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Abstract
Quantum key distribution (QKD) has evolved as a robust way of secret key distribution based on renowned modern physics

concepts. To transmit sensitive information in the government, private, and personal sectors, high-security levels are now

necessary. All conventional cryptographic algorithms applied in the communication models, which rely on mathematical

models and conceptual assumptions, are unsecure. Thus, QKD systems are the best choice for protecting this information

as a countermeasure since they provide unconditional security. In this paper, a design is proposed for the FSO channel

using the CASCADE protocol under different atmospheric condition such as haze, rain and snow. The suggested

framework’s effectiveness and security in the context of QKD with two non-orthogonal photon states are assessed.

Simulation results of this model show the percentage of original sequence recovery; the number of errors removed, optical

spectrum at transmitter and receiver for a base frame length of 104 bits. Moreover, Error correction is calculated per

iteration to improve signal quality at the receiver side and compared to previous work. The calculated value in this article

shows a better result. Hence, both the sender and the receiver could achieve a security key using this method.

Keywords Quantum key distribution � CASCADE protocol � Information reconciliation � Privacy amplification

1 Introduction

In this decade, secure communication platforms are an

important requirement by the people and large industries to

demand reliable data transmission via an open environ-

ment. Hence, a secure channel for communication must be

implemented from sender to receiver to transmit the

information [1]. Cryptography ensures the security and

accuracy of data in the presence of threats in communi-

cation. An essential cryptography challenge in this is how

to transfer a secret key from the sender to the recipient [2].

Generally, two types of encryption approaches are used:

symmetric key and public-key cryptography [3].

QKD possesses the capability of secure communication,

which is based on quantum mechanics instead of dubious

assumptions about the present and prospective computa-

tional resources [4, 5]. QKD addresses the problem of key

distribution without depending on the computational

complexity of accomplishing such mathematical functions

as one-way functions, which are studied as the backbone of

public-key cryptography [6].

In QKD, let two communication entities are considered

named Alice (sender) and Bob (receiver) transmit the data

in the communication network. It allows both parties to

identify an eavesdropper (Eve) and establish a secret key

that is unknown to Eve.As shown in the Fig. 1, two com-

munication channels are normally present in a QKD sys-

tem: a quantum channel and an authenticated classical

channel [7]. The function of a quantum channel or private
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channel is to transmit a single photon through a transparent

optical path. It is a deterministic and lossy channel. Simi-

larly, a classical channel can be a typical IP channel that

relies on the system configuration for example any tele-

phone line. It involves basic reconciliation, error correc-

tion, and privacy amplification protocols. By using these

two channels a secret key can be obtained among Alice and

Bob, which is known as prepare-and-measure protocols [8].

They must be able to limit the quantity of original data Eve

can receive. There is a trade-off between the availability of

data that Eve leaks and the amount of signal state disrup-

tion that can be created in any such attack [9].

In Fig. 1, the required sub-systems on Alice’s sides are

an optical device, quantum state preparation (QSP), a

Digital Processor & Communication (DP&Comm) and the

modulation scheme (Mod-Sch). By using quantum entan-

glement and transmitting the message in quantum states, a

transmission system can be realized that identifies eve.

Hence, the QSP subsystem is important to prepare a reli-

able quantum state that can be used for encryption [10].

DP&Comm subsystem uses different technologies for

digital processing such as field-programmable gate array

(FPGA), and graphical processing unit (GPU), to achieve

the algorithm for monitoring Mod-Sch subsystem. It also

uses classical communication links [11]. The output of

QSP can be modified to drive the DP&Comm signal and

then the information-carrying quantum state is conveyed

through a quantum private channel.

An optical receiver on Bob’s side obtains the quantum

state and produces an electrical signal that is given into a

demodulation scheme (Demod-Sch) with the help of sev-

eral optical passive devices. Here, Bob has also the same

DP&Comm subsystem as used in Alice. Then the signal

passes through Quantum State Determination/Performance

Parameters (QSD/PP) subsystem to determine the optical

mode established by Bob. It calculates some performance

factors obtained such as amplitude, phase, and polarization.

