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Abstract
Ambient Intelligence deployments are very vulnerable to Cyber-Physical attacks. In these attacking strategies, intruders try

to manipulate the behavior of the global system by affecting some key elements within the deployment. Typically,

attackers inject false information, integrate malicious devices within the deployment, or infect communications among

sensor nodes, among other possibilities. To protect Ambient Intelligence deployments against these attacks, complex data

analysis algorithms are usually employed in the cloud to remove anomalous information from historical series. However,

this approach presents two main problems. First, it requires all Ambient Intelligence systems to be networked and

connected to the cloud. But most new applications for Ambient Intelligence are supported by isolated systems. And second,

they are computationally heavy and not compatible with new decentralized architectures. Therefore, in this paper we

propose a new decentralized security solution, based on a Blockchain ledger, to protect isolated Ambient Intelligence

deployments. In this ledger, new sensing data are considered transactions that must be validated by edge managers, which

operate a Blockchain network. This validation is based on reputation metrics evaluated by sensor nodes using historical

network data and identity parameters. Through information theory, the coherence of all transactions with the behavior of

the historical deployment is also analyzed and considered in the validation algorithm. The relevance of edge managers in

the Blockchain network is also weighted considering the knowledge they have about the deployment. An experimental

validation, supported by simulation tools and scenarios, is also described. Results show that up to 93% of Cyber-Physical

attacks are correctly detected and stopped, with a maximum delay of 37 s.
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1 Introduction

In the last ten years, many new technological paradigms

have been described, developed, and (finally) applied to a

large catalog of different scenarios. From Cyber-Physical

Systems [1] and Ambient Intelligence [2] to Industry 4.0

[3] and the Industrial Internet of Things [4]. But together

with this technological revolution, a new family of digital

risks and vulnerabilities has emerged. Among all these

innovative attacking strategies, Cyber-Physical attacks are

probably the most dangerous and worrying.

In Cyber-Physical attacks [5], intruders take advantage

of feedback control loops and other similar algorithms

deployed within technological platforms, to amplify and

extend the impact of their attack strategy across the entire

system architecture. Only a very specific (and typically

small) manipulation or malicious action over the key

(vulnerable) element or component is necessary to affect

and modify the behavior of the whole system. Although

that key vulnerable element would be different for each

attack, deployment, technology, and implementation, or

event it could not exist, some technological paradigms and

architecture allow identifying those components which

could be vulnerable with a higher probability.
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Actually, among all innovative technological paradigms,

Ambient Intelligence (AmI) is where more clearly the

potential attacking vectors for a Cyber-Physical attack can

be identified. Every AmI deployment is supported by a

large and dense network of sensor nodes, including thou-

sands of resource-constrained devices [6]. To make the

deployment and management of such a large network

feasible, devices are randomly distributed, connected, or

replaced [7]. It is not a planned network, and there is no

exhaustive description of its structure or the participating

devices. In this context, sensor nodes must be able to self-

configure and start data capture and transmission auto-

matically; and any device operating with the proper con-

figuration and sending information to the correct endpoint

is accepted as part of the AmI deployment [8].

For Cyber-Physical attackers, therefore, it is easy to

inject false information into the AmI hardware platform,

through intruder malicious devices or infecting the com-

munications among legitimate sensor nodes (among other

possibilities) [9]. To protect AmI deployments against

these attacks, complex data analysis algorithms are usually

employed. Using stochastics models [10], time series [11]

and artificial intelligence [12], false information can be

detected, corrected, and/or removed. But these algorithms

are too computationally heavy to be maintained by sensor

nodes and are usually deployed in the cloud. However, this

approach presents two main problems.

First, it requires all Ambient Intelligence systems to be

networked and connected to the cloud. And, although some

AmI applications are actually networked, in most scenar-

ios, AmI deployments are isolated [7]. Either because the

system is deployed in a remote location without commu-

nication infrastructure (such as in natural environment

monitoring application or digital agriculture solutions), or

because we are dealing with a critical system where

Internet connections are not allowed (such as in many

Industry 4.0 applications and military missions). Many

AmI systems do the data processing locally, with no option

to execute complex algorithms for false information

mitigation.

And second, this protection strategy requires centralized

data management. Stochastic models or artificial intelli-

gence algorithms need a full vision of the data captured and

accepted within the AmI deployment to be precise. Thus,

all information must be transmitted and accumulated at the

same point. But this centralized scheme is very slow (be-

cause of transmission delays) and computationally heavy.

Mostly, this approach is not compatible with the most

innovative decentralized architectures, such as edge com-

puting [13]. In these architectures, data processing tends to

be decomposed into atomic tasks that can be delegated and

solved only one step away from the sensor networks (a

layer known as ‘‘edge’’). As a result, AmI deployments

would reduce their reaction capacity, performance, and the

catalog of applications they can cover.

In conclusion, new distributed solutions are needed to

protect isolated AmI deployments against false information

injections caused by Cyber-Physical attacks. These solu-

tions should not be computationally heavy, so they can be

supported by sensor nodes and edge devices.

Therefore, in this paper we propose a new decentralized

security solution, based on a Blockchain ledger. In this

ledger, new sensing data are considered transactions that

must be validated by edge managers, which operate a

Blockchain network. This validation is based on two dif-

ferent information sources. On the one hand, sensor nodes

are validated as valid information sources through reputa-

tion metrics. These metrics combine implicit reputation

indicators computed by sensor nodes using historical net-

work data and explicit reputation indicators based on

identity parameters. On the other hand, new data are

evaluated to verify whether they are potentially legitimate

or not. Information theory metrics and the coherence of

new transactions with the behavior of the historical

deployment are analyzed to evaluate their legitimacy. Only

validated transactions are considered, stored, and

processed.

Edge managers maintain the Blockchain network and

execute the validation algorithm. As they do not have a full

vision of the AmI deployment and different edge managers

collect information from different groups of sensor nodes,

validation must be achieved through consensus. The con-

sensus protocol that we propose requires a weighted

majority of edge managers to validate a block to finally be

accepted. For this ‘‘voting’’, the relevance of edge man-

agers in the Blockchain network is weighted considering

the knowledge they have about the deployment, and the

historical series of previously accepted (and rejected)

blocks.

