
ORIGINAL PAPER

Edge computing in the loop simulation framework for automotive use
cases evaluation

Levente Márk Maller1,2 • Péter Suskovics2 • László Bokor1,3

Accepted: 5 June 2023 / Published online: 4 July 2023
� The Author(s) 2023

Abstract
Edge architectures provide local, decentralized services, enabling balancing network traffic and distributing hardware

resources. Later, many new use cases can be implemented by combining the advantages of the edge computing concept

with the services of 5G systems. One of the biggest beneficiaries of this could be the Vehicle-to-Cloud (V2C) technology,

where it is necessary to efficiently process large amounts of data resulting from Vehicle-to-Everything communication

(V2X) services. In specific use cases, this makes it possible to process sensor data collectively, enhanced by fusion, which

promotes a more effective virtual representation of the real world. The effective implementation of these technologies is a

complex task. One of the most important steps before tests on actual infrastructures with real vehicles is evaluating and

validating edge cloud systems. We present a solution for this problem, the Cloud-in-the-Loop (CiL) simulation framework.

It can orchestrate a real-size, telco-grade level, Kubernetes-based edge cloud infrastructure based on information gathered

from a traffic simulator and performing fine-grained benchmarking and data collection. In addition to the performance

analysis of the edge system, it also enables an in-depth examination of cloud-native applications serving complex auto-

motive use cases. In this paper, we focus on presenting the developed framework and its capabilities by utilizing the system

with implemented test applications, and give an example of testing QoS and QoE aspects of the edge cloud-based V2C

concept.

Keywords Edge cloud � Automotive use cases � Cloud-in-the-loop simulation � Kubernetes � Cloud-native applications �
5G Telco cloud

1 Introduction

In recent years, cloud-native-based services have gained

more and more recognition. The technology is already used

in many areas, from information communication through

web services to banking systems. Cloud-native applications

are easily scalable, deployable, and flexible software

packages and, due to their design, can be run in any cloud-

based environment. Cloud-based technologies have also

expanded into a new area called the edge computing

paradigm, the most crucial feature of which is that hard-

ware resources are distributed. As a result, the services are

closer to the consumers, thereby speeding up information

processing and ensuring high-performance computing for

the applications that provide the services. By applying

these innovative technologies, new solutions have also

emerged, such as the 5G Service-Based Architecture

(SBA) [1] approach, which implements the network

& Levente Márk Maller

lmaller@hit.bme.hu; levente.maller@ericsson.com

Péter Suskovics

peter.suskovics@ericsson.com

László Bokor

bokorl@hit.bme.hu

1 Department of Networked Systems and Services, Faculty of

Electrical Engineering and Informatics, Budapest University

of Technology and Economics, M}uegyetem Rkp. 3.,

Budapest 1111, Hungary

2 Technology and Innovation, Digital Services, Ericsson,

Magyar Tudósok Körútja 11., Budapest 1117, Hungary

3 ELKH-BME Cloud Applications Research Group, Magyar

Tudósok Krt. 2, Budapest 1117, Hungary

123

Wireless Networks (2023) 29:3717–3735
https://doi.org/10.1007/s11276-023-03432-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-1545-2582
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03432-3&domain=pdf
https://doi.org/10.1007/s11276-023-03432-3

functions that build up the core network of mobile net-

works with cloud-native applications. With this approach,

modern 5G systems can be integrated with edge cloud

deployments, thereby taking benefit of the most significant

advantages of the two new technologies. One of the largest

European standardization organizations, European

Telecommunications Standards Institute (ETSI), is also

actively integrating the two systems [2]. Furthermore, the

organization has already achieved several results in uni-

fying edge cloud systems. This model is called Multi-

Access Edge Computing (MEC) [3]. Many service areas

will be able to utilize the opportunities created by the

combination of 5G and MEC systems. One such area is

Vehicle-to-Cloud (V2C) communication. The application

of these technologies opens up many new use cases, such

as sensor fusion applications based on collective percep-

tion. These rely on deep learning-based object detection

technologies, for which the distributed resources of the

MEC systems provide an excellent execution environment.

An example of this is the High Definition (Local) Maps use

case, which will benefit from the potential of MEC systems

effectively. By processing the environmental data trans-

mitted by the vehicles with the help of HD Maps, it is

possible to implement continuously updated local maps

running on edge servers. These multi-layered maps can

contain various information, such as processed environ-

mental information transmitted by vehicles and virtual

representations of other traffic participants [4]. Also, use

cases heavily relying on environment detection could also

benefit from technologies, such as Object Pose Estimation

[5], that enable the 3D modeling of objects based on

camera data. Furthermore, with the help of 5G systems, a

low-latency, high-data-speed communication can be pro-

vided, which ensures a stable connection between user

equipments (UEs) and edge servers.

The effective implementation of these technologies is a

complex problem, and many requirements must be met.

The realization of such infrastructures poses multiple

challenges. As V2C services rely on cloud applications, it

is essential to investigate resource availability and scala-

bility. Moreover, properly orchestrating the service-pro-

viding entities in the edge cloud environment is crucial to

efficiently address the UEs’ mobility. Also, the dimen-

sioning of these networks proves to be a complex problem.

Furthermore, building a real system is a costly task. Before

this, it is essential to carry out tests related to the operation

and performance of these systems. Test systems that can

replace expensive real-life tests provide the apparent basis

for this. Among others, these aspects motivated the design

and implementation of the presented Cloud-in-the-Loop

(CiL) simulation framework [6], which can behave

accordingly and process information generated in a simu-

lated environment. This information allows it to manage a

real, integrated cloud environment using implemented

algorithms and logic. Our CiL approach currently inte-

grates a traffic simulator called SUMO [7][7] with a

Kubernetes (k8s) based distributed cloud environment.

With the help of the framework, the operation of edge

cloud systems and cloud-native applications modeling V2C

use cases can be investigated and evaluated. Using the CiL-

Simulator, we have already presented preliminary research

results in [6]. Since then, we have made numerous

improvements to the system. We have successfully inte-

grated the framework into a telco-grade edge cloud envi-

ronment and extended the central component –

implementing the whole framework’s orchestration – with

new features and functions executing more detailed and

accurate measurements. Furthermore, we also developed

new supporting application components compatible with

the framework that can demonstrate the framework’s

functions. In the paper, we present the following major

contributions:

• A Cloud-in-the-Loop simulation framework concept

integrating simulation environments with real cloud

deployments;

• A proposed implementation of the Cloud-in-the-Loop

method on telco-grade hardware/software environment

for investigating V2C use cases;

• A methodology for testing edge cloud-based object

detection applications using basic QoE metrics.

• A methodology for examining QoS parameters affect-

ing the operation of edge cloud-based applications in

the framework

The following section provides an overview of related

works and literature. Section 3 of the paper will give a

comprehensive presentation of the CiL framework and the

improvements we have made since our initial version.

After that, in Sect. 4, we present the example use cases

implemented in the framework. Then, in Sect. 5, we pro-

pose test measurements with a methodology that can be

performed with the help of the framework. Finally, we

conclude the article in Sect. 6.

2 Related works

Prior to the publication of this article, we came across

several studies that discuss the possibilities and research of

cloud-based vehicle communication solutions. Further-

more, we have read about several environments similar to

the framework we have implemented. Some tools aim to

investigate edge cloud environments and V2C technologies

(or both). However, these are not primarily focused on

studying these technologies in the way our solution does.

The Cloud-in-the-Loop simulation framework’s main

3718 Wireless Networks (2023) 29:3717–3735

123

advantage is that it makes it possible to integrate various

real cloud environments and applications while it enables

simulating user equipments in multiple scenarios. Gener-

ally, cloud simulators aim to examine infrastructures based

on predefined models and the model-based implementation

of actual cloud components and functions in a simulated

environment. Opposed to these methods of investigating

cloud systems, our solution utilizes an actual cloud

deployment and provides an opportunity to collect metrics

of real-time operation. Regardless, there are numerous

cloud simulators available in the literature and open-source

repositories. For further details, we recommend [9], which

is an excellent survey on the topic, and [10] which presents

a new tool focusing on cloud energy consumption but gives

a comprehensive review of existing cloud simulators. Also,

for cloud-based V2X-related frameworks, we suggest [11],

which presents a detailed overview of the subject. How-

ever, this section presents the tools and solutions that we

found more closely related to our CiL framework. Below

we provide a summary of our findings on the related tools

and frameworks.dSPACE, a company that specializes in

software and hardware simulation tools, also has a system

[12] that implements a V2Cloud Hardware-in-the-Loop

simulator. The purpose of this system is to examine and

validate the entire V2N communication chain, however,

based on the available information, the system focuses

mainly on the examination of LTE and 5G systems. To

accomplish this, an Anritsu1 radio communication test

station is used. Moreover, unlike the open-source compo-

nents and APIs we use, it operates in a closed software

environment. Like dSPACE, Dell, a major IT company, is

researching the subject as well [13]. The company’s

Hardware-in-the-Loop Autonomous driving simulation

system aims to test ADAS / AD solutions. It uses Ama-

zon’s AWS cloud system for cloud application testing,

which works with real-world vehicle sensor data replayed

with microsecond accuracy. These systems have already

been theoretically studied in the 2017 publication X-in-the-

Loop Test Methods for Cloud-based Vehicle Functions

[14]. The article discusses in detail the challenges that the

automotive environment poses to cloud systems. The arti-

cle introduces the Hardware / Model-in-the-Loop approa-

ches that build on cloud-based wireless systems. One of the

main messages of the article is that the systems imple-

menting these concepts can greatly help the examination

and validation of cloud-based vehicle communication

systems in the future. Test systems integrating cloud

infrastructure also help in other domains, as detailed in the

2016 Wide-area control of power systems using cloud-in-

the-loop feedback article [15], in which the authors

examined the control of a large-scale, simulated electrical

network using a Cloud-in-the-Loop test system. Recently,

also a new Hardware-in-the-Loop framework was pre-

sented, the CarTest V2X Simulation Framework [16],

which enables testing real V2X devices (for e.g. vehicle-to-

vehicle communications) while it completely simulates the

actual vehicles.

