
An automatic unsupervised complex event processing rules generation
architecture for real-time IoT attacks detection

José Roldán-Gómez1 • Jesús Martinez del Rincon2 • Juan Boubeta-Puig3 • José Luis Martı́nez1

Accepted: 13 December 2022
� The Author(s) 2023, corrected publication 2023

Abstract
In recent years, the Internet of Things (IoT) has grown rapidly, as has the number of attacks against it. Certain limitations

of the paradigm, such as reduced processing capacity and limited main and secondary memory, make it necessary to

develop new methods for detecting attacks in real time as it is difficulty to adapt as has the techniques used in other

paradigms. In this paper, we propose an architecture capable of generating complex event processing (CEP) rules for real-

time attack detection in an automatic and completely unsupervised manner. To this end, CEP technology, which makes it

possible to analyze and correlate a large amount of data in real time and can be deployed in IoT environments, is integrated

with principal component analysis (PCA), Gaussian mixture models (GMM) and the Mahalanobis distance. This archi-

tecture has been tested in two different experiments that simulate real attack scenarios in an IoT network. The results show

that the rules generated achieved an F1 score of .9890 in detecting six different IoT attacks in real time.

Keywords Attack detection � Cybersecurity � Internet of things � Complex event processing � Machine learning

1 Introduction

The Internet of Everything (IoE) has grown rapidly in the

last decade and it seems highly unlikely that this growth

will stop or slow down any time soon, due to the obvious

potential offered by this new paradigm. Proof of this is the

increasing number of interactions with certain applications

designed for this paradigm through devices such as

smartphones or wearables. IoE can be considered an

extension of the Internet of Things (IoT) [1]. While the two

key elements of IoT are things and networks, in IoE there

are five key concepts: things, networks, people, data and

processes [2]. IoT and IoE have proved useful in a myriad

of contexts and applications, such as healthcare applica-

tions, home automation and resource management, among

many others more [3–6].

The fast growth of IoE and IoT is positive for the

development of many applications, but, this growth also

means facing a number of challenges in different

domains [7], such as the heterogeneity of manufacturers

and protocols, ubiquitous computing and a dependence on

batteries in many cases. In this paper we focus on the

cybersecurity of IoT systems, specifically on the detection

of network attacks in IoT environments. As IoT is a subset

of IoE, the ability to detect attacks in real time in IoT

environments allows us to defend both IoT environments

and improve the defenses of IoE environments.

It is essential to understand that solutions from other

paradigms cannot always be directly applied in IoT envi-

ronments, mainly due to the limitations of IoT devices.

& José Roldán-Gómez

jose.roldan@uclm.es

Jesús Martinez del Rincon

j.martinez-del-rincon@qub.ac.uk

Juan Boubeta-Puig

juan.boubeta@uca.es

José Luis Martı́nez

JoseLuis.Martinez@uclm.es

1 Albacete Research Institute of Informatics (I3A), University

of Castilla-La Mancha, Campus Universitario s/n,

02071 Albacete, Spain

2 Centre for Secure Information Technologies (CSIT), Queen’s

University Belfast, Belfast BT3 9DT, UK

3 UCASE Software Engineering Research Group, Department

of Computer Science and Engineering, University of Cadiz,

Avda. de la Universidad de Cadiz 10,

11519 Puerto Real, Cadiz, Spain

123

Wireless Networks
https://doi.org/10.1007/s11276-022-03219-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-5787-1294
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-022-03219-y&domain=pdf
https://doi.org/10.1007/s11276-022-03219-y

These limitations include: low computational capacity,

limited bandwidth, low-cost sensors, and limited memory

and battery capacity. If we add to this the increase in the

use of this type of devices [8, 9], which has led to an

increase in the number of cybercriminals who focus on this

paradigm, it is understandable that researchers have had to

adapt or design new solutions in different areas of security,

such as cryptography [10] or reliability models [11].

Within the different areas of IoT cybersecurity, this work

focuses on real-time IoT attack detection because the early

detection of an attack can be vital in protecting the system.

This is important to improve data protection in both IoT

and IoE environments.

To detect network attacks in real time within IoT

environments we need to meet two non-negotiable

requirements. The first is that the system can be deployed

in IoT environments with the limitations mentioned above,

and the second is that the system must be able to process a

large amount of data, thus allowing the system to be

scalable and to work in networks of different sizes. Com-

plex Event Processing (CEP) [12] is a technology that

perfectly meets these requirements as it allows a large

amount of data to be collected in the form of simple events.

By means of rules defined by an expert, situations of

interest can be extracted from these simple events, thus

forming complex events. This functionality is ideal, for

example, for detecting network attacks in real time. To this

end, network packets are defined as simple events and the

detected attacks are the resulting complex events. The

successful deployment of CEP engines in IoT environ-

ments has been widely demonstrated [13–16]. Although

CEP is very advantageous for real-time attack detection, it

has one limitation, namely the need for a domain expert

who is able to define the rules that must be followed to

carry out such detection.

This work focuses on designing and implementing an

architecture capable of generating CEP rules automatically,

and without supervision, from historical data in order to

detect and classify network attacks without the need for a

domain expert. We apply unsupervised dimensionality

reduction and clustering techniques to model normality

using rules, and then apply anomalous data detection

concepts to detect attacks as deviations from normality. In

this way, effective and efficient rules can be generated

without the need for labeled data in training.

To evaluate this proposal, a baseline scenario is

deployed on MQTT and subjected to six different attacks.

By using these attacks, we perform two different experi-

ments based on evolving scenarios in which attacks are

added iteratively. In the first experiment a new attack is

carried out for the first time in each iteration, and if it is

detected, it is then used to retrain and improve the model to

be tested in the next iteration. In this way we can observe

how the system can detect anomalies and generate rules to

detect them by adding new families. In the second exper-

iment the attacks are distributed uniformly over the itera-

tions, so that in each iteration both new attacks and new

packets of already known attacks appear. This experiment

is useful to check how existing rules evolve while gener-

ating new attack families in the same iteration.

The main contributions of this paper are the following:

• The integration of PCA with GMM and the Maha-

lanobis distance for the first time in a CEP engine,

which allows us to generate CEP rules in an unsuper-

vised manner.

• The generated CEP rules allow the CEP engine to

detect attacks in IoT environments in real time.

• The use of dynamic tables makes it possible to generate

new rules very easily without the need to modify the

CEP application in real time.

• Our proposed framework is able, from an initial state in

which it has only been exposed to normal traffic, to

detect unseen attacks as anomalies and progressively

and incrementally incorporate them in the rule set.

• The architecture has been successfully evaluated using

an MQTT network use case using two different

experimental scenarios, achieving an average F1 score

[.9890%.

The remainder of this article is structured as follows.

Section 2 describes the concepts necessary to understand

the whole article, and Sect. 3 discusses related works, that

is to say those that focus on generating CEP rules auto-

matically. Then, Sect. 4 describes the design and imple-

mentation of the proposal, and the results are described and

discussed in Sect. 5. Lastly, the conclusions and future

work are presented in Sect. 6.

2 Background

This section introduces the key concepts of this article,

namely MQTT (Message Queue Telemetry Transport) and

CEP.