Eve, on the other side, needs a variety of subsystems to

‘‘listen’’ the data from Alice and Bob [12].There are sev-

eral approaches to achieve QKD over FSO such as proto-

col-based or entanglement-based.

In this paper, we have used a protocol-based FSO

scheme. The QKD protocol specifies the procedure for

defining a key, which is divided into three categories: the

oldest and most widely used discrete-variable (BB84, B92,

E91, SARG04), effective continuous-variable (CV-QKD)

protocols, and distributed-phase-reference coding (COW,

DPS) [13]. Bennett and Brassard proposed the first and

vital protocol, BB84, in 1984, which utilizes four possible

quantum modes. Linear polarization or a combination of

linear and circular polarizations may be used in polariza-

tion-based systems [14].

In the past, Bennett et al. [15] demonstrated the first

experimental analysis of quantum cryptography in 1992.

Bennett suggested that signal photons interfering with

photons communicating over maximum distances across

optical fibres could be used to introduce a minimal QKD

system, B92, in 1992. But it utilizes two non-orthogonal

quantum states i.e., 0 for horizontal and 1 for polarized

right circle state. Bennett depicts a hands-on interfero-

metric realization using low-intensity coherent light pulses

using two non-orthogonal quantum states. In [16], Brassard

and Salvail realized the deficiency in signal transmission

using the protocol BBBSS where it can allow only a fixed

Fig. 1 Representation of a QKD

system with the required

subsystems for both classical

and private channel
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number of iterations. After the specified number of itera-

tions, there is no certainty that all errors in the frame have

been fixed. In [17], Liu et al. proposed a model where a

general protocol has been implemented for both informa-

tion reconciliation and advantage distillation. But due to

high transmission overhead, the applications are limited for

real-time QKD systems. In [18], Lodewyck et al. demon-

strated a coherent-state reverse-reconciliation system using

low-density parity-check (LDPC) codes over a 25 km span

of fiber. But it produces low throughput. In [13], Scarani

et al. discussed about the practical aspects of QKD as well

as summarize the used tools to improve the security of

data. In [19], Pedersen and Toyran exhibited the use of

CASCADE protocol over optical fiber. The result also

provides low throughput and low efficiency than LDPC

code. In [20], Kamran et al. presented KMB09 based QKD

system and its simulation based on the encrypted bits in

higher-order Gaussian beam spatial modes. In [21], Cao

et al. described the general network architecture and vari-

ous protocols used in QKD. The system requirement is

analysed in terms of flexibility, reliability, efficiency and

interoperability. In [22], Patel et al. compared the existing

techniques with the proposed model based on cost of

communication and security index. It also explained the

secure data transformation between user-device and device

to device using an efficient key protocol.

The major contributions of this work are summarized

in the following.

1. A binary sequence is transmitted from Alice to Bob

using linear and circular polarization of photons. The

sequence is delivered by encoding 1 s and 0 s in the

polarization of photons through FSO channel at various

atmospheric turbulence condition.

2. An error reconciliation protocol is used to transmit the

sequence and generation of secret key using privacy

amplification method.

3. The number of errors remaining in the transmitted

sequence, percentage of original sequence lost per

number of iterations is calculated.

The rest of the paper is as follows: concept of the rec-

onciliation process and privacy amplification is discussed

in Sect. 2. Here, the use of CASCADE as an error recon-

ciliation protocol is explained along with the initial two

iterations of the reconciliation process. Section 3 describes

the proposed method for the QKD system using simulation

tools such as MATLAB and Opti system. The simulation

results are analyzed in Sect. 4 and concluded in Sect. 5.