Also, several software programs are available for com-

plete simulation testing of edge cloud systems that can be

used to implement various measurements (Table 1).

Mostly, these tools use only simulation for investigating

cloud environments and do not necessarily implement

V2X-based models and communication. Despite these

limitations, they play a prominent role in cloud system

modeling and simulation. Free software called OPNET

[17] can be used to model computer network environments

in which different measurements can be executed. For

modeling more complex wired and wireless networks, the

OMNeT ? ? framework [18] can provide a solution that

can use a wide range of additional software components.

Furthermore, the system can be used to model 4G LTE

mobile networks, which is implemented by the SimuLTE

[19] software package. However, in recent years, simula-

tion tools specifically designed to model cloud computing

and distributed systems have also become available, such

as CLOUDS Lab’s CloudSim software [20] or the iFogSim

[21] software package, which can be used to model IoT and

Fog Computing architectures. In automotive applications,

however, the use of traffic simulators is essential, the best

solution is the SUMO traffic simulator, and there are ready-

made, implemented systems, such as the Veins [22] or the

Artery [23] software package, which integrates SUMO and

OMNeT ? ? software. It is important to highlight the

previously mentioned SimuLTE’s successor, the Simu5G

software package [24]. The simulator allows one to study

systems based on 5G New Radio (NR) radio access tech-

nology. The possibilities of Simu5G were introduced in a

publication published in 2020 [24]. In the test environment

presented in the article, the processes of containerized

applications can be tested in an edge cloud system coop-

erating with 5G architecture. With the help of this emulated

network, the processes of containerized applications, their

network communication can be examined with conditions

that also characterize 5G networks. In addition to exam-

ining the modeled architecture, simulation environments of

this kind can also be of great help in the development of

applications based on similar systems. Also, some tools

focus better on testing V2X-related cloud operations. Such

as the Telco Cloud Simulator [25, 26], which enables the

investigation of various types of operations of telco clouds,

but it can also support cloud performance evaluation with

mobile users and V2X communication. There are also

simulation frameworks for more specific tests, such as the

iCanCloud that can be used to evaluate vehicular ad-hoc1 Anritsu official website: https://www.anritsu.com/en-gb/.

Wireless Networks (2023) 29:3717–3735 3719

123

https://www.anritsu.com/en-gb/

Ta
bl
e
1

C
o
m
p
ar
is
o
n
o
f
re
la
te
d
si
m
u
la
to
rs

T
o
o
l
n
am

e
an
d

re
le
v
an
t

p
u
b
li
ca
ti
o
n
s

E
d
g
e
cl
o
u
d

im
p
le
m
en
ta
ti
o
n

E
d
g
e
cl
o
u
d

te
ch
n
o
lo
g
y

C
lo
u
d
re
so
u
rc
e

m
an
ag
em

en
t

V
2
X

su
p
p
o
rt

S
y
st
em

o
b
se
rv
ab
il
it
y

R
ea
l-
ti
m
e,

re
sp
o
n
si
v
it
y

S
u
p
p
o
rt
ed

ap
p
li
ca
ti
o
n
s

V
eh
ic
le

si
m
u
la
ti
o
n

P
u
rp
o
se

C
lo
u
d
-i
n
-t
h
e-

L
o
o
p

si
m
u
la
ti
o
n

fr
am

ew
o
rk

[6
]

R
ea
l

K
u
b
er
n
et
es

(k
8
s,
k
3
s,

et
c.
)

O
p
er
at
io
n
s
an
d
re
so
u
rc
e

ty
p
es

p
ro
v
id
ed

b
y

K
u
b
er
n
et
es
:
p
o
d
s,

se
rv
ic
es
,
sc
al
ab
il
it
y
,

re
p
li
ca

se
ts

(r
ed
u
n
d
an
cy

m
an
ag
em

en
t)

Y
es (o
p
ti
o
n
al

V
2
C
)

B
en
ch
m
ar
k
in
g
h
ar
d
w
ar
e

re
so
u
rc
es

(e
.g
.,
C
P
U
,

R
A
M
),
H
ig
h
p
re
ci
si
o
n

b
en
ch
m
ar
k
in
g
,
m
u
lt
i-

la
y
er

m
et
ri
cs

(e
.g
.,

P
ro
m
et
h
eu
s
[2
8
])

Y
es

R
ea
l,

co
n
ta
in
er
iz
ed
,

ed
g
e-
cl
o
u
d

ap
p
li
ca
ti
o
n
s

(e
.g
.,
A
I-
b
as
ed

o
b
je
ct

d
et
ec
ti
o
n
)

S
U
M
O

In
te
g
ra
te
d

sy
st
em

(d
es
ig
n
,

d
im

en
si
o
n
in
g
,

p
er
fo
rm

an
ce

an
al
y
si
s)

C
lo
u
d
S
im

[2
9
]

V
ir
tu
al

(E
d
g
eC

lo
u
d
S
im

)

B
as
ed

o
n

Ja
v
a

m
o
d
el
s

B
as
ed

o
n
Ja
v
a
m
o
d
el
s

N
o

N
o

N
o

B
as
ed

o
n
Ja
v
a

m
o
d
el
s

N
o

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

iF
o
g
S
im

[3
0
]

V
ir
tu
al

B
as
ed

o
n

Ja
v
a

m
o
d
el
s

B
as
ed

o
n
Ja
v
a
m
o
d
el
s

N
o

N
o

N
o

B
as
ed

o
n
Ja
v
a

m
o
d
el
s

N
o

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

E
d
g
eC

lo
u
d
S
im

[3
1
,
3
2
]

V
ir
tu
al

B
as
ed

o
n

Ja
v
a

m
o
d
el
s

B
as
ed

o
n
Ja
v
a
m
o
d
el
s

N
o

N
o

N
o

B
as
ed

o
n
Ja
v
a

m
o
d
el
s

N
o

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

S
im

u
L
T
E
/

S
im

u
5
G

[2
4
,
3
3
,
3
4
]

V
ir
tu
al

B
as
ed

o
n

C
?

?

m
o
d
el
s

B
as
ed

o
n
C
?

?

m
o
d
el
s
(v
er
y
si
m
p
le

ac
tu
al

im
p
le
m
en
ta
ti
o
n
)

Y
es (c
el
lu
la
r-

b
as
ed
,

V
2
C
)

N
o

Y
es

(f
o
r

en
d
-t
o
-e
n
d

si
m
u
la
ti
o
n

[3
3
])

B
as
ed

o
n
C
?

?
m
o
d
el
s,

R
ea
l
M
E
C

ap
p
s

S
U
M
O

(r
eq
u
ir
es

V
ei
n
s/

A
rt
er
y

in
te
g
ra
ti
o
n
)

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n
,

ap
p
li
ca
ti
o
n

te
st
in
g

V
ei
n
s/
A
rt
er
y

[3
5
,
3
6
]

V
ir
tu
al

(r
eq
u
ir
es

S
im

u
5
G

in
te
g
ra
ti
o
n

[3
7
,
3
8
])

B
as
ed

o
n

C
?

?

m
o
d
el
s

(R
eq
u
ir
es

S
im

u
5
G

in
te
g
ra
ti
o
n

e.
g
.)

B
as
ed

o
n
C
?

?

m
o
d
el
s
(v
er
y
si
m
p
le

ac
tu
al

im
p
le
m
en
ta
ti
o
n
)

Y
es (m

u
lt
ip
le

ty
p
e)

N
o

N
o

B
as
ed

o
n
C
?