2.1 MQTT protocol

MQTT is a protocol that operates at the application layer

and is supported by TCP/IP. It is oriented to network

communication through a publisher/subscriber scheme us-

ing topics. In this way, devices (clients) that require

information subscribe to the corresponding topic. The cli-

ents that generate this information publish in that topic.

There is a central node called the broker that is in charge of

orchestrating the behavior of the network, receiving the

packets and forwarding them to the corresponding nodes.

Wireless Networks

123

This protocol is especially useful in IoT networks because

it is particularly lightweight, which has made it very pop-

ular within the IoT paradigm [17].

Figure 1 shows the diagram of an MQTT network with

3 clients and 3 topics. Each shape represents a different

topic, and in this way we can observe how the messages of

these topics move. We can also see how the clients sub-

scribe to the topics they need and receive the information

associated with them. This information is produced or

collected by other MQTT clients which are in charge of

publishing it in that topic.

2.2 Complex event processing

CEP is a technology whose aim is to detect situations of

interest by collecting and correlating events [18]. To

achieve this, as a general rule, a domain expert defines CEP

rules that allow the checking of specific situations in the

event streams. Thus, when a rule is fulfilled, a complex

event is generated that identifies a situation of interest.

More specifically, a CEP engine is a specific piece of

software used to perform this type of data processing in

real time. In our case, Siddhi CEP [19] is used.

The language used to define the rules in a CEP engine is

called the Event Processing Language (EPL). There are

many EPLs, and in our case SiddhiQL is the one provided

by Siddhi CEP.

Simple events are the raw data received by the CEP

engine. In the case of real-time network attack detection,

these simple events will be the network packets. However,

this may change depending on the context and the problem

statement.

CEP rules are the patterns described and implemented

by a domain expert. These CEP rules describe the situa-

tions of interest to be identified, and are written in a par-

ticular EPL, which this may vary depending on the CEP

engine used. In this work Siddhi is used, and in our case

each CEP rule can identify a family of attacks.

Complex events identify a situation of interest and are

generated by CEP rules. Every time one of these rules is

fulfilled, a complex event is generated. In our case, a

complex event identifies that an attack of a particular

family has been detected.

Figure 2 shows the three main stages in CEP technol-

ogy. These stages are as follows:

• Event capture: This is the earliest stage and consists of

the reception of the simple events to be analyzed and

correlated by the CEP engine. These simple events vary

according to the context. In this article, as discussed

above, the simple events contain the network packet

information.

• Analysis: The second stage is responsible for correlat-

ing simple events, so that it is possible to detect when a

situation of interest arises. These situations of interest

are identified when the simple events meet the

MQTT Network Diagram

MQTT Broker

MQTT Client 1
(Subscribed topics)

Topic 1

Topic 2

MQTT Client 2
(Subscribed topics)

MQTT Client 3
(Subscribed topics)

Topic 1

Topic 3

Client publishing topics

Topic 1 / Client 2

Topic 2 / Client 2

Topic 3 / Client 1

Fig. 1 MQTT network

operation diagram

Wireless Networks

123

conditions defined in the CEP rules. When this occurs, a

complex event is generated that represents the detected

situation of interest.

• Response: The last stage consists of the actions to be

taken once a situation of interest is detected, for

example when an attack is detected, an email could be

sent to the security manager. This is a phase that can be

very heterogeneous depending on the context in which

CEP operates.

3 Related work

There are several relevant works that address the problem

of CEP rule generation from different perspectives. A

detailed study of the different approaches is necessary in

order to understand the intrinsic novelties of our approach.

For a better understanding of the different proposals, it

is useful to classify them, and in this paper we will do so

according to two criteria. The first criterion is the need to

have prior rules for the generation of new CEP rules. The

second criterion consists in the need to label the different

events in the training data for the approach to learn, i.e. in a

supervised or unsupervised way. Table 1 shows a com-

parison of all the papers analyzed in this section.

3.1 Supervised with prior rules

In this group we find proposals that require labeled training

datasets and prior rules and aim to update existing patterns.

This makes it possible to generate new rules that offer

better results than the original ones. A work that fits in this

category is the one proposed by Yunhao Sun et al. [20]. In

this work, a historical set of training data and CEP rules are

used. First, the authors apply a loss function, which is

obtained from the error of the previous rule measurements

with respect to the actual labelled results. A loss function

and an activation function are then used to filter out rules

that are considered bad on the basis of a manually defined

threshold. By using the remaining rules, a given set of

support vectors is determined in order to build a coverage

region for each class. Finally, updated rules are created by

the projection of a regional boundary. This work is inter-

esting despite addressing the problem of updating rather

than generating new rules.

A different approach in this category is found in the

work proposed by O-Joun-Lee and Jai E. Jung [21]. The

authors propose the use of a history of rules defined by

domain experts. Subsequently, by clustering the sequences

that generate the simple events, the simple events and their

relationships necessary to generate a complex event are

determined. Finally, the rule is generated by means of a

Markov transition probability model. One drawback of this

approach is that it is highly dependent on the decision

history generated by the domain experts. Furthermore, it is

not possible to add new complex events if there is no data

history where this complex event appears.

In the work proposed by Nathan Tri Luong et al. [22],

CEP is used to preprocess the data, while Tensor Flow is

used to implement an additional component that performs

the training and classification of the different events. In this

type of approach, CEP rules only perform the processes

prior to training and classification. The limitation of this

architecture is that the bottleneck can be transferred to the

component in charge of performing the classifications. This

results in not taking full advantage of the capacity of CEP

engines to process a large amount of data.

3.2 Supervised without prior rules

In this group we find proposals that do not require prior

rules, but label complex events based on historical data.

One paper in this category is that of Bruns et al. [23],

which succeeds in adapting the bat algorithm to the CEP

rule search by structuring the different CEP operators,

attribute values and time windows in the form of a tree. In

this way the algorithm determines these values in the rule

they represent. The results they obtain average an F1 score

of.9923, and are achieved using an unusual algorithm in the

CEP Stages

Event capture

Simple events

Analysis

CEP Engine

CEP rules defined

CEP rule A CEP rule B

Response

A B

Complex events

Data sinks

Database

Email

Fig. 2 CEP stages diagram

Wireless Networks

123

CEP context. The only limitation of the proposal, in

addition to requiring labeling for training, is that it needs a

definition of the complex events as a function of the simple

events. This is not always easy without prior rules.

This is not the only proposal that employs tree diagrams

to generate CEP rules. Another work that uses these dia-

grams is that of Mohammad Mehdi Naseri et al. [24]. In

this paper the authors use the PART algorithm to generate

CEP rules automatically in a supervised manner, and the

CEP engine is deployed in a hospital to monitor different

events. Its main limitation is the same as all the works in

this category, namely that it needs a properly labeled

dataset to work.

There is also a proposal based on evolutionary algo-

rithms. The work presented by Jiayao Lv and Bihui Yu

[25] uses evolutionary algorithms to generate CEP rules. In

this case, the authors start from a history of simple events

and the simple events generated by them. From these data,

simple rules are generated which form part of the initial

population of the evolutionary algorithm. The limitation of

this work lies in the complexity of finding complex events

associated with simple events without prior rules, which is

not always possible.