The remainder of the paper is organized as follows.

Section 2 discusses the state of the art in security and

protection mechanisms for AmI deployments. Section 3

presents the proposed security solution, including the val-

idation algorithm and the consensus protocol. Section 4

describes the experimental methodology and analyzes the

obtained results. Section 5 concludes the paper.

2 State of the art on AmI security solutions

Currently, the most discussed and popular topic with

respect to AmI security is governance [37]. In general, the

social and administrative dimensions of AmI security are

deeply analyzed, from the acceptance and perception of

privacy in AmI systems [38] to techniques to make AmI
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technologies accountable and responsible (in legal terms)

[39].

However, traditional and still open security risks and

vulnerabilities in AmI systems have also been exhaustively

studied. Most reported security solutions for Ambient

Intelligence systems are designed for deployments with

Internet connection and communicating to the cloud. In

this context, risks associated with public networks are

dominant and well-known security technologies are stud-

ied, such as HTTPS (HyperText Transfer Protocol Secure)

protocol and certificates [14] or cryptography based on

elliptic curves [15]. Innovative security schemes for these

networked AmI systems may also be found, although they

are sparse. In this category, Intrusion Detection Systems

(IDS) for Ambient Intelligence are the most popular

approach. Some authors propose honeypots to capture

information about attackers and feed a severity analyzer

supported by reinforcement learning algorithms [16]. Other

works employ advanced access control policies to identify

intruding devices, for example, using optimization prob-

lems, convex functions, and dual decompositions [17] to

model and handle the wireless network. On the other hand,

for those AmI deployments where web protocols are

implemented, trustworthiness is also studied and enhanced.

For example, through trusted ontology frameworks, which

can be adapted and personalized to the specific services

provided by each different AmI system [18]. Finally, some

authors propose centralized data repositories, so general

stochastic models [10] can be applied to detect outliers,

incoherent information, and, eventually, Cyber-Physical

attacks. Although these algorithms aim to correct and clean

stored data from malicious samples, intrusion detection is

just a secondary, very limited application.

However, none of these approaches is adequate for

isolated AmI deployments. In fact, in isolated AmI

deployments, security mechanisms must be supported by

sensor nodes and edge managers. And in this context, low-

level network parameters are typically employed to mon-

itor and control intruders. In standard mesh networks,

parameters such as reliability are periodically considered

and updated to make decisions about which devices remain

connected and which ones are blacklisted and removed

[20]. However, in layered networks, such as Publication/

Subscription networks, edge devices must implement

analysis algorithms [19] (using, for example, artificial

intelligence) as they only get indirect observations about

the sensor nodes and their behavior. The main problem of

all these solutions is their low precision. Both the false

negative and false positive rates usually grow up linearly

with the number of sensor nodes, as errors are accumula-

tive, and network parameters are calculated aggregating

information from all devices within the network. Although

errors are below 2% for small networks (less than fifty

nodes), they increase above 20% for large deployments

(more than a thousand devices). That is not acceptable for

most AmI applications.

To mitigate this situation and improve the performance

of low-level security mechanisms, some works propose

improved indicators representing ‘‘trust’’ in AmI networks,

but with much lower associated errors. To do that, they

combine network information with social information [21].

However, the results show only that these indicators are

more stable and present a lower calculation error than

previous proposals. And there is no information on how

they would behave when integrated into a real security

solution and AmI deployment. In conclusion, AmI security

remains an open challenge, and very recent work [22]

confirms this conclusion by describing all pending issues

within this research topic.

In this context, most recent proposals work in two dif-

ferent directions. On the one hand, as attack detection is a

complex task, some authors propose frameworks to detect

the most vulnerable components within an AmI deploy-

ment [9]. The final objective is to correct or mitigate all

these vulnerabilities, but (sometimes) the state of the art

does not allow for it. Like it happens with the very novel

Cyber-Physical attacks. On the other hand, security

mechanisms based on Blockchain networks have been

reported.

Several authors have confirmed the benefits of Block-

chain technologies when applied to AmI deployments [23].

And although several works on unions between AmI sys-

tems and Blockchain have been reported [24], most of

them require sensor nodes to communicate with the global

Internet and the cloud. In the most common approach,

Blockchain networks are independent of the AmI deploy-

ment and operate in the cloud. For example, new secure

access control protocols in which Blockchain networks are

supported by edge-cloud collaboration [35]. Or authenti-

cation services for smart homes, where a Metropolitan

Area Network (MAN) is required connecting different

regions of the city to communicate with the Blockchain

provider of the region [36]. Some works use Blockchain as

a public, transparent, and reliable registration system for

sensor nodes [25]. In this solution, other peer nodes and

manager devices use transparent information to determine

if nodes are legitimate or malicious. Furthermore, some

authors describe mechanisms in which AmI data are col-

lected through public general Blockchain networks and

instruments, such as the InterPlanetary File System (IPFS)

[26].

Public Blockchain networks (such as Ethereum) are also

used to support automatic alert and incidence management

in AmI systems [27], although in this case Blockchain is

more related to automation than to security. Similarly,
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Blockchain for AmI networks has been used as a com-

munication system [28] or a payment platform [29].

However, again, all of these solutions are designed for

AmI deployments connected to the cloud. It is difficult to

find Blockchain-based technologies specifically designed

for isolated AmI deployments. Works describing new

consensus protocols (based on network indicators), so that

Blockchain can be executed by sensor nodes have been

reported [30]. But results show sensor nodes are not

powerful enough to maintain a Blockchain network in the

long term [31] (most of the computing time is consumed by

the Blockchain protocols), and no performance analysis of

these new protocols when integrated into AmI systems

have been reported. In fact, existing results assume AmI

deployments have Internet connection [32], so isolated

deployments are not studied.