2 Proposed method

In the QKD process, the initial objective of Alice and Bob

is to form a secret key of n bits. Hence, an N number of

quantum signals are transmitted through a quantum chan-

nel and then communicate using a classical channel. Opti

system is generally used as an optical simulator to design

Fig. 2 Simulation Model for

Proposed QKD scheme OA:

Optical Attenuator; PA:

Polarization Analyzer; PM:

Polarization Meter

Fig. 3 A simplified Flow chart of the Proposed QKD system
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different optical networks. It can be used to simulate the

QKD system with different photonics components [23].

The schematic diagram of the proposed QKD system is

presented in Fig. 2, where two continuous-wave lasers with

the operating frequency of 193.1 THz released light beams

with an optical power of 10dBm into the channel. The

signal is passing through an optical attenuator with an

attenuation value of 0.1 dB to have a single photon. To

ensure the state of polarization (SOP) linear and circular

polarizers are used at the end of Alice. The ‘select’ com-

ponent can be used as a polarized beam splitter(PBS) to

select the incoming photons randomly. Here, the Free

space optic link acts as a quantum channel. In the real

world, when the signal transmission is performed by Eve

then it introduces attenuation and errors as compared to the

original signal [24]. The light beam propagating through

the channel encounters the fluctuation known as turbulence

[25]. Here, various atmospheric conditions are considered

which affect the signal propagation from Alice to Bob.

Two polarization analyzers (PA) are implemented to

observe the trajectory of SOP on the Poincare sphere for

secret key extraction at the transmitter and receiver side

respectively. The switch is used to produce randomness in

transferring the polarization of photons during transmission

and reception using rectilinear or diagonal basis detection

[26].

Fig. 4 Measurement of error remaining, number of bits removed a at iteration 15 and b at iteration 5

Table 1 Error Correction per iterations

Iterations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Corrected errors (in %) 94.5 91.9 90.8 90.3 90 89.9 89.2 88.4 86.8 83.6 77.1 51.4 0 0 0

Table 2 Comparison table

Ours Ref [30] Improvement

Iterations 1 2 3 4 1 2 3 4 1 2 3 4

Corrected errors (In %) 94.5 91.9 90.8 90.3 54.522 45.347 0.451 0.002 39.978 46.553 90.349 90.298
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A simulation is a significant way in the study of com-

munication networks. The simulation environment enables

researchers to create complex network topologies, as well

as a high level of control and repeatable studies, allowing

them to perform experiments and validate their findings

[27]. Hence, this proposed algorithm is programmed using

MATLAB and Optisystem-15 software. The procedure of

this proposed method is demonstrated as follows:

1. Alice sends a sequence of random photon to Bob

(Recipient).

Let n={n0, n1…nl} where n – number of quantum

states and record the sequence of the states.

2. Bob measures each state with probability of 50% after

getting the quantum states.

3. After transmission of N bits, Quantum transmission is

stopped and then error reconciliation protocol is

applied on both.

4. Then Alice and Bob compute error Percentage using

information reconciliation process. Let number of

iterations is represented as iter. It follows these steps:

a. Initialize iter, P

b. For i in (1: iter)

• Find num, the number of P-blocks

• For j in (1:num)

Conduct parity check on Alice and Bob’s respective

blocks. If they match, remove the same bit from each

block. Else, conduct a binary search to find an erro-

neous bit and remove it. For each iteration of the binary

search, remove one bit as well.

• Generate a random shuffling order, which is used to

shuffle Alice and Bob’s sequences.

• Double P

5. Both sides perform privacy amplification, to produce a

series of final secret key.

A simplified flow chart is represented in Fig. 3 which

describes the steps to follow the error correction using

CASCADE protocol.

Again, the feasibility of the proposed model is demon-

strated for a 1 km FSO channel at a various attenuation of

20 dB/km(haze), 30 dB/km (rain), and 40 dB/km (snow).