?
m
o
d
el
s,

R
ea
l
M
E
C

ap
p
s
(r
eq
u
ir
es

S
im

u
5
G

in
te
g
ra
ti
o
)

S
U
M
O

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

C
ar
T
es
t
[1
6
]

N
o

N
o

N
o

Y
es

(V
2
V
,

V
2
I)

V
2
X

d
ev
ic
e
sy
st
em

le
v
el

o
b
se
rv
ab
il
it
y

Y
es

R
ea
l
V
2
X

ap
p
li
ca
ti
o
n
s

V
ir
tu
al

T
es
t

D
ri
v
e

(V
T
D
)
as

a

si
m
u
la
to
r

A
p
p
li
ca
ti
o
n

te
st
in
g
an
d

p
er
fo
rm

an
ce

an
al
y
si
s

iC
an
C
lo
u
d

[2
7
,
3
9
]

V
ir
tu
al

B
as
ed

o
n

C
?

?

m
o
d
el
s

B
as
ed

o
n
C
?

?

m
o
d
el
s

Y
es (o
p
ti
o
n
al
)

N
o

N
o

B
as
ed

o
n
C
?

?
m
o
d
el
s

T
ra
ffi
c
fl
o
w

p
re
d
ic
ti
o
n

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

T
el
co

C
lo
u
d

S
im

u
la
to
r

[2
5
,
2
6
]

V
ir
tu
al

B
as
ed

o
n

Ja
v
a

m
o
d
el
s

B
as
ed

o
n
Ja
v
a
m
o
d
el
s

Y
es

(t
ra
ffi
c

p
ro
fi
le
-

b
as
ed
)

N
o

N
o

B
as
ed

o
n
Ja
v
a

m
o
d
el
s

(a
p
p
li
ca
ti
o
n

p
ro
fi
le

b
as
ed
)

M
u
lt
ip
le

p
at
te
rn
s
o
f

m
as
s

m
o
v
em

en
ts

M
o
d
el
in
g
an
d

si
m
u
la
ti
o
n

3720 Wireless Networks (2023) 29:3717–3735

123

network cloud architectures [27]. Comparing these tools to

our solution evidently shows that the CiL framework

requires capable hardware to be used, and also, any tested

environment has to be adequately integrated. Furthermore,

it currently doesn’t support 5G functionalities. Despite its

limitations, the CiL allows testing and evaluating real

cloud deployments and applications, supporting detailed

benchmarking of relevant, cloud-focused hardware-soft-

ware systems. These features later help design, dimen-

sioning, and performance analysis of the tested

environments (e.g., products, deployment/placement con-

figurations, etc.), enabling them to be optimized and

appropriately used in real-life scenarios.

3 The cloud-in-the-loop simulation
framework

The Cloud-in-the-Loop (CiL) simulation framework [6]

results from several years of research and development and

provides the basis for the achievements presented in this

work. Based on information extracted from a simulator that

models the behavior of user devices, the framework can

orchestrate a closely integrated, real, distributed cloud-

based environment and run and test real cloud-native

applications in it. In the current construction of the

framework, it is configured to examine V2C use cases;

accordingly, the simulation environment is provided by a

very versatile, multi-modal traffic simulation software

called SUMO [7]. The orchestration of the distributed

cloud-based environment is realized by Kubernetes (k8s)

[40], a widely used, open-source platform, which already

plays a prominent role in operating SBA-based 5G Core

networks nowadays [41] and can also be used excellently

for managing edge cloud systems. The CiL framework

consists of three main system components (Fig. 1):

• Automotive traffic simulator: The simulation environ-

ment is realized by the microscopic and continuous

multi-modal traffic simulator called SUMO. The soft-

ware can model real, large-scale road networks and

simulate detailed, high-precision traffic models. Fur-

thermore, detailed information on the behavior of each

simulated object and vehicle can be extracted, and their

run-time configuration is also provided.

• CiL Orchestrator (CiL-O): The orchestration compo-

nent is a software developed in Java, which is one of the

essential elements of the framework. This is where the

control of the distributed cloud-based environment is

realized based on the information extracted and

processed from the simulator. The Orchestrator uses

the Traffic Control Interface (TraCI) [8] to establish a

connection to SUMO. It enables the CiL Orchestrator to

access information on the simulated objects (e.g.,

vehicle position, vehicle speed) in every simulation

step (which is controlled by the CiL-O). Then, it

processes the acquired data of the individual vehicles to

orchestrate the service-providing applications in the

distributed cloud environment and manages the client

applications representing the vehicle-side functionali-

ties. These functionalities enable the testing and

investigation of various V2C-based automotive use

cases by implementing different algorithms and logics

in the Orchestrator. Furthermore, this component

ensures detailed data collection of Docker-level events

from every node during the measurements.

• Distributed cloud environment: The distributed cloud

environment is realized by a Kubernetes (k8s) platform-

based real-scale hardware cluster and interconnected

with the CiL Orchestrator using the official k8s Java

library [42]. The nodes of k8s that form a cluster

represent the edge servers of a MEC infrastructure (e.g.,

n1, n2 in Fig. 1). The k8s enables cloud-native appli-

cations that implement automotive use cases to be

deployed on these distributed resources. These appli-

cations provide services to the investigated vehicles

(modeled by client applications) in the V2C model.

According to vehicle mobility (and the implemented

use case), these edge applications can also be relocated

between nodes, the management of which is provided

by CiL-O.

An important aspect of MEC systems is examining the

effect of switching between edge resources resulting from

the mobility of user devices, which affects the system’s

operation in many ways. In such cases, relocating appli-

cations that provide services to user devices may also be

necessary, and service continuity must also be ensured. The

system must also manage the redirection of the network

connection giving access to the servers. In addition to

relocation, the performance and operation of the system are

also affected by the network and resource load, which

largely depends on the number of devices served, the type

of applications providing the service, and the data traffic

generated. With the help of the CiL framework, based on

the information extracted from the simulator, the operation

of real applications can be examined, and fine-grained

benchmarking and data collection can also be performed.

Accordingly, many improvements have been made to the

system and its supporting applications since we published

our initial results in [6]:

• Telco-grade level, real distributed edge infrastructure

was integrated into the framework.

• Specialized client and server application components

were implemented to test UDP traffic and generate/

evaluate QoS metrics.

Wireless Networks (2023) 29:3717–3735 3721

123

• Application components were designed and deployed

that model IP mobility to enable the UDP test traffic

tools to directly forward packets to edge applications

running on the corresponding node. Kubernetes net-

working no longer performs the entire traffic manage-

ment as before.

• A deep learning-based application component was

designed and implemented, modeling an automotive

use case featuring AI-supported object detection for

MEC-level sensor fusion and related applications.

3.1 Scenario definition process

SUMO provides an opportunity to implement and investi-

gate any given traffic situation. The simulation traffic map

used for presenting the framework’s capabilities—which

provides an excellent basis for testing edge systems—has

already been implemented during previous tests [6]. The

map is based on Hungary, Budapest XI. district’s urban

environment around Infopark. The resources (servers) of

the integrated edge cloud environment are located virtually

on this map. To achieve this, we defined so-called latency

zones (Fig. 2) for the two edge servers of the cluster, which

determine which resource serves the vehicle moving in the

given position. These zones represent the limit within

which their associated edge server can still fulfill the given

latency requirements with acceptable reliability. In reality,

the shape of these zones is affected by countless factors,

such as the location of the base stations or the network

structure. However, the zones created in the current sim-

ulation environment implement only one possible layout

among many, but it is ideal from the point of view of

testing edge cloud systems. Because the measurements

carried out in the framework currently focus on the tests of

the application components that model the operation of

V2C use cases and the operation of the distributed system.

In our model, every vehicle represented by a client appli-

cation served by a dedicated (backend) edge application

running on the edge servers. According to the two zones,

the two worker nodes of Kubernetes act as Edge servers, so

if vehicles move in certain zones, the worker node

belonging to that zone must run the backend applications

that serve the vehicles. The simulation data generated by

SUMO is processed by CiL-Orchestrator, which then

controls the pods [43] and services [44] running on the

Kubernetes cluster and the client applications running on

the application server. Thus, according to the vehicles’

relative position to the zones in the simulation, the CiL-O

manages the backend applications’ relocation, and sets the

server and client applications’ network configuration to

ensure proper service access. During the simulations, cars

follow predefined routes designed to model traffic in an

urban environment.

3.2 CiL-Orchestrator

The most important task of Orchestrator is to establish and

maintain a connection between the framework system’s

components. This is where the algorithms and logic that

model the operation of edge cloud-based vehicle commu-

nication solutions are implemented. The processing of the

simulation data and the related calculations are performed

within each simulation step. We can examine vehicles with

a specific ID in the program code, and the CiL-Orchestrator

performs the operations based on the data describing the

simulated objects. The position of a vehicle is stored in a

variable during each simulation step. We can also examine

and model migration events in edge cloud systems in the

implemented proof-of-concept use cases. The algorithms

and functions that implement the use case’s functions are

located in the CiL-Orchestrator’s zonemigration class. The

function of the class performing the corresponding tasks is

Fig. 1 The architecture of the

Cloud-in-the-Loop simulation

framework

3722 Wireless Networks (2023) 29:3717–3735

123

hence called by the program during each simulation step,

passing the current vehicle positions, the Kubernetes con-

nection configuration, and other information necessary for

any arbitrarily implemented function. Therefore, the

coordinates of the vehicle can be compared with the access

zones stored in the managedZones list, and its location in

the network topology can be determined. To calculate this,

the program uses the contains(int x, int y) function of

Java’s Polygon class, which can calculate from a coordi-

nate passed as a parameter whether the given polygon

includes it. As a result, it is possible to determine in which

zones a particular vehicle is located, i.e., based on its

position, which edge server serves it. Thus, migration

operations also become feasible on the framework’s dis-

tributed network. The software can also process many other

variables that describe vehicles, allowing for various

implementable use cases. Based on the processed simula-

tion data, the orchestrator component can also manage

applications implementing automotive use cases, including

client and server applications realizing application-level

network traffic. In our proof-of-concept scenarios, we

implemented a live migration logic (Fig. 3) using the CiL-

O. In this strategy, the orchestrator examines the vehicles

and the zones’ relative positions (in every simulation step)

and, using this information, orchestrates the cloud envi-

ronment and the application components. Suppose a vehi-

cle enters a new zone (through the overlapped zone area).