Our paper aims to fill this gap. In this paper we describe

a new Blockchain ledger, but to be supported by edge

managers so it is computationally sustainable at long-term.

It includes a new consensus protocol adapted to isolated

AmI deployments, where no connection to the cloud is

needed. We use network parameters, together with other

information sources and analysis algorithms, to improve

the precision and success rate reported in the state of the

art, correctly detecting up to 93% of Cyber-Physical

attacks.

3 A new blockchain ledger for AmI
securization

Isolated AmI deployments are supported by a three-layer

architecture (see Fig. 1). The first layer is composed of

randomly distributed sensor nodes that capture data on a

random basis. In this paper we are assuming N sensor

nodes ni (1) are part of this AmI deployment. In the second

layer, M edge managers mi (2) communicate with the Ki

sensor nodes nCij within their coverage area Ci (3). Cover-

age areas are not homogeneous and are unknown a priori,

as they become self-configured when the AmI deployment

starts operating. The third layer is composed of a local data

processing server (usually distributed), whose internal

structure and behavior are transparent for the purpose of

this paper.

N ¼ nii ¼ 1; . . .;Nf g ð1Þ
M ¼ mii ¼ 1; . . .;Mf g ð2Þ

Ci ¼ nCij j ¼ 1; . . .;Ki

n o
ð3Þ

In this architecture, edge managers M maintain a data

structure in a collaborative way. It is a Blockchain C (4)

(hereinafter referred to ‘‘chain’’ too), that is, a sequence of

connected blocks bi where each new block C½iþ 1� con-
tains an explicit reference to the previous one C½i� through
its hash. Blocks bi contain a random number Ti of accepted

transitions tij (or operations), invoked by sensor nodes N

(5). In our proposal, these transactions tij represent the

transmission of new data that are accepted by edge man-

agers as legitimate.

C ¼ bif g ¼ C½i�f gbeingbi � C½i� ð4Þ

bi ¼ tijj ¼ 1; . . .; Ti

n o
ð5Þ

A ledger is a set of mechanisms, shared and common to

all edge managers M, employed to maintain updated and

coherent the chain and the list of accepted transactions,

according to the common acceptance criteria and guaran-

teeing the consensus among all the edge managers. In this

paper, we propose a Blockchain ledger where three basic

mechanisms are considered. First, a reputation model and

calculation framework, including explicit and implicit

reputation indicators. This mechanism is used to identify

legitimate data sources whose transactions may eventually

be included in the ledger (see Sect. 3.1). Second, a

stochastic framework to calculate how probable a new data

is to be legitimate. In this framework, probabilities are

obtained using information theory indicators and consid-

ering the historical behavior of the AmI deployment (see

Sect. 3.2). This instrument is used to identify valid trans-

actions. And third, and finally, a new consensus protocol

and block generation and transaction validation algorithms.

Considering reputation indicators and data validity proba-

bilities, these instruments identify fully valid transactions

through weighted consensus among all edge managers (see

Sect. 3.3).

3.1 Sensor node validation: reputation model

Reputation, as a technological parameter, can be defined

using several different approaches [33]: cognitive, com-

putational, neurological, or even game-theoretical. But in

security applications, indicators must be precise and

stable to avoid false positive and false negative detections.

Therefore, in this paper, we propose a hybrid definition of

reputation to improve the stability and precision of classic

approaches [34].

In our framework, the global reputation R½ni� of sensor
node ni is obtained as the geometric average of two dif-

ferent reputation measures (6). On the one hand, the

explicit reputation Re½ni� obtained from direct recommen-

dations generated by other nodes within the AmI deploy-

ment. On the other hand, the implicit reputation Rim½ni�
calculated by the surrounding sensor nodes using traffic
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statistics and other network indicators. Both the implicit

and the explicit reputations vary in the interval ½0; 1�.

R ni½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½ni� � Rim½ni�

p
ð6Þ

Explicit reputation Re½ni� is calculated by edge managers

M from direct recommendations produced by sensor nodes

nj (being j 6¼ i). Figure 2 shows the block diagram of the

proposed calculation algorithm.

Periodically, every seni seconds, sensor node ni creates a

map with all nodes nj within its coverage region. For each

node nj it evaluates three identity and configuration

parameters: the link address (it may be a MAC -Media

Access Control- address or an UUID -Universally Unique

Identifier-, for example); the communication protocols

being employed; and the provided data formats and/or

services. Considering the received information and

responses, node ni may generate one or several positive or

negative recommendations about node nj. Recommenda-

tions are generated according to the following criteria:

• A positive recommendation is generated if the link

address belongs to a device that was part of the AmI

network in the past. A negative recommendation is

generated if the link address belongs to a blacklisted

device.

• A positive recommendation is generated if communi-

cation protocols are standard protocols already present

in the AmI deployment. And a negative recommenda-

tion is generated if protocols or configurations usually

used in cyberattacks are detected.

• A positive recommendation if data formats and/or

services are similar to the ones managed by other sensor

nodes. A negative recommendation is produced when

data formats or services are detected that are typically

associated with cyberattacks.

All recommendations are sent to edge managers. When

received, all recommendations are collected in two differ-

ent buckets. The first one for positive recommendations

and the second one for negative recommendations. Every

Fig. 1 Proposed architecture for an isolated AmI deployment
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semi seconds one recommendation about node ni is extracted

from both buckets. If a positive and a negative recom-

mendation are extracted, explicit reputation remains

unchanged. But if the negative bucket is empty, and only a

positive recommendation is extracted, explicit reputation

Re½ni� is incremented using the multiplier 1þ 1
Q

� �
where Q

is a real number higher than or equal to the unit (7). On the

contrary, if the positive bucket is empty and only a nega-

tive recommendation is extracted, explicit reputation Re½ni�
is decremented using the same multiplier. This calculation

procedure is described in Algorithm 1.

Q 2 ½1;1Þ ð7Þ

In addition, both the positive recommendation bucket

and the negative recommendation bucket have a maximum

capacity of Rpos
max and Rneg

max recommendations, respectively.