Another work that manages to extract rules automati-

cally without prior rules is the one proposed by Roldán-

Gómez et al. [26]. In this case, the rules are constructed

from the prediction of the value of the most important

feature for a category. If the difference between the actual

value and the prediction exceeds a threshold, this simple

event does not correspond to a category. This proposal is

able to detect all attacks, although the main limitation of

this work is the difficulty that may exist in generating

certain rules based only on a key variable and an expected

value.

A natural evolution of the above-mentioned work is that

of Roldán-Gómez et al. [27]. In this work authors the

reduce the dimensions of individual events by using Prin-

cipal Component Analysis (PCA), thereby achieving two

goals. The first is to simply characterize the individual

events, and the second is to drastically improve the per-

formance of the CEP engine and the system network by

reducing the dimension of the individual events. From the

labels of the individual events, the averages of the reduced

events are calculated. The rule consists of a Euclidean

distance weighted by the weights of each component of the

reduced event. This difference is compared with the sum of

errors of each component weighted again with the weights

of each component and with the standard deviation of each

component. The results obtained from this study show an

average F1 score of.9878, in addition to a reduction in the

event size and the consequent improvement in the perfor-

mance of the network and the CEP engine. A small limi-

tation of this work is that it is a supervised way to calculate

the rule for each category.

3.3 Unsupervised with prior rules

This group is the least common as it requires unsupervised

training and the existence of rules capable of detecting

items of interest. However, we can find works such as that

of Ren et al. [14]. This one focuses on optimizing perfor-

mance in IoT environments, which is the main

Table 1 Comparison of the works analyzed

References Unsupervised Need for prior

rules

Metric Novelty / Highlight

[20] No Yes Accuracy=.90 Pre-filtering rules before training improves performance

[21] No Yes – Employ Clustering of simple event sequences

[22] No Yes – It uses CEP to perform data preprocessing

[23] No No F1 score=.99 It uses Bat algorithm to generate new rules

[24] No No Accuracy=.98 It uses PART algorithm to generate new rules

[25] No No Accuracy=.93 It uses Evolutionary algorithm to generate new rules

[26] No No F1 score=1 It compares the prediction of key features with their actual values

[27] No No F1 score=.99 PCA allows rules to be generated with high performance

[14] Yes Yes – Defined CEP rules and pretrained neural networks will generate efficient CEP

rules

[28] Yes No F1 score=.89 It uses GRU and Furia to generate CEP rules in an unsupervised manner

[29] Yes No Accuracy=.92 It use of reinforcement and active learning to mine and add new rules

[30] Yes No F1 score=.96 It uses LTSM and decision tree used to detect anomalies

This work Yes No F1 score=.98 PCA and GMM enable unsupervised generation of high-performance CEP

rules

Wireless Networks

123

differentiating factor with respect to other proposals. To

achieve this goal, a micro CEP engine and a model based

on Tensorflow Lite Micro with pre-trained neural networks

are used. These neural networks (either supervised or

unsupervised, such as autoencoders) can be updated to

adapt to the changing behavior of a real system. The main

difference of this proposal with respect to the others ana-

lyzed is that the output of these neural networks feeds the

CEP engine, which has manually defined rules. It may

seem that this proposal does not fall within the scope of

automatic CEP rule generation. However, it is possible to

generate simple rules that detect the output of neural net-

works. The main limitation of this proposal is that the CEP

rules are defined manually, unlike with our proposal, in

which they are generated automatically.

3.4 Unsupervised without prior rules

In this group we find proposals that do not require prior

rules or labels on the data. Some works mainly focus on

labeling simple events and then use known rule extraction

algorithms. The work by Simsek et al. [28] performs a

study using different classifiers to label simple events, and

uses the most common algorithms for rule extraction. Their

conclusions show that Gated Recurrent Unit (GRU) toge-

ther with the FURIA algorithm obtain the best results in

their experiments. The value of this work lies in the

comparison made with different algorithms. The funda-

mental disadvantages of this approach lie in the large

amount of data required for deep learning models and the

computational cost involved.

Another work has been proposed in [29] on the use of

reinforcement and active learning to mine and add new

rules that were previously unknown. This approach, how-

ever, require a human in the loop to confirm the adequacy

of the added patterns.

There are also works within this category that attempt to

generate CEP rules for unsupervised anomaly detection. As

an example, the work by Liu et al. [30] proposes the use of

LSTM neural networks with an attention mechanism to

detect anomalies based on the model, and this also allows

them to calculate a threshold for anomalies. Subsequently,

to generate the CEP rules, the authors use a decision tree

algorithm. The limitations of this work are that it focuses

exclusively on anomaly detection, and the use of neural

networks, with the consequences discussed above.

Our proposal would fall into this category. The novelty

is that we achieve an unsupervised method without the

need for prior rules while performing event dimension

reduction, and this improves the computational perfor-

mance. In addition, our proposal is able to work correctly

while training with few samples, and this is an advantage

over proposals based on deep learning. Finally, the

implementation used facilitates the creation and updating

of new rules in a changing system.

4 Proposed architecture

This section describes the architecture for recognizing real-

time IoT attack patterns. Figure 3 shows a graphical

scheme of the architecture. Our proposal focuses on the

automatic CEP rule generator, and the training data is

obtained from the IoT network. As discussed above these

packets are not labeled and feed the CEP rule generator.

The CEP rule generator is composed of four phases.

First, after preprocessing, comes the PCA phase, which is

responsible for generating the PCA model and reducing the

dimensionality of network traffic. Next comes the GMM

phase, which is in charge of performing the clustering

process in order to obtain the different families of packets.

Since it is necessary to establish a threshold for each family

to differentiate them from anomalous traffic and/or other

families, this is performed in the Threshold phase. Finally,

the Sending phase sends the rule parameters to the CEP

engine.

These phases are discussed in detail below.

4.1 Preprocessing

Before the first phase, it is necessary to preprocess the data

so that it can be consumed by the PCA model for training.

In our case we perform the following steps in the

preprocessing:

• Filling of empty fields. The existence of different

protocols results in certain characteristics that are not

present in all network packets. PCA does not support

these empty values, so it is necessary to fill them in. In

our case these fields are filled with value ‘‘-1’’. This is

because there are no negative values in the features, and

in this way we emphasize this empty feature.

• Categorization of non-numerical features. Non-numer-

ical features that are represented by text or another type

of label do not allow training a PCA model. To solve

this problem a one-hot encoding scheme is used. This

allows each category to be identified as a binary feature.

• Scaling of values. PCA is conditioned by the scales of

the features. This means that variables with very high

values have more weight in the model. To solve this

problem, we use a min-max scaler. This allows us to

equalize the scales of the different features.