In that case, the implemented algorithm relocates the ser-

vice-providing edge application by triggering the deploy-

ment of a new instance in the destination zone’s edge

server. It cleans up the previously used instance as soon as

it is ready. Also, it re-configures the client applications

(representing the vehicles) to connect the services provided

by newly deployed edge applications.

Accessing Kubernetes from the CiL-Orchestrator is

based on API calls. To establish communication with the

distributed network, we used the official Java client library

of Kubernetes [42] and implemented it in the CiL-

Orchestrator. According to the use cases implemented in

the CiL-Orchestrator, the software ensures the creation of

the correct control signals for Kubernetes.

The Orchestrator component is capable of collecting

fine-grained, Kubernetes-level event information. Moni-

toring event information that can be retrieved from the

Kubernetes API server has only timestamps accurate to

seconds. In order to get more precise time information on

the containerized applications’ lifecycle events, the Docker

API can be used for fetching nanosecond-accurate times-

tamps. While in Kubernetes-level, the event’s time data is

only available through the master node via the k8s master-

api, the respective docker-level events’ time information is

accessible directly on each node via the docker.sock UNIX

socket. In our implementation, we chose this latter

approach, and in addition, we exposed the socket instances

to TCP/IP ports. Thus, the framework is capable of

seamlessly access on all nodes the nanosecond-grade

timestamps of container events.

3.3 Distributed cloud environment

The first important task of the cluster design was planning

the network, hardware, and software elements that imple-

ment an actual cloud hardware environment based on the

edge cloud paradigm. To evaluate various V2C scenarios

Fig. 2 Simulation map for the

implemented test cases

Wireless Networks (2023) 29:3717–3735 3723

123

and use cases, the k8s cluster was deployed with three

worker nodes and a master node, which also runs the main

software components of the Cloud-in-the-Loop framework.

The details of the hardware components are shown in

Table 2.

3.3.1 The layout of the devices

The deployment also includes a server entirely dedicated to

running applications that realize and model the V2C

application layer. Each server is interconnected through a

high-performance switch with two 10 Gbit ports, an

Operation and Maintenance, and a traffic port. These links

can also be aggregated to create a 20 Gbit/s bonded con-

nection between the servers. The selection and arrangement

of the devices aimed to develop an actual distributed cloud

deployment that could be integrated into a real network.

According to this intention, the hardware can solve

demanding computational tasks and serve many clients.

Thus, this hardware platform enables the investigation and

evaluation of use cases and validation of the concept on a

telco-grade level. The cluster design also allows the inte-

gration of 5G functionalities using e.g., a Local Packet

Gateway [45] in the future to which a high-performance

server is prepared. The hardware environment consists of 6

devices (Fig. 4).

3.3.2 Software environment

To run the Cloud-in-the-Loop frameworks and the

Kubernetes platforms’ components, selecting an operating

system that also properly utilizes the hardware’s capabili-

ties was necessary. All of the devices were installed with

Ubuntu 18.04., a very stable and reliable version with good

compatibility with various software used in the framework.

With a functioning OS, the next step was to install

Kubernetes, which required multiple preparatory steps.

These include disabling the SWAP function (to make the

software work properly), configuring the iptables and

firewalls, and, most importantly, installing the Docker

engine (version 20.10.7) on the nodes. In the following

step, we installed Kubernetes (version 1.23.3). In the

Kubernetes environment, Pod-to-Pod networking [46] is

critical to cluster networking. It enables communication

between the pods that encapsulate the containerized

applications. It is a necessary function for the platform to

operate. This type of communication can be realized by

different technologies that are implemented mostly by

third-party software components. In this implementation,

the system is installed with the Container Network Inter-

face (CNI) plugin called Calico [47]. Unlike other CNI

plugins, Calico realizes the communication in the network

layer (layer 3), using BGP routing protocol instead of

relying on network virtualization. This way, additional

Fig. 3 The implemented live migration logic

3724 Wireless Networks (2023) 29:3717–3735

123

Table 2 The specification of the cloud environment

Device

model

Role Hardware description Software Networking

Dell R630 Kubernetes master node, Running the

CiL Orchestrator, and the traffic

simulator component

CPU: 28 cores (56 threads), 2.4 GHz, 3.3 GHz w/

Turbo

RAM: 128 GB, 2.4 GHz

Storage: 4 9 372 GB SSD

OS: Ubuntu 18.04

Kubernetes:

version 1.23.3

(CNI: Calico)

Docker: version

20.10.7

2 9 10

Gbit/s

Dell R630 Edge server 1 (k8s: worker1 node) CPU: 24 cores (48 threads), 2.5 GHz, 3.3 GHz w/

Turbo

RAM: 128 GB, 2133 MHz

Storage: 4 9 372 GB SSD

OS: Ubuntu 18.04

Kubernetes:

version 1.23.3

(CNI: Calico)

Docker: version

20.10.7

2 9 10

Gbit/s

Dell R630 Edge server 2 (k8s: worker2 node) CPU: 24 cores (48 threads), 2.5 GHz, 3.3 GHz w/

Turbo

RAM: 128 GB, 2133 MHz

Storage: 4 9 372 GB SSD

OS: Ubuntu 18.04

Kubernetes:

version 1.23.3

(CNI: Calico)

Docker: version

20.10.7

2 9 10

Gbit/s

Lenovo 9

3650

Edge server 3 (k8s: worker3 node) CPU: 20 cores (40 Threads), 2.3 GHz

RAM: 144 GB, 2133 MHz

Storage: 5 TB SSD/HDD

OS: Ubuntu 18.04

Kubernetes:

version 1.23.3

(CNI: Calico)

Docker: version

20.10.7

2 9 10

Gbit/s

Lenovo 9

3650

Application server: running client and

central server application components

CPU: 20 cores (40 Threads), 2.3 GHz

RAM: 144 GB, 2133 MHz

Storage: 5 TB SSD/HDD

OS: Ubuntu 18.04 2 9 10

Gbit/s

Dell R640 Not in use currently. Its future task:

Running Cloud-Native 5G network

functions [45]

CPU: 40 cores (80 Threads), 2 GHz, 3.7 GHz w/

Turbo RAM: 384 GB, 2666 MHz Storage:

8 9 480 GB SSD

- 2 9 10

Gbit/s

Fig. 4 The actual hardware

environment (on the left)

Wireless Networks (2023) 29:3717–3735 3725

123

encapsulation of the packets can be avoided, resulting in

better performance [48].

4 Investigated case studies for testing edge
cloud environments

4.1 Implementation of a UDP traffic
benchmarking tool for testing quality
of service (QoS)

One of the most critical aspects of benchmarking edge

cloud systems is evaluating the effects of network and

hardware resource load resulting from serving user devices.

Furthermore, it is crucial to consider that since it is a dis-

tributed system, this load is distributed among the indi-

vidual resources according to the users and the

implemented load-balancing algorithms. During the plan-

ning of MEC services and systems, it is a vital aspect to be

able to ensure the QoS required by the requirements in all

cases. This is particularly important in areas with strict

requirements, such as vehicular use cases. Errors and

outages in application-level network traffic cause degra-

dation of service quality. To investigate this in the CiL

framework, it became necessary to integrate an application

that can be appropriately scaled and is capable of gener-

ating network traffic.

On the other hand, it can also create QoS metrics based

on the generated data. In this way, the load caused by

various automotive use cases can be modeled on the actual

edge cloud system integrated with the framework, and the

system’s performance can also be examined in terms of

service quality. The performance and operation of the

systems can be well examined from the point of view of the

packet loss metrics of the traffic generated by the appli-

cations, a UDP-based network test traffic is ideal for such

measurements. Later, we also plan to implement TCP-

based performance tests to get a more comprehensive

picture of the system characteristics. The basis of the self-

developed UDP traffic benchmarking tool was an open-

source application [49] developed in Python, which pri-

marily focuses on measuring network latency. We made

several modifications to the application, preparing it for

proper operation in a distributed environment. During the

presented tests, the application was running in three

instances:

• Client-side application: This component compiles and

forwards the packets with the appropriate information,

which is used to evaluate the generated data traffic and

detect network errors.