When any bucket is full, recommendations of the corre-

sponding type are rejected. With this design, we protect the

reputation calculation framework from recommendation

bursts, which are unnatural and typically associated with

attacks. Besides, a correct balance between time constants

semi and seni allow the algorithm to automatically compen-

sate malicious attacks thanks to genuine recommendations

coming from legitimate sensor nodes.

Fig. 2 Explicit reputation calculation algorithm

Wireless Networks

123



Implicit reputation Rim½ni� is deducted from nodes’

behavior. But every sensor node nj has a different vision of

the other nodes’ behavior. Then, the global implicit repu-

tation Rim½ni� is calculated by aggregating partial estima-

tions RimðnjÞ½ni� generated by nodes nj (8). However,

different estimations may show different significances.

Weights kj (9) represent these differences in the final

reputation calculation.

Rim ni½ � ¼
X

8nj 2 N
j 6¼ i

kj � RimðnjÞ½ni� ð8Þ

kj 2 ð0; 1� ð9Þ

In our model, implicit reputation RimðnjÞ½ni� is calculated
by combining three different network parameters (10):

• Reliability qð Þ. It measures the availability of sensor

nodes to communicate when it is requested by other

nodes within the AmI deployment.

• Goodness fð Þ. It represents the posteriori probability of

a sensor node to become malicious and attack other

nodes in its surroundings.

• Importance mð Þ. This parameter refers to the relevance

and how essential a node is within an AmI deployment.

It depends, basically, on how many other nodes may

assume its functions if it is removed from the system.

Each one of these network indicators is weighted (using

l1, l2 and l3 real parameters), so it is possible to select the

relative significance of each contribution to the final

implicit reputation estimation (11).

Rim nj
� �

ni½ � ¼ l1 l2 l3½ � �
q
f
m

2
4

3
5 ð10Þ

li 2 0; 1ð �i ¼ 1; 2; 3 ð11Þ

Node ni divides time into measurement slots with a

duration of smesi seconds. For each slot, node ni controls the

total number of communication attempts ptotal with every

node nj within its coverage region, together with the

number of attempts that were actually successful, psuccess.

Using the Laplace definition for probability and these two

measures, we can calculate the instant availability a j
inst for

node nj (12). All these instant measurements are collected

in a common time series w½k� (13), where k is the discrete

time variable (k-th slot). Hereinafter k ¼ 0 is the current

(present) time instant. However, reliability depends not

only on events happening in the last smesi seconds, but on all

historical node’s behavior. Although past measures are

slightly less relevant than recent measurements. Thus, we

can calculate the historical availability aj of node nj
through a weighted average (14), where A is an integer

parameter and weights slowly reduce their value thanks to

the logarithmic function.

a j
inst ¼

psuccess
ptotal

ð12Þ

w k½ � ¼ a j
inst

� �
ð13Þ

aj ¼
XA
k¼1

w 1� k½ �
1þ ln kð Þ ð14Þ

In network engineering, traffic is modeled as a Poisson

process. Then, service time, congestion, and reliability

follow an exponential distribution. In our model, reliability

follows the same law (15), being Kav a constant controlling

the equivalence between historical availability aj and reli-

ability q (16). In general, full reliability is achieved when

historical availability is equal to 5 � Kav or higher.

q ¼ 1� exp � aj
Kav

� �
ð15Þ

Kav 2 0; 1ð �..
.
aj � 5 � Kav ) q � 1 ð16Þ

On the other hand, for each measurement time slot, node

ni also monitors the number of attacks it receives from

node nj. For each time slot, z jattack represents this indicator.

All these instant measurements are collected in a common

time series x½k� (17), where k is the discrete time variable

(k-th slot).

x k½ � ¼ z jattack
� �

ð17Þ

As before, this is an instant value; however, reputation

does not only depend on the events that occurred during the

last time slot, but also on the entire historical behavior.

However, past behaviors are not as relevant as recent

events. And, regarding attacks, fast adaptation to malicious

behaviors allows quick detection and mitigation. Thus, a

global historical attack counter zj is obtained through a

weighted average (18), where weights follow an expo-

nential law which reduces the significance of past behav-

iors much faster than logarithmic laws. Being Z and r

integer parameters higher than the unit.

zj ¼
XZ
k¼0

x½�k� � 1

r

	 
kþ1

ð18Þ

Using this global indicator, and through a sigmoid

function (19), we calculate the goodness f of node nj.

f ¼ 1

zj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

zj

� �2
r ð19Þ

Finally, node ni may calculate the importance of nj using

two parameters. First, parameter cl indicates how critical

are services or data provided by node nj in the context of
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the AmI deployment. Parameter cl takes values in the

interval ð0;1�, where lower values indicate the compo-

nent’s criticality is limited. This parameter must be defined

by AmI system managers and cannot be self-selected by

sensor nodes. Secondly, parameter red represents the net-

work redundancy. It measures how many other nodes

within the coverage region of node ni are providing the

same services or data than node nj. It can be estimated

using the cardinality card �f g operator (20).

red ¼
card similarnodesnj

� �

card totalnjnodes
� � ð20Þ

Using these two parameters, importance can be calcu-

lated (21). As can be seen, through the proposed expo-

nential law, importance m decreases as red parameter

increases, but the decreasing rate is slower as the parameter

cl is higher.

m ¼ exp �red � clf g ð21Þ

In this case, instant (last) calculation is the only relevant,

and historical values for importance m are not considered.

Configurations of the past deployment do not affect the

performance of the current AmI deployment.

Finally, for validation purposes, any sensor node ni is

considered to have a good reputation and then, validated as

a legitimate information source when its reputation R ni½ �
goes above a threshold Rth (22).

ifR ni½ � �Rth ) nivalidated ð22Þ

3.2 Data validation

Even valid and legitimate nodes may be infected or

affected by malicious effects, making them to generate

false information. Then, in addition to the reputation cal-

culation framework, a mechanism for data validation is

essential.