Wireless Networks

123

4.2 PCA phase

This phase is responsible for generating (or updating if it is

not the first generation) the PCA model using the input

traffic. PCA is a statistical method whose objective is to

reduce the complexity of a sample space by reducing the

dimensions of that space. Thus, if we have an element x 2
R n represented by n variables, the objective is to find a

representation with m variables where m\\n. These new

variables are obtained by linear combinations of the orig-

inal ones. Each new variable is known as a component and

each component is linearly independent of the other com-

ponents. The goal of PCA is to maximize the amount of

information represented by each component. Thus, if an

element x 2 X in a given dataset X is composed of the

vector of variables x ¼ fx1; x2; :::; xng, the new variables of

the vector x0 ¼ fx01; x02; :::; x0mg with x0 2 X0 will have the

representation shown in Eq. 1:

X0 ¼ X �W ð1Þ

where W is an n-by-m matrix of weights whose columns

are the first m eigenvectors of XT � X, ordered according to

their eigenvalues. An advantage of this model is the ease of

converting an element from the original space to the

reduced one when we have the PCA model trained.

Each resulting component collects an amount of infor-

mation, with this amount being called the explained vari-

ance ratio rv. The first components always have a higher rv

than the last ones. In an ideal and perfectly linear scenario,

the sum of the explained variance ratios of all the com-

ponents could be 1. In practice we seek to approximate this

as closely as possible while keeping the dimension reduc-

tion as high as possible.

To implement our proposalwe use incremental PCA [31].

This version allow us to recalculate the model, i.e., the new

eigenvectors Wnþ1 if new data are added, using the existing

eigenvectors Wn with their corresponding eigenvalues and

covariance matrix of the current PCA model, plus the new

samplesXnþ1. In thisway it is not necessary to generate a new

model from scratch, and/or to store the previous samples Xn

in memory, if new training data arrives. Instead, it is possible

to obtain an estimate of the nþ 1 iteration using the eigen-

vectors and eigenvalues of n. Thismakes it possible to obtain

new PCA models incrementally from already trained PCA

models. The advantage of this is that we do not have to train

the PCAmodel from scratch in each iteration, thus achieving

a lighter training in new iterations.

Once the trained PCAmodel is obtained, it is sent to the IoT

network broker. This model is also used to reduce the input

traffic. We also extract the variance ratios explained in each

component, andweobtain thediagonalmatrix of them thatwill

Proposed architecture

Dynamic CEP rules generator

PCA Phase

Incremental PCA
training

Reduction with
PCA

GMM Phase

GMM training and
clustering

Extraction of means
and covariance matrix

Threshold Phase

Calculation of distances
from the means
and obtaining
covariances

Calculation of the
threshold for each

family

Sending Phase

Sending of CEP rules

Training Traffic

Normal traffic

Attack traffic

CEP rule

CEP rule Parameters

CEP Engine

CEP rules

IoT Network

MQTT clients

Client 1 Client 2

Client n-1 Client n

MQTT Broker

Attack Alerts

Alerts received

Reduced
Network traffic

Detected
attacks

CEP rules
parameter

CEP rule
parameters

PCA model

Network traffic Network traffic

New iteration

Fig. 3 Diagram of the proposed architecture to detect IoT attacks in real time

Wireless Networks

123

be further used for thresholding purposes in Sect. 4.4. This

reduction is necessary for the following stages.

4.3 GMM phase

Once we have reduced the dimensionality of the traffic,

Gaussian Mixture Models (GMM) are used to cluster the

traffic into different families.

GMM is a probabilistic model that assumes that for a

data set X there are K normal distributions representing all

C categories present in the data, within which all X ele-

ments are found. The goal of GMM is to find the best

combination of the parameters for the K normal distribu-

tions. In this way we can group the elements into K dif-

ferent families or groupings.

pðxiÞ ¼ RK
k¼1pðxijckÞpðckÞ ð2Þ

Equation 2 describes the probability of element xi 2 X as

the sum of composite probabilities it has of belonging to

each family, such that pðxiÞ ¼ 1. This means that GMM

assumes that all elements lie within these distributions, as

discussed above.

pðxiÞ ¼ RK
k¼1pkN ðxijlk;RkÞ ð3Þ

Eq. 3 represents the GMM model as a linear combination

of the K normal distributions, where pk is the mixing

coefficient for each distribution and provides an estimate

for each of the normal distributions.

The term N ðxjlk;RkÞ is called the mixture model com-

ponent, which models and describes each of the normal

distributions, where lk is the mean and Rk is the covariance.

The main advantage of GMM is that it allows some

flexibility in each category, so that 2 normal distributions

can be very different, and it does not have a bias for cir-

cular groups and works well even in certain non-linear

distributions [32].

In this case a variational version of the algorithm is

used [33], which allows us to infer an optimal number of

normal distributions. The objective of using this version is

not to have to indicate the number of K families a priori,

thus allowing the process to be completely unsupervised,

since we do not need to know a priori how many families

or groupings make up the normal traffic or how many

different types of attacks we may be exposed to.

In conclusion, GMMallows us to generate families without

the need to label the training data previously, where each

family is defined by its mean lk and covariance matrix Rk.

GMM has to be recalculated with training data from

previous iterations on the new PCA model [33]. This is

because each iteration modifies the PCA model, causing

the original distributions to be useless in the new model.

4.4 Threshold phase

At this stage, the threshold is calculated for each family

k using the Mahalanobis distance. The Mahalanobis dis-

tance is a distance function that takes into account the

covariance matrix in order to weight it [34]. The funda-

mental advantage of the Mahalanobis distance is that it

takes into account the scale differences that may exist

between the different variables and families as well as the

correlation that may exist between variables.

In this proposal we use the Mahalanbois distance to see

the difference of each element reduced by PCA with

respect to the categories previously obtained with GMM.

dðx; flk;RkgÞ ¼
ffi

x� lkð ÞTR�1
k x� lkð Þ

q

ð4Þ

Equation 4 describes how the difference between the ele-

ment x and the mean of a category lk is calculated. R�1

represents the inverse covariance matrix. Its inclusion in

the distance equation implies a weighting of such a dis-

tance function, so that families with smaller covariances

(more compact families) result in larger distances in rela-

tive terms with regard to more sparse families.

In our particular case, we apply the Mahalanobis distance

to the reduced elements resulting from PCA. To account for

the differences in the explained variance ratios of the dif-

ferent PCA components, we improve the distance function

by using the ratios as weights, as indicated in Eq. 5.

dðx; fl;RgÞ ¼
ffi

x� lð ÞTðR�1 � VEÞ x� lð Þ
q

Þ ð5Þ

In this way, our distance function will give more weight to

the components with a higher rv. The first step is to obtain

the VE matrix as the diagonal matrix with the explained

variance ratios of each component. Equation 6 shows how

the matrix that we use to weight the explained variance

ratios is obtained.

VE ¼ diagðrv1; rv2; :::; rvmÞ ð6Þ

By using Eq. 5, each element is compared with the mean of

each family. Once we have all the distances, we can cal-

culate the threshold for that family by using the farthest

element of the family with respect to the mean and the

closest non-family element with respect to the family

mean. With these distances we calculate the midpoint,

which defines the threshold for that category k.

dmax ¼ max fdðx; flk;RkgÞg; 8x 2 k ð7Þ

dmin ¼ min fdðx; flk;RkgÞg; 8x 62 k ð8Þ

Thk ¼ ðdmax � dminÞ=2 ð9Þ

Equations 7 and 8 define how to obtain the element farthest

from the mean of a family k and the closest one outside the

Wireless Networks

123

family k, respectively. With these elements, obtaining the

threshold is simple, as we can see in Eq. 9.