• Edge-side application: This component receives the

network traffic generated by the client and ensures the

processing of the information extracted from the

packets and sending the relevant metrics data to the

server-side application.

• Server-side application: This component receives the

metrics data extracted by the edge application, then

generates QoS metrics based on them.

4.2 Deep learning-based automotive use case
implementation for testing quality
of experience (QoE)

One of the most promising functionalities of edge cloud

systems is the possibility of outsourcing computing tasks.

This can be especially beneficial in areas such as Vehicle-

to-Cloud communication. Modern vehicles are equipped

with many sensors, including high-resolution cameras and

LIDARs. Using these devices, vehicles can collect large

amounts of raw data about their environment, which are

processed to support various automotive use cases. The

processing of environmental information requires high-

performance hardware resources, and the vehicles must

also share the information extracted from the processed

data. With the help of edge cloud systems supported by 5G

and beyond cellular networks, it is possible for the pro-

cessing of sensor data to be implemented by the resources

of the distributed environment. This makes it possible to

process data collected from individual sources jointly,

increasing the accuracy and reliability of environment

detection. One of the most efficient ways to process sensor

data for object detection is to use Deep Learning-based

networks. Using the CiL framework, our goal in this work

was to investigate the operation of an edge cloud-com-

patible, cloud-native V2C application based on this tech-

nology. In the first step, it was necessary to define and

implement a use case that could be used to test the func-

tionality of these technologies.

According to the implemented use case scenario, a given

V2C-capable vehicle collects environmental data using its

camera sensors and then transmits it to the edge server

currently serving it. On the edge server, an AI-based

application processes the video stream and sends relevant

feedback information to the vehicle based on the data

collected from its environment. In a later phase, the

scheme can also support MEC-aided sensor fusion [50] and

misbehavior detection [51] purposes. To model the use

case and to be able to generate QoE metrics using the

framework, we designed and developed a two-component

application (Fig. 5). The operation of the application is

detailed in Sect. 5.

3726 Wireless Networks (2023) 29:3717–3735

123

Fig. 5 The integration of the

AI-based automotive use case

Wireless Networks (2023) 29:3717–3735 3727

123

5 Test measurements

The most significant advantage of the proposed framework

is that it can simulate the operation and characteristics of

mobile UEs (vehicles). Based on that simulated informa-

tion it can manage HW/SW implementations of telco cloud

environments and applications. Opposed to other solutions,

it can test the operation of actual services on telco-grade

hardware and investigate the effects of the mobility of

client devices without utilizing real, moving UEs. This

paper presents how the CiL framework can be used to test

and evaluate distributed cloud environments for V2C use

cases. We present the framework’s capabilities by exam-

ining applications implementing automotive use cases and

the performance of the integrated k8s-based distributed

environment. For this, it was first necessary to create a

suitable test case.

The most critical aspect of offloading computing tasks

offered by edge cloud systems is that the systems must

ensure high Quality of Service (QoS) and the proper

Quality of Experience (QoE) at the application level. In the

case of the AI-based object detection application, we

examined the QoE based on a predefined KPI, which

characterizes the application’s performance and the dis-

tributed cloud-based environment during the measure-

ments. During the tests, with the help of the client-side

applications representing V2C vehicles (Sect. 4.2), we

transmitted a 30-s reference video material implementing

raw data from a camera sensor to the edge-side applica-

tions. We also deployed two copies of the application

components implementing the AI engine to both k8s

worker nodes implementing edge servers integrated into

the simulation environment. We calculated the perfor-

mance of the object detection application and the QoE

provided by it from detecting a car-type object on the

reference video (Fig. 6).

The application detects and classifies objects frame by

frame. It determines the confidence value for each recog-

nized object, which shows how accurately it identifies an

object type based on the trained model. At every frame

evaluation, the application sends feedback to the client

about the recognition confidence of car-type objects. Dur-

ing the measurements, the average of the (frame-by-frame)

recognition confidences of the 30-s reference video pro-

vides the KPI based on which the system’s operation can

be examined under different traffic and network load

scenarios:

ARC ¼
PN

i¼1

PMi

j¼1
RCi;j

Mi

N
ð1Þ

where ARC stands for the average recognition confidence,

N is the number of measurements, Mi is the number of

object detections performed in the i-th measurement, and

RCi;j is the j-th recognition confidence of the i-th mea-

surement. An AI engine ran on both edges of the simulation

environment during the tests. Accordingly, we ran two

clients in the two latency zones (Sect. 3.1), which for-

warded the video stream to the edge servers corresponding

to the zones. We performed the measurements according to

several scenarios. To test the system’s and the application’s

performance, we generated background load UDP packet

traffic using our self-developed UDP benchmarking tool

(Sect. 4.1) and the simulator, according to different vehicle

numbers and data speeds. In order to achieve this, we

placed vehicles performing movements causing application

relocation operations (zone switching) into the simulation

environment and generated a background load corre-

sponding to the number of cars.

Fig. 6 Visualization of the

object detection on the reference

video (You Tube link: https://

www.youtube.com/watch?v=u-

CTsTZxRBI&t=218s)

3728 Wireless Networks (2023) 29:3717–3735

123

https://www.youtube.com/watch?v=u-CTsTZxRBI&t=218s
https://www.youtube.com/watch?v=u-CTsTZxRBI&t=218s
https://www.youtube.com/watch?v=u-CTsTZxRBI&t=218s

5.1 Evaluating the QoS of the integrated
distributed environment

We also performed Quality of Service performance tests on

the integrated telco-grade edge cloud system to present the

framework’s capabilities. For this, we used the UDP

benchmarking tool presented in Sect. 4.1. We used UDP

relay applications running on the edges to conduct the tests.

In the simulator, we created a vehicle for each client

application, which causes the (live migration type) relo-

cation of the relay applications on the edge servers due to

the zone changes resulting from their mobility. Each

vehicle is served by an edge application running on the

edge server belonging to its zone. Edge applications for-

ward the relevant metric data extracted from UDP packets

received from clients to the server-side applications run-

ning on the application server. In this way, detailed QoS

metrics describing the system’s performance can be gen-

erated based on the evaluations carried out on the server

side (Fig. 7). The results obtained in this way describe the

effect of background load (vehicle number, generated data

traffic) and the effects of application relocation events.

We performed measurements with 150, 200, 250, 300,

and 350 simulated vehicles within the 1.5 km2 map area

and data traffic initiated from the client side with data rates

of 1 Mbit/s, 2 Mbit/s, 3 Mbit/s, 4 Mbit/s, and 5 Mbit/s. The

average of 500 pcs 30 s sessions in each scenario gives the

results. We divided the results into those measurement

results where application relocation occurred during the 30

s sessions and those measurement results where no

migration occurred for the cars under test. The results are

based on the packet loss rates from the QoS metrics

(Figs. 8, 9, and 10). Based on these tests, the performance

of the system under a given load and the impacts of relo-

cation events can be indicated.

As expected, the measurement results indicate that a

lower load (fewer vehicles and lower data speeds) results in

low packet loss ratios (PLR). It can be observed in Fig. 8,

where the aggregated results are presented, that the average

PLRs are in the 0–5% range, except in the cases of 300

vehicles/5 Mbps (7.114% PLR), 350 vehicles/4 Mbps

(9.54% PLR) and 350 vehicles/5 Mbps (23.60% PLR). It

indicates that the resulting load in these cases can signifi-

cantly deteriorate the edge infrastructure performance.

Comparing the results where no relocations occurred

(Fig. 8) with the results influenced by relocations (Fig. 9

shows that the effect of application relocations significantly

increases the PLRs. In most vehicle number and data speed

Fig. 7 Application components of the QoS tests

Wireless Networks (2023) 29:3717–3735 3729

123

Fig. 8 Visualizing aggregated

packet loss results

Fig. 9 Visualizing packet loss

results without relocation events

Fig. 10 Visualizing packet loss

results due to relocation events

3730 Wireless Networks (2023) 29:3717–3735

123

configurations, the average PLRs are in the 0–2% range

without the relocation events, and during relocations, these

values increase to 15–20%. Furthermore, in the case of the

350 vehicle/5 Mbps case, the average PLR increases from

21.56% (with no relocation) to 60.56%. Thus, in use cases

where relocation is a part of the operation, addressing these

effects on the QoS will be essential, as service continuity is

one of the most critical aspects of V2C.

5.2 Evaluation of the Deep Learning-based
automotive use case implementation

As discussed in the introduction of Sect. 5, we present the

results generated from the average recognition confidences

during the measurements with the application components

implementing the Deep Learning-based automotive use

case. We tested the application using methods that imple-

ment the background load, which is the basis of the mea-

surement results presented in Sect. 5.1. For this, we created

various measurement scenarios with 100, 200, and 300

simulated vehicles and data traffic initiated from the client

side with data rates of 1, 2, 3, 4, and 5 Mbits/s. In these, we

calculated how the average recognition confidence of car-

type objects in the reference videos changes due to a given

background load (Table 3 and Fig. 11). The results are

provided by the total average of the confidences generated

by the application instances running on the two worker

nodes, with around 100 measurements for each scenario (1

measurement is given by the confidence values calculated

for each frame of the 30-s reference video) per node. In

order to be able to compare the results, we first measured

the KPI without load, which shows what QoE the AI

engine can provide if the distributed system does not serve

any other clients. The average recognition confidence, in

this case, was 52.80% based on 718 measurements (per

node).