In our model, each transaction or data sample is char-

acterized by a Bernoulli distribution BðqÞ where transac-

tion tij is false with probability q, and it is legitimate with

probability 1� qð Þ (23).

B qð Þ	P tij is valid
� �

¼ 1� q if true
q if false

�
ð23Þ

Every transactiontij, then, is fully characterized by

probabilityq. This probability is obtained by combining

three stochastic indicators. First, information entropy,Hð�Þ.
In general, legitimate data series have a low entropy

because they follow a deterministic pattern. High entropy is

evidence of malicious attack trying to confuse the AmI

system. Second, mutual informationI �; �ð Þ. Close and

similar nodes are expected to generate data series sharing a

large amount of information. A mid-term or long-term

sequence of outliers is evidence of the injection of false

information. And, finally, the Probability Density Function

(PDF),f ð�Þ. Physical processes are typically stationary, and

probability distribution of data samples does not change

with time. Radical, fast, or unexpected changes in the

probability distribution of data samples are evidence of

false information too.

However, all these stochastic indicators cannot be

applied to individual transactions tij but a sequence or

collection TL including L transactions. Then, edge man-

agers must collect L transactions and, later, validate all

together through the same data validation process.

Parameter L has not to be fixed and may change with time

according to the AmI deployment’s needs. Hereinafter,

yi½k� is the series with all the history of data generated by

node ni (as transactions t
i
j), and yLi ½k� is the series with the

last L samples generated by node ni (contained in collec-

tion TL).

Information entropy, Hð�Þ, is directly applied to series

yLi ½k� (24), where p is the probability of symbol (or data

sample) within the series yLi ½k�. In order to calculate

probabilities p the Laplace’s definition for probability is

employed (25). But because of noise, fluctuations, numer-

ical errors, etc., sensor nodes rarely generate two identical

samples. Then, in our model all samples within the range

½ � e; þ e� are considered to be same, where e is a real

parameter representing the precision (absolute value) of the

AmI system. This operation is performed by the Heav-

iside’s step function, u �½ �.

H yLi
� �

¼ �
X

8differenty 2 yLi

py � log2 py
� �

ð24Þ

py ¼
1

L
�
X
8~y2yLi

u e� y� ~yj j½ � ð25Þ

Besides, information entropy varies in the range ½0; si�
(in bits), being s is the exponent satisfying an exponential

equality (26) where Sti is the number of different symbols

(data samples) in the sequence yLi ½k�. But, for coherence

with the other indicators, it is convenient if entropy H also

varies in the interval ½0; 1� (as probability functions do).

Then, a mapping function is applied to get the final value

for entropy Hmap (27).

Sti ¼ 2si ð26Þ

Hmap yLi
� �

¼ H yLi
� �

� 1

si
ð27Þ

On the other hand, mutual information Ið�; �Þ is applied
to series yLi ½k� and yLj ½k� (28), being ni and nj equivalent or

similar nodes, according to explicit reputation parameters

Wireless Networks

123



previously described in Sect. 3.1. p
1
is the probability of

symbol 1 (or data sample) within the seriesyLi ½k�, p2
is the

probability of symbol 2 (or data sample) within the

seriesyLj ½k�, and being p
1;2 the joint probability of symbols

(or data samples) 1 and 2 to be generated at the same time

instant by nodes ni and nj respectively. As before, in order

to calculate probabilities p
1
(29), p

2
(30) and p

1;2 (31) the

Laplace’s definition for probability is employed and being

u �½ � the Heaviside’s step function. Additionally, for the

mutual information calculation we are considering a tol-

erance rangee, so two samples are assumed to be the same

if their difference is lower than this tolerance. Equally,

sensor nodes in AmI deployments are not synchronized.

Thus, all samples within a given time tolerance p (discrete

time units) are considered to be generated at the same

instant.

I yLi ; y
L
j

� �
¼

X

8different1 2 yLi

X
8different22yLj

p
1;2

� log2
p

1;2

p
1
� p

2

	 

ð28Þ

py1 ¼
1

L
�
X
8~y2yLi

u e� y1 � ~yj j½ � ð29Þ

py2 ¼
1

L
�

X
8 ~y2yLj

u e� y2 � ~yj j½ � ð30Þ

p
1;2 ¼

1

L � 2pþ 1ð Þ �
X0

k¼�Lþ1

Xp
k0¼�p

u e� 2 � yLj k � k0½ �



h i

� u e� 1 � yLi ½k�
 � �� � ð31Þ

In this case, mutual information also varies in the

interval ½0; si;j�, where si;j is the solution to the exponential

Eq. (32) to calculate the total number of different samples

(symbols) Sti;j in series yLi ½k� and yLj k½ �. Again, we employ a

mapping function (33) to move the target interval to the

range ½0; 1� (where probability functions usually take val-

ues) and obtain the final mutual information Imap.

Sti;j ¼ 2si;j ð32Þ

Imap yLi ; y
L
j

� �
¼ I yLi ; y

L
j

� �
� 1

si;j
ð33Þ

And third, and finally, the Probability Density Function

(PDF) allows to analyze the occurrence probability of

every individual sample or transaction tij. To calculate the

PDF f ð�Þ, we use the entire series yi k½ �, the Heaviside’s

step function, u �½ �; the cardinality operator card �f g, and
the probability theory (34), so histograms approach to the

PDF when the number of realizations is high. As before, all

samples within the t ½ � e; þ e� are considered to be equal,

where e is an integer value representing the precision of the

AmI system.

f yð Þ ¼ 1

card yif g �
X
8~y2yi

u e� y� ~yj j½ � ð34Þ

In this case, PDF already takes values in the range ½0; 1�,
so no additional transformation is required. But, to be

consistent with previous stochastic indicators, function f ð�Þ
should also refer to the entire series yLi ½k� and not only to

individual samples . To obtain this aggregated value f av �ð Þ,
we are considering the average probability (35) of all

samples in the series yLi ½k�.