4.5 Sending phase

At this stage the rule parameters are sent to the CEP

engine. The parameters sent for each rule are the numerical

identifier of the rule, the iteration number, the covariance

matrix of the PCA model, the threshold for the specific rule

family and the mean of each component of that specific

family. The Siddhi code is sent the first time, but it is not

necessary to send it again in the following iterations. This

allows us to generate dynamic CEP rules, which is a very

useful novelty of our proposal.

Regarding the operation of dynamic CEP rules, when

the CEP rule generator generates new rules, it is not nec-

essary to generate a new Siddhi file, which is used to

generate an application in the Siddhi engine. Instead, it

makes use of dynamic tables containing the parameters of

the current rules. This reduces the network data transfer

when updating or generating new rules, and greatly facil-

itates the implementation, creation and updating.

Once in operation, the broker reduces the packets with

PCA and sends them to the CEP engine. With these

reduced packets, the distance of the same packet with

respect to the average of each family is calculated with

Eq. 5, and if this distance is less than the threshold of that

family, the packet is considered to belong to that family. If

a packet does not fall within the threshold of any family,

that packet is considered to be an anomaly.

The Siddhi application can be seen in Listing 1. There are 3

input streams, which can be identified with the directive

source. The first one, called ReducedEvent, is used to receive

the simple events previously reducedwith the PCAmodel. The

second, defined as ClearEvent, is used to clear the parameters

of a particular iteration. The third, named ThresholdParame-

ters, is used to add the parameters of a new iteration to the

parameter table. The MeanDiffEvent and Com-

putedMeanDiffEvent streams are intermediate streams used to

store the difference from themean and the difference from the

weighted mean, respectively. DetectedEvent stores the events

detected by the rules. The implementation of Eq. 5 is carried

out in the last three code blocks. Although they can be unified

in a single block, this would worsen their readability.

The great advantage of this implementation is that creating

or updating rules is simply a matter of updating the table be-

cause the structure is maintained. This, coupled with the

unsupervised operation of the proposal, offers a solution that

can be deployed without the need for a domain expert.

We can also observe that the CEP engine can request

new iterations from the rule generator. In our experiments

these new iterations are defined by the training datasets,

and this allows us to generate reproducible experiments. In

a real deployment, new iterations could be initiated when a

certain number of anomalies are obtained, or when a

specific time elapses. This will depend on the type of

network and applications Table 2.

Table 2 Features description table

Feature name Feature type Feature description

PacketLength Integer Determines the size in bytes of the network packet

Info Text type Provides information about the packet. This information varies depending on the protocol

SourceMac Text type Identifies the MAC address of the sending device

DestMac Text type identifies the MAC address of the receiving device

SourceIp Text type Identifies the IP address of the sending device

destIp Text type Identifies the IP address of the receiving device

tcpSourcePort Text type Identifies the TCP port of the sending device

tcpDestPort Text type Identifies the TCP port of the receiving device

udpSourcePort Text type Identifies the UDP port of the sending device

udpDestPort Text type Identifies the UDP port of the receiving device

tcpFlags Text type Identifies the TCP flags enabled on that packet

tcpWindowSize Integer Identifies the TCP window size in bytes

mqttFlags Text type Identifies the MQTT flags enabled on that packet

mqttMessage Text type Identifies the MQTT message on that packet

mqttTopic Text type Identifies the MQTT topic on that packet

mqttMessageLength Integer Identifies the MQTT message size in bytes

mqttFrameCount 0–1 Integer Identifies how many packets the original message has been fragmented into

Delay Float Identifies the milliseconds of separation that exist with respect to the reception of the previous packet

Wireless Networks

123

Wireless Networks

123

5 Experiments and results

This section describes the experiments performed, and the

results are analyzed and discussed.

The scenario we propose is an MQTT network with

three legitimate clients and a broker. The clients generate

numerical data and send it to the broker, and this allows us

to simulate a temperature sending scenario. To demonstrate

that our proposal can correctly detect, different attacks, the

following attacks were carried out:

• Subscription fuzzing: This attack consists of trying to

subscribe to different topics. This can be used when the

attacker has access to an MQTT system.

• Disconnection wave: This consists of spoofing the id of

the MQTT protocol and launching the disconnect

command. If it is not configured correctly, it is possible

to steal the id of the legitimate device and expel it from

the system. The goal of this attack is to disconnect all

the devices from the system.

• TCP syn scan: This is the classic scanner used to check

which TCP ports are open. The attacker starts with a

SYN packet, and if they receive a SYN/ACK, they

assume the port is open. If they receive an RST they

assume it is closed.

• UDP scan: This involves sending UDP packets to each

port to be scanned. If a UDP response is received, the

port is considered open, and if no response is received,

the position is open or filtered. A packet of type ICMP

port unreachable error means that the port is closed,

and any other type of ICMP error means that the port is

filtered.

• Xmas scan: This is a rather unusual scanner nowadays,

but we use it in the scenario because it is different from

the UDP and TCP SYN scanner. It involves sending a

packet to each TCP port with the FIN, PSH and URG

flags set to 1. If no response is received, the port is

considered open or filtered, and if an RST is received, it

is considered a closed port. If any ICMP packet is

received with unreachable error, it is considered a

filtered port.

• Telnet connection: This involves packets that try to

connect via Telnet with different users and passwords,

to simulate the first stage of Mirai. The idea is to test the

proposal in a very common scenario [35].

The training and testing datasets are generated by collecting

the normal packets and the attacks. The dataset is accessible

from the following repository https://data.mendeley.com/

datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-

11ec45124a44 [36]. The distribution of the dataset can be

seen in Table 3. The percentage of packets with which the

model is trained for each attack is inversely proportional to

that produced by such an attack, i.e. attacks that produce little

number package of packages are used in a bigger proportion

for training. This distribution has been chosen because it

allows enough packages for the model to learn new rules and

therefore evaluate the model’s ability to generate new rules

for detecting unknown attacks, while also detect them as

early as possible once a minimum number of samples have

been collected. If the experiments are successful, the

detector’s ability to generate rules with few attack samples

will also be demonstrated. Modifying the distributions of the

training datasets, a priori, should modify the generated CEP

rules, however in these experiments, where a realistic sce-

nario has been used, it has not been necessary to use addi-

tional techniques to augment the datasets or to balance them.

This leads us to check that the architecture is robust to these

details. Each event is considered a separate attack in our

experiments so that we can measure the effectiveness of the

CEP rules more accurately. This dataset has been used

because it contains MQTT attacks of different types. To the

best of our knowledge, there is no other public attack dataset

containing a large variety of attacks and in sufficient number

to allow incremental detection and addition of new rules to

the CEP engine. Moreover, subscription fuzzing attacks or

disconnection wave type attacks are not available in any

existing dataset.

Table 2 shows a description of the dataset features and

the data type that represents them.