With the below-introduced test measurements, we pre-

sent that the framework can run applications modeling

complex, edge-computing supported automotive use cases

that can be examined in detail. In this case, we can

conclude that the impact of the background load on the

system occurring in these measurement scenarios essen-

tially does not affect the efficiency of the application. This

clearly shows that changes in the background load do not

necessarily cause these differences in the measurement

results. In addition to the averages, when examining the

individual measurement points, it can also be seen that the

distribution of the recognition confidence measurements

for the scenario without background load and the scenario

with maximum generated load (300 vehicles, 5 Mbps) is

almost identical (Figs. 12, 13). To properly investigate the

load effects on the operation of object detection applica-

tions, increasing the vehicle number and data speeds will

be required by defining new test configurations. Also, to

design more comprehensive QoE metrics, it’s necessary to

gather more information on the operation of the applica-

tion. For this, we also plan to store the forwarded camera

sensor videos, use post-process evaluation on objective

QoE, and extract specific information that describes the

effects of operating in the edge infrastructure under load.

This way, it will be possible to check the effects leading to

lost frames that can be critical from the object recognition

and sensor fusion/collective perception point of view.

Here, with the introduced initial measurements, we only

focused on presenting the capabilities of our proposed

framework. Therefore, we do not reach general conclusions

on the integrated cloud infrastructure or an actual V2C use

case with these results. The presented case studies and

applications were developed to showcase our CiL frame-

work, to model the operation of real V2C applications, and,

using these, to indicate how edge systems are affected in

certain operating modes. However, by improving the test

cases, tools, metrics, and vehicle traffic models, we aim to

utilize the framework to dimension edge networks, validate

use cases and develop methods to optimize 5G and beyond

edge-computing system operations. With improving the

QoS and the proposed AI-based QoE measurement

methodology, we plan to design a model that can produce

QoE prediction based on the QoS metrics.

Table 3 The averages,

minimums, and maximums of

the object detection confidences

in different scenarios

1 Mbits/s (%) 2 Mbits/s (%) 3 Mbits/s (%) 4 Mbits/s (%) 5 Mbits/s (%)

100 vehicles Avg: 52.92 Avg: 52.91 Avg: 52.71 Avg: 52.86 Avg: 52.88

Min: 47.78 Min: 47.41 Min: 46.43 Min: 46.59 Min: 48.42

Max: 54.48 Max: 54.39 Max: 54.23 Max: 54.60 Max: 55.05

200 vehicles Avg: 52.87 Avg: 52.86 Avg: 52.73 Avg: 52.71 Avg: 52.78

Min: 46.04 Min: 47.27 Min: 46.46 Min: 46.33 Min: 48.18

Max: 54.63 Max: 54.71 Max: 54.36 Max: 55.05 Max: 54.89

300 vehicles Avg: 52.84 Avg: 52.77 Avg: 52.84 Avg: 52.64 Avg: 52.80

Min: 45.81 Min: 46.91 Min: 46.97 Min: 46.95 Min: 46.52

Max: 55.15 Max: 55.39 Max: 54.75 Max: 54.77 Max: 55.68

Wireless Networks (2023) 29:3717–3735 3731

123

6 Conclusion

In the paper, we briefly presented the technological foun-

dations of edge cloud-based VC2 communication and its

importance in the future. After that, we detailed the focused

literature on tools designed for simulating V2C or edge

cloud systems, like the framework we developed. Then, we

presented the concept and the structure of our proposed

Cloud-in-the-Loop simulation framework and its compo-

nents. The simulation environment, orchestration compo-

nent, and the real distributed cloud-based network

integrated into the framework are covered in detail. After

the presentation of the system’s operating principle, we

introduced proposed test cases of the framework, with the

help of which the integrated edge environment and cloud-

native applications implementing vehicle communication

solutions can be investigated. Finally, we presented how

the framework can be used to test edge cloud-based V2C

use cases from QoS and QoE perspectives. Overall, it can

be declared that based on the results so far, the Cloud-in-

the-Loop simulation framework can be excellently utilized

for testing V2C use cases on real edge systems.

However, our solution currently focuses on testing the

edge cloud environments, and we do not investigate the

mobile network aspects of the services, which is crucial for

the operation of these use cases. In order to carry out more

detailed and in-depth examinations, further improvement

of the system is necessary. Future goals include further

development of the framework and the test methodologies;

one of the priority targets is integrating 5G core network

components and such improving our QoS and QoE test

models and metrics to produce more precise and more

relevant performance measurements. We can use the

framework with higher precision to properly model V2C

use cases inside the 5G ecosystem, supporting network

dimensioning, edge infrastructure planning, edge node

Fig. 11 Visualizing the

averages of the object detection

confidences in different

scenarios

Fig. 12 Distribution of individual recognition confidence measure-

ment results in a scenario without background load (on worker1 node)

Fig. 13 The distribution of individual recognition confidence mea-

surement results with 300 vehicles and 5 Mbps (on worker1 node)

3732 Wireless Networks (2023) 29:3717–3735

123

placement strategies evaluation, and use case validation.

Furthermore, it will make it possible to develop QoS and

QoE correlation models that can help with various opti-

mization tasks of 5G and beyond architectures.

Funding Open access funding provided by Budapest University of

Technology and Economics. Project No. TKP2021-NVA-02 has been

implemented with the support provided by the Ministry of Culture

and Innovation of Hungary from the National Research, Development

and Innovation Fund, financed under the TKP2021-NVA funding

scheme.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Data availability Data sharing is not applicable to this article as no

datasets were generated or analyzed during the current study.

References

1. Ericsson. 5G core (5GC). Ericsson. Retrieved April 1, 2023, from
https://www.ericsson.com/en/core-network/5g-core

2. Sami Kekki et al.MEC in 5G networks (ETSI White Paper No. 2).
ETSI. Retrieved from April 1, 2023, https://www.etsi.org/images/

files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf

3. ETSI. Multi-access edge computing (MEC); framework and ref-
erence architecture (ETSI GS MEC 003). ETSI. Retrieved April

1, 2023, from https://www.etsi.org/deliver/etsi_gs/MEC/001_

099/003/03.01.01_60/gs_MEC003v030101p.pdf

4. AECC. Operational behavior of a high definition map application
white paper. AECC. Retrieved April 1, 2023, from https://aecc.

org/wp-content/uploads/2020/07/Operational_Behavior_of_a_

High_Definition_Map_Application.pdf

5. Nejatishahidin, N., Fayyazsanavi, P., & Košecka, J. (2022).

Object pose estimation using mid-level visual representations.

IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, 13105–13111. https://doi.org/10.1109/

IROS47612.2022.9981452

6. L. Maller, P. Suskovics, and L. Bokor, ‘Cloud-in-the-Loop sim-

ulation of C-V2X application relocation distortions in Kubernetes

based Edge Cloud environment’, in 2022 26th international
conference on information technology (IT), 2022, pp. 1–4. doi:
https://doi.org/10.1109/IT54280.2022.9743520.

7. Lopez P.A. et al. Microscopic Traffic Simulation using SUMO, in

The 21st IEEE international conference on intelligent trans-
portation systems, IEEE, 2018. [Online]. Available: https://elib.
dlr.de/124092/

8. SUMO. (2023, March 30). Traffic control interface (TraCI).
SUMO. Retrieved April 1, 2023, from https://sumo.dlr.de/docs/

TraCI.html

9. Mansouri, N., Ghafari, R., & Zade, B. M. H. (2020). Cloud

computing simulators: A comprehensive review. Simulation
Modelling Practice and Theory, 104, 102144. https://doi.org/10.
1016/j.simpat.2020.102144

10. Lago, D. G., da Silva, R. A. C., Madeira, E. R. M., da Fonseca, N.

L. S., & Medhi, D. (2021). ‘SinergyCloud: A simulator for

evaluation of energy consumption in data centers and hybrid

clouds. Simulation Modelling Practice and Theory, 110, 102329.
https://doi.org/10.1016/j.simpat.2021.102329

11. Ahmed, B., Malik, A. W., Hafeez, T., & Ahmed, N. (2019).

Services and simulation frameworks for vehicular cloud com-

puting: A contemporary survey. EURASIP Journal on Wireless
Communications and Networking, 2019(1), 4. https://doi.org/10.
1186/s13638-018-1315-y