fav yLi
� �

¼ 1

L

X
8y2yLi

f yð Þ

¼ 1

card yif g � L �
X
8y2yLi

X
8~y2yi

u e� y� ~yj j½ � ð35Þ

With all these three stochastics indicators, probability q

may be obtained through a polynomial function (36), where

h1max, h
2
max and h3max are the maximum exponents for the

polynomial and coefficients r1, r2 and r3 are weights to

control the relevance of each stochastic indicator in the

calculation of probability q. To be consistent with the

definition of probability, the addition of these three weights

must be equal to the unit (37). These exponents h1max, h
2
max

and h3max control the changing speed of probability q with

the three previously described indicators. As exponents get

higher, changes in entropy Hmap, mutual information Imap
or the PDF f av cause a more significant change in proba-

bility q.

q ¼ r1
h1max

�
Xh1max
h1¼1

1� Hmap

� �h1 þ r2
h2max

�
Xh2max
h2¼1

Imap
� �h2 þ r3

h3max

�
Xh3max
h3¼1

f avð Þh3

ð36Þ
r1 þ r2 þ r3 ¼ 1 ð37Þ

Finally, transactions are validated if probability q goes

below a given threshold qth (38). When that happens, the

entire series yLi ½k� is validated.
ifq
 qth ) yLi ½k�validated ð38Þ

3.3 Transaction validation, block generation
and consensus protocol

In the proposed security solution, edge managers M

maintain a Blockchain ledger. Edge managers M receive,

accumulate, and validate transactions tij, describing the
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generation of new AmI data by sensor nodes ni. Valid

transactions tij are written down in a new block bi for the

chain by edge manager mj. Block bi is linked to the last

valid block through its hash, which will be validated by the

other edge managers mk.

In order to validate transactions, and according to the

proposed data validation mechanism (see Sect. 3.2), a

minimum of L different transactions from node ni must be

accumulated by edge manager mi. But, since transactions

associated to different nodes nj can be accumulated at the

same time, final blocks bi contain Ti valid transactions tij
which may combine transactions referring different nodes

nj.

In our Blockchain ledger, we name T ðniÞ the collection
of all transactions that meet the conditions to be valid only

considering the source node (i.e., according to the proposed

reputation model, see Sect. 3.1). On the other hand, we

name T ðLÞ the set of all transactions that meet the con-

ditions to be part of the historical record L of the ledger

(i.e., according to the proposed data validation framework,

see Sect. 3.2). Thus, valid transactions tij are those con-

tained in the intersection of both sets (39).

tij 2 T nið Þ \ T ðLÞ ð39Þ

In that way, a block bi is validated by consensus, if a

majority of edge managers mj validates all the individual

transactions tij it contains. But in the general case, the

sensor nodes and edge managers are randomly distributed.

Some sensor nodes can be connected to several edge

managers, and the edge managers’ coverage area Ci may

contain different numbers Ki of sensor nodes n
Ci
j . Then, the

knowledge that each edge manager has about the AmI

deployment is different. To represent this asymmetry,

voting is weighted by Ki parameters. And a block bi is

validated if the aggregate knowledge Kþ
ag of managers

supporting the block validation is superior to the aggregate

knowledge K�
ag of managers which do not do it (40).

Kþ
ag ¼

X
8mjvalidatesbi

Kj [K�
ag ¼

X
8mjdoesnotvalidatebi

Kj ð40Þ

Figure 3 shows a description with details of the pro-

posed block generation, transaction validation and con-

sensus algorithm (executed by edge managers).

As can be seen, transactions tij and blocks bi for vali-

dation, as well as voting results vi, arrive randomly to the

edge manager. Regarding transactions tij, they are stored

together with all transactions yi½k� coming from the same

sensor node ni. Edge manager mj tries to create a new block

at the discrete time instants wr (41). These time instants

may be homogenously distributed (periodical) or can be

triggered by events.

wrr 2 Nf g ð41Þ

At each time instant wr, edge manager mj evaluates if it

stores at least L data samples (or transactions) coming from

any of the nodes nCij within its coverage area Ci. For all

nodes ni for which at least L transactions are available, the

edge manager mj validates the source node ni through the

proposed reputation framework. If node ni is validated, the

algorithm continues. If not, all associated transactions are

discharged and deleted from series yi½k�. For all nodes ni
whose reputation is high enough, the algorithm validates

the collection of L transactions yLi ½k� through the data val-

idation framework. If transactions are validated, the algo-

rithm continues. If not, all transactions are discharged and

deleted.

After this process, all validated transactions tij are writ-

ten down in a block bi by manager mj, which is published

and distributed among all other edge managers mk.

When an edge manager receives a new block bi for

validation, it executes the algorithm as described above:

first, it validates the source node ni using the reputation

model and, later, the transaction series yLi ½k� through the

data validation framework. If all transactions tij within the

block bi are validated, manager mk votes positively (and

publicly) and knowledge Kj is added to aggregated

knowledge Kþ
ag. On the contrary, knowledge Kj is added to

the negative aggregated knowledge K�
ag. Voting results vi

are public, and all managers receive the updates. When all

edge managers M have voted, the block bi is definitely

validated, only if the consensus is enough (40). This

operation is distributed as all edge managers track the

voting results.

When block bi is definitely validated, all edge managers

mj remove from their collection of transactions to be val-

idated yLi ½k� all transactions tij included in the block bi, as

the Blockchain ledger cannot contain duplicated

transactions.

4 Experimental validation

In order to evaluate the performance of the proposed

security solution in the context of isolated AmI deploy-

ments, we designed and carried out an experimental vali-

dation. All experiments were supported by simulation tools

and scenarios, so we can easily control variables such as

the number of sensor nodes and/or edge manager within the

deployment and then, analyze more deeply the behavior of

the proposed technology. Section 4.1 describes the exper-

imental methodology, while Sect. 4.2 presents and dis-

cusses the obtained results.
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4.1 Experimental methdology, material
and methods

The proposed experimental validation includes two dif-

ferent phases. In the first phase, the Cyber-Physical attack

detection and mitigation capabilities of the proposed

security solution are analyzed. Basically, the percentage of

attacks successfully identified and blocked is studied. In the

second phase, we focus on the performance level, and

variables such as the required processing time or detection

delay (critical in Blockchain-based systems) are analyzed.