Two different experimentation scenarios were gener-

ated. In both experiments, PCA models with m = 4 were

generated, which means that 4 components are used. To

Table 3 Distribution of the

dataset used
Traffic type Training packets/events Testing packets/events

Normal Traffic 7936 (50%) 7936 (50%)

Subscription Fuzzing 3277 (80%) 820 (20%)

Disconnection Wave 3000 (15%) 17000 (85%)

TCP Syn Scan 901 (90%) 101 (10%)

UDP Port Scan 530 (90%) 59 (10%)

Telnet 452 (90%) 51 (10%)

Xmas Scan 900 (90%) 100 (10%)

Wireless Networks

123

https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44
https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44
https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44

choose the number of components of the PCA model, we

rely on the first PCA model, which is generated with

nonmalicious traffic. This is the most realistic approach, as

in a real situation the attacks are not always available for

the deployment of the threat detection system. Thus, the

analysis is performed with the first model because it is the

one we know a priori.

Figure 4 shows the ratio of variance accumulated by the

different components of the first model and shows how a

value m=4 preserves most of the variance present in the

data. The graph shows how four components preserves

most of the information present in the data, and values of

m[4 contain negligible increments.

5.1 Experimental scenario 1: Detecting new
attacks

The first scenario seeks to demonstrate that the proposed

architecture is capable of detecting new attacks in an

unsupervised and incremental manner. The experiments in

this first scenario are performed in several iterations. In the

first iteration we only train with normal packets, since this

would be the usual case when the architecture is deployed

for the first time. However, note that it is possible for our

framework to carry out the first training with attack packets

without any problem. From the first iteration onwards, new

attacks are introduced in each iteration and the model is

retrained with the packets that have not been classified as

belonging to any of the existing GMM families (i.e., their

distance to all families is larger than the learned thresholds)

by any previous rule. Note also that the predictions made

by our system are used in the following iterations for

retraining and not the real groups, in order to preserve the

unsupervised setting and not to require annotated ground-

truth by human experts. This means that high misclassifi-

cation could potentially lead to contamination of the

existing family models or the creation of incorrect rules if

the performance of the system was poor. This is applicable

to both experiments.

An important detail to take into account is that the first

time an attack is detected, it will not be included in any

CEP rule because it is an anomaly. With the subsequent

training of the model with the new data, the new CEP rule

will be generated. Table 4 shows the input of the different

attacks in each iteration. Each row represents one type of

traffic and each column one iteration of the experiment.

The character X represents the testing dataset, and the

character A represents the training dataset, which is an

anomaly in that particular iteration.

The following conventional metrics are used to evaluate

the results of these experiments:

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6

oitar
ecnair av

den ialpxe
evi tal u

m uC

Number of components

Evolu�on of the cumula�ve explained variance ra�o by component

First PCA Model

Fig. 4 Evolution of the

cumulative explained variance

ratio by component

Table 4 Data input at each iteration in experiment 1

Iteration number

Traffic type 1 2 3 4 5 6 7

Normal traffic X X X X X X X

Subscription Fuzzing A X X X X X X

Disconnection Wave A X X X X X

TCP Syn Scan A X X X X

UDP Port Scan A X X X

Telnet A X X

Xmas Scan A X

Wireless Networks

123

• Precision ¼ TP
TPþFP

• Recall ¼ TP
TPþFN

• F1Score ¼ 2 � Precision�Recall
PrecisionþRecall

• MCC ¼ TP�TN�FP�FN
ffi

ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ
p

Where TP are the true positives, FP are the false positives,

FN are the false negatives and TN are the true negatives. In

the context of this work we will evaluate each CEP rule

independently, thus obtaining results for each of the CEP

rules, since we are interested in detecting if the attacks are

successful or not rather than classifying the type of attacks.

This means that a TP indicates that a packet belonging to

the rule’s category has been correctly identified by the rule.

A FP identifies a packet that has been detected by that rule,

but does not belong to the family of that rule, i.e. a false

positive. A TN indicates a packet that has not been detected

by the rule and does not belong to the category modeled by

that rule, i.e. it has been correctly classified. Finally, an FN

indicates a packet not detected by the rule, but which does

belong to the family modeled by the rule. This means that

the sum of TP and TN identifies the total hits of the CEP

rule, and the sum of FP and FN identifies its failures. In

this way, each rule can be treated as a binary classifier from

which we extract the confusion matrix, which makes it

easy to obtain the accuracy, recall, F1 score and MCC

metrics that allow us to understand the performance of

these classifiers from different perspectives Tables 5 and 6.

Thus, a high Recall score means that a CEP rule detects

many events that actually belong to that family, a high

Precision score means that that CEP rule does not detect

many false positives, and the F1 Score makes use of the

two scores in order to obtain a balanced metric between the

two.

In a security context where not detecting an attack can

have a very negative impact on the system, it is advisable

to maintain a very high recall value. However, if the pre-

cision is very low, the system will return many false pos-

itives. This complicates the task of the security managers,

who have to decide whether the positive is real later on.

Finally, Matthew’s correlation coefficient (MCC) is

applied [37]. It is particularly robust when dealing with

unbalanced datasets. This metric is bounded between -1

and 1, where 1 is a perfect classifier, 0 is a random

classifier and -1 is a classifier that classifies everything

wrong. MCC weights true positives and true negatives

equally, and also weights false positives and false negatives

equally. This allows the evaluation to be fair in categories

with more items and fewer items.

Table 7 shows the results of the first experiment sce-

nario. We can observe how the proposal behaves when new

attacks appear and how it converges to a system capable of

detecting and correctly classifying the packets of the dif-

ferent attacks. An important detail that we can verify in the

fifth iteration is that a single rule is generated to detect

UDP and TCP scans. This is because they present very

similar behavior and characterization. This unification of

the two attacks demonstrates the capacity of the rules

generated to classify attacks based on their behavior. An

important detail which highlights the system’s ability to

detect anomalies, is that the first time a new attack is

deployed, there are no CEP rules for that attack.

Good results are obtained for all the types of packets

handled. Among these good results, we can observe that

threat detection shows a slight drop in performance com-

pared with detection with specific CEP rules. We also note

that the disconnection wave attack obtains excellent

results. This may be due to the fact that it has very

homogeneous packets. The rest of the attacks produce very

similar results, with the exceptions that we have mentioned

above. In contrast, we find that the normal traffic, although

it also obtains very good results, is slightly worse than in

Table 5 Performance of CEP

rules with and without PCA
Attacks / CEP rules performance Average throughput no PCA Average throughput PCA

Subscription fuzzing 4575.40 7645,30

Discconection wave 4242.20 7747,50

TCP SYN scan 4142.60 7604,60

UDP scan 4157 7539,20

XMAS scan 4534.20 7831,10

Telnet (Mirai first stage simulation) 4574.80 7802,10

Table 6 Data input at each iteration in experiment 2

Iteration number

Traffic type 1 2 3 4 5 6 7 8 9

Normal traffic X1 X2 X3 X3 X3 X3 X3 X3 X3

Subscription fuzzing A X1 X2 X3 X3 X3 X3 X3 X3

Disconnection wave A X1 X2 X3 X3 X3 X3 X3

TCP syn scan A X1 X2 X3 X3 X3 X3

UDP port scan A X1 X2 X3 X3 X3

Telnet A X1 X2 X3 X3

Xmas scan A X1 X2 X3

Wireless Networks

123

the different attacks. This is due to the fact that within the

dataset of normal packets there are some very circum-

stantial packets, which means that there are few of them

and GMM does not assign them their own family. Good

results are also obtained with attacks for which there is

little representation in the model. For example, Xmas scan

has a training representation of 900 samples and obtains a

perfect result, with an MCC of 1. Something similar hap-

pens with other attacks such as Telnet, so we can conclude

that the model is able to find new attacks with few samples

of them, although if their behavior is similar it tends to

group them together, as it does with UDP scan and TCP

scan.

