment area 100 m � 100 m � 100 m

Number of nodes (N) 50–400

Ratio of anchors 5–40%

Communication range (R) 15–45 (m)

Table 2 The parameters of the SSOA

Parameter Value

Number of sheep (s) 50

Number of herds (h) 5

a0 0.5

b0 1

bmax 3.5

Max number of iterations 200

Table 3 The parameters of the SSA

Parameter Value

Number of FSs (NP) 50

Number of nutritious food source ðNfsÞ 5

Max number of iterations ðTmaxÞ 200

Fig. 2 Percentage of anchor nodes effect on the ALE
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ratio. The small width of the interval is an indicator of the

stability of the algorithm. The standard DV-Hop achieves

the highest ALE due to the performance of multilateration

step. On the other hand, the lowest average localization

error is achieved by our proposed SSOA.

In Table 4, the average values of the ALE for the dif-

ferent localization algorithms and the average values of the

tolerance, given by ðtolerance ¼ 1:96�rffiffiffi
N

p Þ, are presented. Our
proposed SSOIDV-Hop improved the accuracy on average

by 80% compared to DV-Hop, 38% compared to the

improved DV-Hop, and 16% compared to SSIDV-Hop.

5.3.2 The effect of varying the number of nodes

The minimum hop-count paths between nodes take the

form of straight lines when the number of nodes increases.

This improves the estimation of the average hop size of

each anchor node which is expected to decrease the ALE.

Figure 3 shows the average localization error for different

nodes density. ALE is calculated based on the variation of

node density from 50 to 400 with 20% anchor nodes. The

communication range for each node is considered as 40 m.

It can be observed from Fig. 3 that the average localization

error decreases with the increase in the number of sensor

nodes. This is due to the fact that when the number of

sensor nodes increases, this causes an increase in network

connectivity which leads to the collection of large infor-

mation amount about the location of nodes, which

improves the localization accuracy. It can be seen from the

result that the proposed algorithm performs better in terms

of localization accuracy as compared to other algorithms.

Table 5 presents the average values of the ALE for the

different localization algorithms and the average values of

tolerance. Our proposed SSOIDV-Hop has better accuracy

on average by 77:6% compared to standard DV-Hop,

40:4% compared with improved DV-Hop, and 16:8%

compared to SSIDV-Hop. The tolerance value is small

enough to ensure the stability of the proposed

methodology.

5.3.3 Variation in communication range effect on ALE

All localization algorithms exhibit an improvement in

accuracy when the communication range of a node is

increased from 20 to 30 m. The reason for this is that the

Table 4 Mean and tolerance of

ALE for varying beacon nodes

ratio

Localization

algorithm

DV-Hop IDV-Hop SSIDV-Hop SSOIDV-Hop

Average value

of ALE

1.3255 0.4348 0.3236 0.2715

Average value of

tolerance for 95% CI

�0:0414 �0:0099 �0:0257 �0:0346

Fig. 3 Number of nodes effect on the ALE

Table 5 Mean and tolerance of

ALE for varying beacon nodes

ratio

Localization

algorithm

DV-Hop IDV-Hop SSIDV-Hop SSOIDV-Hop

Average value

of ALE

0.9753 0.36565 0.262 0.21805

Average value of

tolerance for 95% CI

�0:01022 �0:005496 �0:0101 �0:00814
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number of one-hop neighbor anchors increases when the

communication range (R) increases. Also, it has an effect

on decreasing the minimum hop-count value between

nodes. In order to study the effect of variation in com-

munication range on localization accuracy, we considered

400 sensor nodes with 20 % anchor nodes. To examine the

performance of our proposed algorithm, ALE is calculated

with variation in the communication range of nodes from

20 to 45 m. Figure 4 shows the average localization error

for different communication ranges of the sensor nodes.

Simulation results show that the localization error decrea-

ses with the increase in communication range. It is due to

the fact that as the communication range increases, net-

work connectivity also increases, which leads to better

coverage and good location estimation of nodes in the

network.

In Table 6, the average values of the ALE for the dif-

ferent localization algorithms and the average values of

tolerance are provided. Our proposed SSOIDV-Hop

improves accuracy on average by 58:7% compared to DV-

Hop, 20% compared with improved DV-Hop and 7:3%

compared to SSIDV-Hop.

6 Conclusions

The proposed model is based on the DV-Hop algorithm

with the meta-heuristic technique called the shuffled

shepherd optimization algorithm, which improved the

estimation of the average hop size of each unknown node.

The fitness function employed depends on weighting fac-

tors of the squared error. Our model considers the local-

ization problem in 3-D space, which is a more realistic

assumption. The proposed model achieves the least average

localization error compared to the standard DV-Hop

algorithm, improved DV-Hop, and the squirrel search

algorithm. The proposed model shows more accuracy and

more stability compared to other algorithms.
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