The objective is to identify not only whether the proposed

mechanisms behave as expected, but also whether its per-

formance is compatible with AmI deployment operations.

Specifically, five experiments were carried out. The first

two experiments took place in the first experimental phase.

The first experiment analyzed the percentage of Cyber-

Physical attacks (false information injection) that were

correctly detected and stopped, together with the number of

false positive and false negative detections. The experi-

ment was repeated for different numbers N of sensor nodes

and different numbers M of edge managers in the AmI

deployment. Later, the second experiment analyzed the

percentage of Cyber-Physical attacks that were correctly

detected and stopped too (as well as the amount of false

positive and false negative detections), but in this case the

experiment was repeated for two different types of attacks

(fast and slow attacks). In fast attacks, false information

was injected as a flood trying to collapse the AmI

deployment as soon as possible. In slow attacks, false

information is injected with the same speed as legitimate

information, looking for a long-term impact. Different

values for L parameter (employed in the data validation

framework) were also considered in this second

experiment.

Fig. 3 Block generation, transaction validation and consensus algorithm
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On the other hand, the three last experiments were part

of the second experimental phase. The third experiment

analyze the required time (delay) to detect and mitigate a

Cyber-Physical attack when using the proposed security

solution, for different N of sensor nodes and different

numbers M of edge managers in the AmI deployment.

Additionally, the fourth experiment also studied the attack

detection delay in the proposed security mechanism, but in

this case for different values of L parameter (employed in

the data validation framework) and two different types of

attacks (fast and slow attacks, as described above). Finally,

the fifth experiment studies the required processing time

and computational resources (memory) required to execute

the proposed security solution. Results were divided into

two different groups, depending on the type of device

(sensor node or edge manager).

All of these experiments were supported by a simulation

scenario, built and operated using the MATLAB 2022a and

Simulink software. This software was executed on a Linux-

based machine (Ubuntu 22.04 LTS) with the following

hardware characteristics: Dell R540 Rack 2U, 96 GB

RAM, two processors Intel Xeon Silver 4114 2.2G, HD

2 TB SATA 7,2 K rpm.

In the proposed simulation model, the sensor nodes

generated new data samples (or transactions) on a random

basis. Edge managers were also randomly associated with

sensor nodes. Sensor nodes could have three different

measurement capabilities: temperature, humidity, and car-

bon dioxide. The proportion of each sensor type was ran-

domly configured at every simulation. Attacks were

represented by turning malicious a random percentage of

sensor nodes, always below 25% of the total number

available in every different simulation. Communication

protocols of legitimate nodes were Bluetooth or WiFi

(randomly selected), while malicious nodes could also

employ LoRa protocols. Table 1 shows the proposed con-

figuration for all parameters that are not experimental

variables.

Each simulation represented seventy-two (72) hours of

AmI deployment operations. All simulations were repeated

twelve times to reduce the impact of exogenous effects,

such as numerical errors or interferences caused by the

operating system. Final results were obtained as the aver-

age of all twelve realizations.

4.2 Results

Figure 4 shows the results of the first experiment. As can

be seen in Fig. 4(a), the proposed security solution is able

to detect and mitigate up to 93% of Cyber-Physical attacks.

Besides, even in the worst case, the detection capability is

above 78%. As the Blockchain-ledger and the associated

validation algorithms are distributed, the performance is

significantly worse when few devices (sensor nodes and/or

edge managers) are deployed within the AmI system. The

best performance is obtained for deployments including

between one thousand (1000) and two thousand (2000)

sensor nodes. After this point, performance sightly

decreases again (the success detection rate is reduced to

around 2%), because of noises and numerical fluctuations

caused by very large AmI deployments. But this decrease is

not as relevant as the observed increase between AmI

deployment with twenty-five (25) and one thousand (1000)

nodes (the success detection rate increases around 19%). In

conclusion, the proposed solution is especially useful for

large isolated AmI deployments (more than one thousand

nodes).

The impact of the number of edge managers is also

observable and relevant. But this is only significant for

small AmI deployments (below one thousand nodes). For

this kind of deployments, systems with only five (5) edge

managers only get a detection rate of 78%, while systems

including one hundred (100) managers achieve an 89%

rate. That is because of consensus. When few edge man-

agers are considered, consensus is weak and block vali-

dations are not consistent (the are highly affected by

numerical errors in the data validation framework, mainly).

But a higher number of edge managers can mitigate this

impact, thanks to a much more complex consensus. Any-

way, as the AmI deployment increases in size (more sensor

nodes are included), this effect disappears. Deficiencies in

the consensus protocol are compensated by much abundant

reputation information from the AmI deployment, as well

as more samples and historical series to be employed in the

data validation framework, which reduces errors and makes

all configurations behave the same regardless the number

of edge managers. In conclusion, for small AmI deploy-

ments, a higher number of edge managers can increase

performance.

Regarding false negative detections, Fig. 4(b), they are

much more common than false positive detections,

Fig. 4(c). Actually, the proposed security solution is

designed to specially avoid false positive detections that

perturbed the AmI deployment operations, since false

information (in small amounts) is usually risk-free. The

false positive detection rate decreases monotonously as the

success detection rate increases, and for large AmI

deployments keep under 0.3% in all cases. The false neg-

ative detection rate behaves similarly, but in this case the

minimum value is around 3%. In addition, the rate also

increases sightly for very large AmI deployments, which is

consistent with the reduction in the success detection rate.

Figure 5 shows the results of the second experiment.

This experiment was carried out for an AmI deployment

with one thousand (1000) sensor nodes and twenty-five

(25) edge managers. As can be seen, the evolution for all
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rates is qualitatively similar to the results in Fig. 4. Thus,

both experiments are coherent.