Table 5 shows the performance measured in throughput.

This metric allows us to know the number of events per

second that the CEP engine is able to process when

deploying rules with CEP and when doing so with classic

ones as well. As it can be seen, the improvement when

using the rules generated by our system is quite significant.

This is probably due to the reduction in the size of the

simple events, which also reduces the amount of infor-

mation sent over the network. On average, the size of a

simple event in a network without PCA is 418.7 bytes,

while with PCA with 4 components it is 75.3 bytes. This

evidences the performance improvement of our proposal,

which is a relevant factor when deploying it in IoT

environments.

Table 7 Results of the first experiment scenario

Iteration number Traffic type TP FP TN FN Precision Recall F1 score MCC

1 Normal traffic 7780 0 3277 156 1 .9893 .9900 .9674

1 Subscription fuzzing (Anomaly) 3277 156 7780 0 .9545 1 .9767 .9674

2 Normal traffic 7936 0 3820 0 1 1 1 1

2 Subscription fuzzing 819 0 10936 1 1 .9987 .9993 .9993

2 Disconnection wave (Anomaly) 3000 1 8755 0 .9996 1 .9998 .9998

3 Normal traffic 7780 0 18721 156 1 .9803 .9900 .9860

3 Subscription fuzzing 819 0 25837 1 1 .9987 .9993 .9994

3 Disconnection wave 16999 0 9657 1 1 .9999 .9999 .9999

3 TCP syn scan (Anomaly) 901 158 25598 0 .8508 1 .9193 .9195

4 Normal traffic 7780 0 18451 156 1 .9803 .9900 .9859

4 Subscription fuzzing 819 0 25567 1 1 .9987 .9993 .9993

4 Disconnection wave 16999 0 9387 1 1 .9999 .9999 .9999

4 TCP syn scan 101 1 26285 0 .9901 1 .9950 .9950

4 UDP port scan (Anomaly) 530 157 25700 0 .7714 1 .8709 .8756

5 Normal traffic 7780 0 18432 156 1 .9803 .9900 .9859

5 Subscription fuzzing 819 0 25548 1 1 .9987 .9993 .9993

5 Disconnection wave 16999 0 9368 1 1 .9999 .9999 .9999

5 TCP syn ? UDP port scan 160 2 26206 0 .9876 1 .9937 .9937

5 Telnet (Anomaly) 451 157 25759 1 .7417 .9977 .8509 .8576

6 Normal traffic 7780 0 18931 156 1 .9803 .9900 .9859

6 Subscription fuzzing 819 0 26047 1 1 .9987 .9993 .9993

6 Disconnection wave 16999 0 9867 1 1 .9999 .9999 .9999

6 TCP syn ? UDP port scan 160 1 26706 0 .9937 1 .9968 .9968

6 Telnet 51 0 26816 0 1 1 1 .9903

6 Xmas scan (Anomaly) 900 157 25810 0 .8514 1 .9197 .9199

7 Normal traffic 7780 0 18131 156 1 .9803 .9900 .9858

7 Subscription fuzzing 819 0 25247 1 1 .9987 .9993 .9993

7 Disconnection wave 16999 0 9067 1 1 .9999 .9999 .9999

7 TCP syn ? UDP port scan 160 1 25906 0 .9937 1 .9968 .9968

7 Telnet 51 0 26016 0 1 1 1 .9900

7 Xmas scan 100 0 25967 0 1 1 1 1

Wireless Networks

123

Table 8 Results of the second experiment scenario

Iteration number Traffic type TP FP TN FN Precision Recall F1 score MCC

1 Normal traffic (Test 1) 2593 0 3277 52 1 .9803 .9900 .9823

1 Subscription fuzzing (Training) 3277 52 2593 0 .9843 1 .9921 .9823

2 Normal traffic (Test 2) 2592 0 3273 53 1 .9799 .9898 .9820

2 Subscription fuzzing (Test 1) 273 0 5645 0 1 1 1 1

2 Disconnection wave (Training) 3000 53 2865 0 .9826 1 .9912 .9822

3 Normal traffic (Test 3) 2594 0 6840 51 1 .9807 .9902 .9866

3 Subscription fuzzing (Test 2) 273 0 9212 0 1 1 1 1

3 Disconnection wave (Test 1) 5665 0 3819 1 1 .9998 .9999 .9997

3 TCP SYN scan (Training) 901 52 8532 0 .9454 1 .9719 .9693

4 Normal traffic (Test 3) 2594 0 6502 51 1 .9807 .9902 .9864

4 Subscription fuzzing (Test 3) 273 0 8874 0 1 1 1 1

4 Disconnection wave (Test 2) 5665 0 3481 1 1 .9998 .9999 .9997

4 TCP SYN scan (Test 1) 33 0 9114 0 1 1 1 1

4 UDP port scan (Training) 530 52 8565 0 .9106 1 .9532 .9513

5 Normal traffic (Test 3) 2594 0 6443 51 1 .9807 .9902 .9864

5 Subscription fuzzing (Test 3) 273 0 8815 0 1 1 1 1

5 Disconnection wave (Test 3) 5665 0 3422 1 1 .9998 .9999 .9997

5 TCP SYN scan (Test 2)?UDP Port Scan (Test 1) 52 0 9036 0 1 1 1 1

5 Telnet (Training) 452 52 8584 0 .8968 1 .9456 .9441

6 Normal traffic (Test 3) 2594 0 6908 51 1 .9807 .9902 .9866

6 Subscription fuzzing (Test 3) 273 0 9280 0 1 1 1 1

6 Disconnection wave (Test 3) 5665 0 3887 1 1 .9998 .9999 .9997

6 TCP SYN scan (Test 3)?UDP Port Scan (Test 2) 52 0 9501 0 1 1 1 1

6 Telnet (Test 1) 17 0 9536 0 1 1 1 1

6 Xmas scan (Training) 900 52 8601 0 .9453 1 .9719 .9693

7 Normal traffic (Test 3) 2594 0 6041 51 1 .9807 .9902 .9861

7 Subscription fuzzing (Test 3) 273 0 8413 0 1 1 1 1

7 Disconnection wave (Test 3) 5665 0 3020 1 1 .9998 .9999 .9997

7 TCP SYN scan (Test 3)?UDP Port Scan (Test 3) 52 0 8634 0 1 1 1 1

7 Telnet (Test 2) 17 0 8669 0 1 1 1 1

7 Xmas scan (Test1) 33 0 8653 0 1 1 1 1

8 Normal traffic (Test 3) 2594 0 6041 51 1 .9807 .9902 .9861

8 Subscription fuzzing (Test 3) 273 0 8413 0 1 1 1 1

8 Disconnection wave (Test 3) 5665 0 3020 1 1 .9998 .9999 .9997

8 TCP SYN scan (Test 3)?UDP port scan (Test 3) 52 0 8634 0 1 1 1 1

8 Telnet (Test 3) 17 0 8669 0 1 1 1 1

8 Xmas scan (Test2) 33 0 8653 0 1 1 1 1

9 Normal traffic (Test 3) 2594 0 6041 51 1 .9807 .9902 .9861

9 Subscription fuzzing (Test 3) 273 0 8413 0 1 1 1 1

9 Disconnection wave (Test 3) 5665 0 3020 1 1 .9998 .9999 .9997

9 TCP SYN scan (Test 3)?UDP port scan (Test 3) 52 0 8634 0 1 1 1 1

9 Telnet (Test 3) 17 0 8669 0 1 1 1 1

9 Xmas scan (Test3) 33 0 8653 0 1 1 1 1

Wireless Networks

123

5.2 Experimental scenario 2: Detecting new
attacks and updating existing ones

It has been shown that rules generated in one iteration are

able to detect attacks of the same type in following itera-

tions. Furthermore, our system is able not only to retrain

when new events arrive, but also to incrementally improve

the model for existing events/attacks when more data is

available. This means that we can also update previous

rules to make them more accurate. This experiment tries to

check what happens when we keep iteratively feeding the

model with events, regardless of whether they are classified

in existing or new attacks. The objective is to check

whether there is an improvement when new events of each

family are introduced progressively.

In the second experiment the testing dataset X is divided

into 3 datasets: X1, X2 and X3. These datasets have the same