12. Anritsu and dSPACE. Anritsu and dSPACE to accelerate simu-
lation and testing of 5G automotive applications–joint showcase
at MWC 2020. dSPACE. Retrieved April 1, 2023, from https://

www.dspace.com/en/pub/home/news/dspace_pressroom/press/

20200101.cfm#175_51153_1

13. Dell. (2020). Hardware-in-the-loop autonomous driving simula-
tion. Dell. Retrieved April 1, 2023, from https://www.dell

technologies.com/asset/en-ae/products/storage/briefs-summaries/

dell-emc-aws-natl-instruments-hil-solution-overview.pdf

14. Milani F., Blaschke V., Johannaber M., and Beidl C., ‘X-in-the-

loop test methods for cloud-based vehicle functions 2017

15. Weiss, M., Zhang, J., & Chakrabortty, A. (2016). Wide-area

control of power systems using cloud-in-the-loop feedback. IEEE
Global Conference on Signal and Information Processing (Glo-
balSIP), 2016, 831–835. https://doi.org/10.1109/GlobalSIP.2016.
7905959

16. Wang, J., & Zhu, Y. (2022). A hardware-in-the-loop V2X sim-

ulation framework: CarTest. Sensors, 22(13), 102. https://doi.org/
10.3390/s22135019

17. OPNET. (2023). OPNET Network simulator. OPNET. Retrieved
April 1, 2023, from https://opnetprojects.com/opnet-network-

simulator/

18. OMNeT??. (2023). OMNeT?? Documentation. OMNeT??.

Retrieved April 1, 2023, from https://omnetpp.org/

documentation/

19. Virdis A., Stea G., and Nardini G., Simulating LTE/LTE-ad-

vanced networks with simuLTE. in Simulation and modeling
methodologies, technologies and applications, M. S. Obaidat, T.

Ören, J. Kacprzyk, and J. Filipe, Eds., Cham: Springer Interna-

tional Publishing, 2015, pp. 83–105. https://doi.org/10.1007/978-

3-319-26470-7_5

20. CloudSim. A framework for modeling and simulation of cloud
computing infrastructures and services. The cloud computing and

distributed systems (CLOUDS) laboratory, University of Mel-

bourne. Retrieved April 1, 2023, from http://www.cloudbus.org/

cloudsim/

21. Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya, R. (2016).

‘iFogSim: A toolkit for modeling and simulation of resource

management techniques in internet of things. Edge and Fog
Computing Environments’. arXiv. https://doi.org/10.48550/

ARXIV.1606.02007

22. Christoph Sommer. Veins, the Open Source vehicular network
simulation framework - Documentation. Vechiles in Network

Simulation (Veins). Retrieved April 1, 2023, from https://veins.

car2x.org/documentation/

23. Riebl R., Obermaier C., and Günther H.-J. Artery: Large scale

simulation environment for ITS applications’, in recent advances
in network simulation: The OMNeT?? environment and its
ecosystem, A. Virdis and M. Kirsche, Eds., Cham: Springer

International Publishing, 2019, pp. 365–406. doi: https://doi.org/

10.1007/978-3-030-12842-5_12.

Wireless Networks (2023) 29:3717–3735 3733

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.ericsson.com/en/core-network/5g-core
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://aecc.org/wp-content/uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf
https://aecc.org/wp-content/uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf
https://aecc.org/wp-content/uploads/2020/07/Operational_Behavior_of_a_High_Definition_Map_Application.pdf
https://doi.org/10.1109/IROS47612.2022.9981452
https://doi.org/10.1109/IROS47612.2022.9981452
https://doi.org/10.1109/IT54280.2022.9743520
https://elib.dlr.de/124092/
https://elib.dlr.de/124092/
https://sumo.dlr.de/docs/TraCI.html
https://sumo.dlr.de/docs/TraCI.html
https://doi.org/10.1016/j.simpat.2020.102144
https://doi.org/10.1016/j.simpat.2020.102144
https://doi.org/10.1016/j.simpat.2021.102329
https://doi.org/10.1186/s13638-018-1315-y
https://doi.org/10.1186/s13638-018-1315-y
https://www.dspace.com/en/pub/home/news/dspace_pressroom/press/20200101.cfm#175_51153_1
https://www.dspace.com/en/pub/home/news/dspace_pressroom/press/20200101.cfm#175_51153_1
https://www.dspace.com/en/pub/home/news/dspace_pressroom/press/20200101.cfm#175_51153_1
https://www.delltechnologies.com/asset/en-ae/products/storage/briefs-summaries/dell-emc-aws-natl-instruments-hil-solution-overview.pdf
https://www.delltechnologies.com/asset/en-ae/products/storage/briefs-summaries/dell-emc-aws-natl-instruments-hil-solution-overview.pdf
https://www.delltechnologies.com/asset/en-ae/products/storage/briefs-summaries/dell-emc-aws-natl-instruments-hil-solution-overview.pdf
https://doi.org/10.1109/GlobalSIP.2016.7905959
https://doi.org/10.1109/GlobalSIP.2016.7905959
https://doi.org/10.3390/s22135019
https://doi.org/10.3390/s22135019
https://opnetprojects.com/opnet-network-simulator/
https://opnetprojects.com/opnet-network-simulator/
https://omnetpp.org/documentation/
https://omnetpp.org/documentation/
https://doi.org/10.1007/978-3-319-26470-7_5
https://doi.org/10.1007/978-3-319-26470-7_5
http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
https://doi.org/10.48550/ARXIV.1606.02007
https://doi.org/10.48550/ARXIV.1606.02007
https://veins.car2x.org/documentation/
https://veins.car2x.org/documentation/
https://doi.org/10.1007/978-3-030-12842-5_12
https://doi.org/10.1007/978-3-030-12842-5_12

24. G. Nardini, G. Stea, A. Virdis, D. Sabella, and P. Thakkar, Using

Simu5G as a realtime network emulator to test MEC apps in an

End-To-End 5G testbed, in 2020 IEEE 31st annual international
symposium on personal, indoor and mobile radio communica-
tions, 2020, pp. 1–7. doi: https://doi.org/10.1109/PIMRC48278.

2020.9217177

25. Hegyi P., Varga N., and Bokor L. An advanced telco cloud

simulator and its usage on modelling multi-cloud and 5G multi-

access environments’, in 2018 21st conference on innovation in
clouds, internet and networks and workshops (ICIN), 2018,

pp. 1–3. doi: https://doi.org/10.1109/ICIN.2018.8401637.

26. Hegyi P., and Varga J. Telco Cloud Simulator, in 2019 IEEE 24th
international workshop on computer aided modeling and design
of communication links and networks (CAMAD), 2019, pp. 1–7.
doi: https://doi.org/10.1109/CAMAD.2019.8858483.

27. Abdelatif S., Makhlouf D., and Roose P., Extended iCanCloud

simulation framework for VANET-Cloud architectures in 3rd
international conference on networking and advanced systems,
Annaba, Algeria, 2017. [Online]. Available: https://hal-univ-pau.

archives-ouvertes.fr/hal-02464156

28. Prometheus. What is prometheus?. Prometheus. Retrieved April

1, 2023, from https://prometheus.io/docs/introduction/overview/

29. Beloglazov A., and Buyya R., Optimal online deterministic

algorithms and adaptive heuristics for energy and performance

efficient dynamic consolidation of virtual machines in cloud data

centers, Concurrency and Computation: Practice and Experi-
ence, pp. 1–24, Jan. 2011.

30. Mahmud, M., Pallewatta, S., Goudarzi, M., & Buyya, R. (2022).

iFogSim2: An extended iFogSim simulator for mobility, clus-

tering, and microservice management in edge and fog computing

environments. Journal of Systems and Software., 190, 111351.
https://doi.org/10.1016/j.jss.2022.111351

31. Sonmez C., Ozgovde A., and Ersoy C., EdgeCloudSim: An

environment for performance evaluation of Edge Computing

systems’, in 2017 Second International Conference on Fog and
Mobile Edge Computing (FMEC), 2017, pp. 39–44. doi: https://
doi.org/10.1109/FMEC.2017.7946405

32. Sonmez, C., Tunca, C., Ozgovde, A., & Ersoy, C. (2021).

Machine learning-based workload orchestrator for vehicular edge

computing. IEEE Transactions on Intelligent Transportation
Systems, 22(4), 2239–2251. https://doi.org/10.1109/TITS.2020.

3024233

33. Nardini, G., Stea, G., & Virdis, A. (2021). Scalable real-time

emulation of 5G networks with simu5G. IEEE Access, 9,
148504–148520. https://doi.org/10.1109/ACCESS.2021.3123873

34. Noferi, A., Nardini, G., Stea, G., & Virdis, A. (2023). Rapid

prototyping and performance evaluation of ETSI MEC-based

applications. Simulation Modelling Practice and Theory, 123,
102700. https://doi.org/10.1016/j.simpat.2022.102700

35. Sommer, C., German, R., & Dressler, F. (2011). Bidirectionally

coupled network and road traffic simulation for improved IVC

Analysis. IEEE Transactions on Mobile Computing, 10(1), 3–15.
https://doi.org/10.1109/TMC.2010.133

36. Hegde A., Festag A., Artery-C: An OMNeT?? Based Discrete

Event Simulation Framework for Cellular V2X, in proceedings of
the 23rd international acm conference on modeling, analysis and
simulation of wireless and mobile systems, in MSWiM ’20. New

York, NY, USA: Association for Computing Machinery, 2020,

pp. 47–51. doi: https://doi.org/10.1145/3416010.3423240.