The input polarization has been given as both linear and

circular polarization to calculate the state of polarization

(SOP) S0.

3 Simulation results

The performance of an error correction can be computed

using different methods. The system parameters are esti-

mated error rate, change in error estimation, reconciliation

efficiency, bits exposed, percent bits exposed [28]. The

used base frame length n = 104 bits. In the proposed

method, the system efficiency is evaluated based on the

number of errors remaining in the transmitted sequence,

percentage of original sequence lost, number of bits

removed per number of iterations. The comparison

between the number of bits removed and the number of

errors remaining is shown in Fig. 4 per iteration.

From the graph in Fig. 4a, b the black line presents number

of bits removed and red line represents the remaining error.It

can be visualized from the above results that, with each iter-

ation, the number of remaining errors is reduced. In [29], the

author proposed the modification depend on the length of the

initial key and computed the error percentage. The use of the

forward error correction method has been illustrated by [30]

[31]. Here, the error correction per iteration using cascade

protocol is evaluated in Table 1.

In [30], the author considered the error correction

method using cascade protocol only for 4 iteration.But we

proposed the error correction for the iteration of 15 and

achieved the better result.Table 2 presents a comparative

analysis of our work relative to [30].

The Poincare sphere analyzes the effect of eve on the

signal transmission. On this sphere, each point represents a

specific SOP. The SOP on the North pole represents the

R-SOP and the South pole the L-SOP, while the equator

line represents various linear SOPs such as H, V, D, and A

[32]. The evolution of SOP and its corresponding param-

eter S0 concerning the FSO link is observed in Fig. 5. Here,

the state of circular and linear polarizations is located at the

poles and on the equator, respectively.

In Fig. 5, the parameter S0 calculated by considering the

haze condition with attenuation of 20 dB/km. But the

Fig. 5 Poincare Sphere at FSO link distance of 1 km
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output is influenced by outdoor features such as attenua-

tion, temperature variation, scattering [33]. The designed

model provides stokes parameter value of 9.689 dBm,

9.499 dBm, and 8.921 dBm at haze, rain, and snow con-

dition. It is observed that the SOP varied in different

elliptical-polarized states as per the atmospheric turbulence

condition. As the attenuation value increases, the value of

stokes parameter reduces.

In addition, the frequency spectrum at the transmission

side and receiver side are illustrated in Fig. 6 at various

attenuation levels. A spectrum analyzer is a precision

measuring tool that shows the power dispersion of a light

source over a specific wavelength value. On the vertical

scale, it shows power (dBm), and on the horizontal scale, it

shows frequency (THz) [34]. The spectral components are

derived at the center frequency of 193.1 THz. Because of

the versatility of various spectral components, any spectral

chip can be used as the center wavelength for modulating

the user data stream [35]. The security of user information

in conventional optical networks is enhanced because of

this property of the optical spectrum.

Figure 6a, c, e represent the signal power is the same at

transmission side that is 9.9 dBm. However, the spectral

components as in Fig. 6b, d, f shows the decrease in signal

power after the signal are attenuated by 20 dB/km, 30 dB/

km, and 40 dB/km. It can be envisioned that the spectrum

at the transmission and received side is highly correlated at

20 dB/km (Haze). However, with the increase in atmo-

spheric turbulence the signal power reduces.

4 Conclusion

In this work, we have showed a quantum key distribution

model using CASCADE protocol under the FSO channel.

The system performance is analysed by evaluating the

percentage of error correction in the transmitted signal,

frequency spectra between sender and recipient. However,

CASCADE is a standard for the error reconciliation phase

in maximum QKD system but due to large binary search

method, the efficiency can be further improved using

LDPC and Winnow protocols. The capability of the net-

work can be improved by reducing the information leakage

and having low interaction between two parties. In future

work, the improvements to the proposed idea can be

implemented using Multi–Input–Multi–Output (MIMO)

and Wavelength Division Multiplexing (WDM).
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