For low values of L parameter fast attacks are more

efficiently detected. In fast attacks, the impact is more

relevant, even in short time periods, so the data validation

framework may detect malicious behavior even with a

limited number of samples (or transactions). But if the

value for L parameter gets even smaller, performance get

worse in any situation, with a success detection rate around

60% for fast attacks and around 40% for slow attacks. As

can be seen in Fig. 5(a) the optimal point for fast attacks is

L � 75, when the success detection rate is around 93%.

When L parameter goes beyond this point, too many

transactions must be accumulated, and fast attacks may

finish and complete their objective before they are detec-

ted. On the contrary, slow attacks present a very bad

behavior for low and medium values of L parameter, but it

gets better monotonously as L parameter increases. For

values L[ 100 the success detection rate goes above 90%,

with a maximum rate of 91%. Taking into account this

analysis, a good balanced configuration could be L ¼ 100.

For this value, both types of attack are successfully

detected with rates greater than 90%.

Regarding false-positive and false-negative detection

rates, we can distinguish two regions. For low values of L

parameter, false positive detection and false negative

detection rates present similar values. Mainly because for

such low values, the data validation framework is

Table 1 System configuration

Parameter Value Comments Parameter Value Comments

wr 10 s Blocks are generated periodically r1;r2;r3 1
3

All stochastic parameters are equally relevant

qth 0.2 False data probability below 20% p 4 Four discrete time units tolerance

e 0.15 15% tolerance Rth 0.5 Reputation threshold 50%

h1max; h
2
max; h

3
max

4 Forth order polynomial function r, Q 2

kj 1
N

All nodes are equally important Rpos
max,R

neg
max 25

Kav 0.15 cl 1 All capabilities are equally critical

Fig. 4 Results for the first experiment. a True positive detections. b False negative detections. c False positive detections
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unstable and numerical errors make false positive detec-

tions and false negative detections occur randomly. But, for

high values of L parameter, the false positive detection rate

is low for both kinds of attacks (fast and slow). Although

for fast attacks the rate increases sightly (minimum value is

around 2.5%, and grows up to 8%, approximately), and for

slow attacks the rate decreases monotonously (minimum

rate, 2.5%). On the contrary, false negative detection rate

for fast attacks greatly increases its value. Increasing from

3% (minimum value for L ¼ 75) to 19%. Meanwhile, for

slow attacks, this rate also decreases monotonously and

stays around 5%.

On the other hand, Fig. 6 shows the results of the third

experiment (second experimental phase). In this experi-

ment, only attacks successfully detected were considered.

As can be seen, attack detection delays evolve linearly with

the number of sensor nodes within the AmI deployment, as

well as with the number of edge managers. This is con-

sistent with the proposed validation and consensus algo-

rithm, as the voting process requires all edge managers to

vote (so it is a longer process as more managers partici-

pate). Furthermore, since more nodes are included in the

AmI deployment, the blocks tend to include more trans-

actions, which also increases (because of the data valida-

tion framework and the reputation model) the detection

delay (linearly, see Fig. 3). If we analyze the situation

where the highest success detection rate was reported (one

thousand nodes), the delay is between eleven (11) and

thirty-seven (37) seconds. These values are acceptable for

most AmI deployments and Cyber-Physical attacks, as they

are resilient enough to handle and attack for such a short

time.

Figure 7 shows the results for the third experiment. For

the second experiment, these results represent an AmI

deployment with one thousand (1000) devices. And only

successful attack detections were considered. In this case,

the differences between slow and fast attacks are very

reduced. Delays are only 7% higher for slow attacks

because, on some occasions, attacks are so slow that more

than one block is needed to detect it, contrary to fast

attacks. Time also evolves linearly with parameter L, as

stochastic indicators in the data validation framework are

obtained using sequential loops over all accumulated

samples. If we consider a balanced value for L parameter,

for example L ¼ 75, detection delay is around 37.5 s for

slow attacks and 29 s for fast attacks. As said above, these

values are acceptable for most AmI deployments, so we

can conclude that the proposed solution is adequate for

isolated AmI deployments.

Finally, Table 2 shows the results of the fifth experi-

ment. This analysis was carried out for the configuration

with the best behavior (one thousand sensor nodes, twenty-

Fig. 5 Results for the second experiment. a True positive detections. b False negative detections. c False positive detections
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five edge manager and L ¼ 100). As can be seen, around

10% of the resources in the sensor nodes are consumed by

the proposed solution. To do these calculations, the ESP32

microcontroller was taken as a reference. Processing delay,

in addition, is acceptable for most applications, where

sensor nodes generate data every few seconds. On the other

hand, resource consumption in edge managers is slightly

higher. Around 15% memory is required by the proposed

Blockchain-based solution, and most part of the required

attack detection delay is assumed by edge managers (on

average more than forty seconds). To obtain these results,

an Artik 530 architecture was considered. In conclusion,

the resource consumption of the proposed security solution

is compatible with the characteristics of AmI deployments.

5 Conclusions

In this paper, we propose a new decentralized security

solution, based on a Blockchain ledger, to protect isolated

Ambient Intelligence deployments. In this ledger, new

sensing data are considered transactions that must be val-

idated by edge managers, which operate a Blockchain

network. This validation is based on reputation metrics

evaluated by sensor nodes using historical network data

and identity parameters. Through information theory, the

coherence of all transactions with the behavior of the his-

torical deployment is also analyzed and considered in the

validation algorithm. The relevance of edge managers in

the Blockchain network is also weighted considering the

knowledge they have about the deployment.

Five different experiments are provided, showing that

the attack detection rate can achieve values of up to 93%,

with a detection delay of 37 s in the worst case. Addi-

tionally, resource consumption in sensor nodes and edge

managers in AmI deployments is acceptable for most

current hardware platforms. As a result, we can conclude

that the proposed security solution is adequate for isolated

AmI deployments.

For future work, the proposed solution will be validated

in a real scenario, considering hardware sensor nodes and

edge manager within a functional isolated AmI

deployment.
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