37. Kovács G.A., Bokor L., Integrating artery and simu5G: A mobile

edge computing use case for collective perception-based V2X

safety applications, in 2022 45th international conference on
telecommunications and signal processing (TSP), 2022,

pp. 360–366. doi: https://doi.org/10.1109/TSP55681.2022.

9851276.

38. G. Kovács and L. Bokor, ‘Towards realistic simulation of MEC-

based Collective Perception: an initial edge service design for the

Artery/Simu5G framework’, Jan. 2023, pp. 53–58. doi: https://

doi.org/10.3311/WINS2023-010.

39. G. G. Castañé, A. Núñez, and J. Carretero, ‘iCanCloud: A brief

architecture overview’, in 2012 IEEE 10th international sympo-
sium on parallel and distributed processing with applications,
2012, pp. 853–854. doi: https://doi.org/10.1109/ISPA.2012.131.

40. Kubernetes. Kubernetes-Overview. Kubernetes. Retrieved April

1, 2023, from https://kubernetes.io/docs/concepts/overview/

41. Henrik B. and Rakesh B. Why Kubernetes over bare metal

infrastructure is optimal for cloud native applications, May 03,

2022. https://www.ericsson.com/en/blog/2022/5/kubernetes-over-

bare-metal-cloud-infrastructure-why-its-important-and-what-

you-need-to-know

42. kubernetes-client. Kubernetes Java Client - Home. github.

Retrieved April 1, 2023, from github. https://github.com/kuber

netes-client/java/wiki

43. Kubernetes. Kubernetes - Pods. Retrieved April 1, 2023, from

https://kubernetes.io/docs/concepts/workloads/pods/

44. Kubernetes. Kubernetes - Service. Retrieved April 1, 2023, from

https://kubernetes.io/docs/concepts/services-networking/service/

45. Ericsson. Embrace the 5G edge opportunity. Ericsson. Retrieved
April 1, 2023, from https://www.ericsson.com/494ce3/assets/

local/core-network/doc/5g-core-local-packet-gateway-datasheet.

pdf

46. Kubernetes. Kubernetes - cluster networking. Kubernetes.

Retrieved April 1, 2023, from https://kubernetes.io/docs/con

cepts/cluster-administration/networking/

47. Calico. About Calico. Tigera. Retrieved April 1, 2023, from

https://docs.tigera.io/calico/latest/about

48. Rancher. Comparing Kubernetes CNI Providers: Flannel, Calico,

Canal, and Weave. Rancher by SUSE. Retrieved April 1, 2023,

from https://www.suse.com/c/rancher_blog/comparing-kuber

netes-cni-providers-flannel-calico-canal-and-weave/

49. Chuanyu X. Udp-latency - README. github. Retrieved April

(2022) 1, 2023, from https://github.com/ChuanyuXue/udp-

latency/blob/main/README.md

50. Munir, A., Blasch, E., Kwon, J., Kong, J., & Aved, A. (2021).

Artificial intelligence and data fusion at the edge. IEEE Aero-
space and Electronic Systems Magazine, 36(7), 62–78. https://
doi.org/10.1109/MAES.2020.3043072

51. van der Heijden, R. W., Dietzel, S., Leinmüller, T., & Kargl, F.

(2019). Survey on misbehavior detection in cooperative intelli-

gent transportation systems. IEEE Commun. Surv. Tutor., 21(1),
779–811. https://doi.org/10.1109/COMST.2018.2873088

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

3734 Wireless Networks (2023) 29:3717–3735

123

https://doi.org/10.1109/PIMRC48278.2020.9217177
https://doi.org/10.1109/PIMRC48278.2020.9217177
https://doi.org/10.1109/ICIN.2018.8401637
https://doi.org/10.1109/CAMAD.2019.8858483
https://hal-univ-pau.archives-ouvertes.fr/hal-02464156
https://hal-univ-pau.archives-ouvertes.fr/hal-02464156
https://prometheus.io/docs/introduction/overview/
https://doi.org/10.1016/j.jss.2022.111351
https://doi.org/10.1109/FMEC.2017.7946405
https://doi.org/10.1109/FMEC.2017.7946405
https://doi.org/10.1109/TITS.2020.3024233
https://doi.org/10.1109/TITS.2020.3024233
https://doi.org/10.1109/ACCESS.2021.3123873
https://doi.org/10.1016/j.simpat.2022.102700
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1145/3416010.3423240
https://doi.org/10.1109/TSP55681.2022.9851276
https://doi.org/10.1109/TSP55681.2022.9851276
https://doi.org/10.3311/WINS2023-010
https://doi.org/10.3311/WINS2023-010
https://doi.org/10.1109/ISPA.2012.131
https://kubernetes.io/docs/concepts/overview/
https://www.ericsson.com/en/blog/2022/5/kubernetes-over-bare-metal-cloud-infrastructure-why-its-important-and-what-you-need-to-know
https://www.ericsson.com/en/blog/2022/5/kubernetes-over-bare-metal-cloud-infrastructure-why-its-important-and-what-you-need-to-know
https://www.ericsson.com/en/blog/2022/5/kubernetes-over-bare-metal-cloud-infrastructure-why-its-important-and-what-you-need-to-know
https://github.com/kubernetes-client/java/wiki
https://github.com/kubernetes-client/java/wiki
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.ericsson.com/494ce3/assets/local/core-network/doc/5g-core-local-packet-gateway-datasheet.pdf
https://www.ericsson.com/494ce3/assets/local/core-network/doc/5g-core-local-packet-gateway-datasheet.pdf
https://www.ericsson.com/494ce3/assets/local/core-network/doc/5g-core-local-packet-gateway-datasheet.pdf
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.tigera.io/calico/latest/about
https://www.suse.com/c/rancher_blog/comparing-kubernetes-cni-providers-flannel-calico-canal-and-weave/
https://www.suse.com/c/rancher_blog/comparing-kubernetes-cni-providers-flannel-calico-canal-and-weave/
https://github.com/ChuanyuXue/udp-latency/blob/main/README.md
https://github.com/ChuanyuXue/udp-latency/blob/main/README.md
https://doi.org/10.1109/MAES.2020.3043072
https://doi.org/10.1109/MAES.2020.3043072
https://doi.org/10.1109/COMST.2018.2873088

Levente Márk Maller received

his M.Sc degree in electrical

engineering from the Depart-

ment of Networked Systems and

Services (HIT), Budapest

University of Technology and

Economics (BME) in 2023.

Since 2023, he is a Ph.D. stu-

dent at the BME Doctoral

School of Informatics, Depart-

ment of Networked Systems and

Services, member of the Multi-

media Networks and Services

Laboratory (MEDIANETS). He

is also a developer at Ericsson

where he works on edge user plane solutions for 5G networks. His

research interest areas are edge cloud networks, edge computing, and

Vehicle-to-Cloud communication.

Péter Suskovics received his

M.Sc. degree in computer engi-

neering from the Department of

Telecommunications, Budapest

University of Technology and

Economics (BME) in 2008 and

completed his Ph.D. studies at

the Doctoral School of Infor-

matics of BME in 2011. He

joined Ericsson in 2007 as a

software developer, later he

drove several product develop-

ment and innovation projects

related to telecommunication

services. Currently, he is a

senior system architect of 5G cloud software and services,

specializing in characteristics analysis and performance management.

His main interest areas cover data analytics, AI/ML, and the adap-

tation of 5G/6G technologies in industrial use cases. As a delegate of

the Automotive Edge Computing Consortium, he focuses on

requirement specification, architecture definition, and use case

development.

László Bokor received his Ph.D.

degree in computer engineering

from the Budapest University of

Technology and Economics

(BME) in 2014. He is currently

an associate professor at the

Department of Networked Sys-

tems and Services, BME,

Budapest, 1117, Hungary. His

research interest focuses on

V2X communications in Intel-

ligent Transportation Systems.

He is a member of several pro-

fessional organizations, such as

the IEEE ITS Society, the

Hungarian Standards Institution’s Technical Committee for ITS, and

the ITS Hungary Association.

Wireless Networks (2023) 29:3717–3735 3735

123

	Edge computing in the loop simulation framework for automotive use cases evaluation
	Abstract
	Introduction
	Related works
	The cloud-in-the-loop simulation framework
	Scenario definition process
	CiL-Orchestrator
	Distributed cloud environment
	The layout of the devices
	Software environment

	Investigated case studies for testing edge cloud environments
	Implementation of a UDP traffic benchmarking tool for testing quality of service (QoS)
	Deep learning-based automotive use case implementation for testing quality of experience (QoE)

	Test measurements
	Evaluating the QoS of the integrated distributed environment
	Evaluation of the Deep Learning-based automotive use case implementation

	Conclusion
	Data availability
	References