size, which is one third of the size of the testing dataset X,

as shown in Table 3. The training dataset A of each type of

traffic is similar to the previous experiment. Figure 6

shows the datasets entering each iteration. The training

dataset A of each type of traffic is detected as an anomaly,

as in experiment 1. The novelty of this scenario is that this

training now continues with the first and second testing

datasets (X1 and X2), which go on to train the model once

they have been detected by the CEP rules. The third testing

set of each dataset X3 never trains the model. This is done

in order to be able to correctly evaluate the CEP rules at

each iteration.

Table 8 shows the results of the second set of experi-

ments. An average F1 score of .9938 was obtained, even

slightly better than those obtained in the first scenario. The

first detection of each attack is the most improved in this

new scenario. These results seem to indicate that a training

reinforcement for previously learned rules can improve the

classification of CEP rules, while keeping the ability to add

unseen attacks to the rule base.

From the point of view of the different attacks, the

analysis is similar to the one we performed in scenario 1.

We still see that homogeneous attacks such as Discon-

nection Wave obtain very good results (F1 score =.9998).

The detection of other attacks does improve slightly, with

this being the case of Subscription Fuzzing and Telnet.

6 Conclusions and future work

This paper proposes an architecture focused on the IoT

paradigm that is capable of generating and updating CEP

rules, in an unsupervised manner, for detecting and clas-

sifying network IoT attacks in real time without the need of

a domain expert. The integration of CEP and PCA to

reduce packet size makes the architecture optimal for IoT

environments.

The rules generated by the proposed architecture work

very well, as the results obtained are very good (F1 score

of.9890). These rules are generated in an unsupervised

manner, which allows the system to constantly learn

without the need for an expert.

The architecture can successfully detect unseen attacks

and anomalies, and these detected anomalies can be used to

retrain the model, so that the new attacks are progressively

better defined. Thus, the architecture generates new CEP

rules automatically and incrementally.

All this demonstrates that our proposal can be success-

fully deployed in IoT environments with significant con-

straints and generate dynamic unsupervised CEP rules that

are able to detect network attacks in real time.

As future work, we plan to increase the number of

protocols and attacks in the experiments in order to test the

architecture’s performance in other contexts. In addition, it

would also be useful to create an ontology to classify new

unknown attacks in predetermined families. Finally, we

intend to check whether this architecture can be made

robust against model poisoning attacks and complex

attacks that may involve multiple steps.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. This work was supported by the

Spanish Ministry of Science and Innovation and the European Union

FEDER Funds [grant numbers FPU 17/02007 RTI2018–093608-B-

C33, RTI2018–098156-B-C52 and PID2021–122215NB-C33]. This

work was also supported by JCCM [grant numbers SB-PLY/17/

180501/000353 SBPLY/21/180501/000195], and the Research Plan

from the University of Cadiz and Grupo Energético de Puerto Real

S.A. under project GANGES [grant number IRTP03_UCA].

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Langley, D. J., van Doorn, J., Ng, I. C. L., Stieglitz, S., Lazovik,

A., & Boonstra, A. (2021). The internet of everything: Smart

things and their impact on business models. Journal of Business
Research, 122, 853–863. https://doi.org/10.1016/j.jbusres.2019.

12.035.

Wireless Networks

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jbusres.2019.12.035
https://doi.org/10.1016/j.jbusres.2019.12.035

2. Shilpa, A., Muneeswaran, V., Rathinam, D.D.K., Santhiya, G.A.,

& Sherin, J. (2019) Exploring the Benefits of Sensors in Internet

of Everything (IoE). In: 2019 5th International Conference on

Advanced Computing & Communication Systems (ICACCS),

pp. 510–514 . https://doi.org/10.1109/ICACCS.2019.8728530

3. AlZubi, A. A., Al-Maitah, M., & Alarifi, A. (2021). Cyber-attack

detection in healthcare using cyber-physical system and machine

learning techniques. Soft Computing, 25(18), 12319–12332.

https://doi.org/10.1007/s00500-021-05926-8.

4. Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet

of things applications: A systematic review. Computer Networks,
148, 241–261. https://doi.org/10.1016/j.comnet.2018.12.008.

5. Calvo, I., Merayo, M. G., & Núñez, M. (2019). A methodology to

analyze heart data using fuzzy automata. Journal of Intelligent &
Fuzzy Systems, 37(6), 7389–7399. https://doi.org/10.3233/JIFS-
179348.

6. Sajid, M., Harris, A., & Habib, S. (2021) Internet of Everything:

Applications, and Security Challenges. In: 2021 International

Conference on Innovative Computing (ICIC), pp. 1–9 . https://

doi.org/10.1109/ICIC53490.2021.9691507

7. Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D.

M., Sami, A. S., & Zebari, R. R. (2021). IoT and cloud computing

issues, challenges and opportunities: A review. Qubahan Aca-
demic Journal, 1(2), 1–7.

8. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., &

Markakis, E. K. (2020). A survey on the internet of things (IoT)

forensics: Challenges, approaches, and open issues. IEEE Com-
munications Surveys Tutorials, 22(2), 1191–1221. https://doi.org/
10.1109/COMST.2019.2962586.

9. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., &

Sikdar, B. (2019). A survey on IoT security: Application areas,

security threats, and solution architectures. IEEE Access, 7,
82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045.

10. Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021).

Security of internet of things based on cryptographic algorithms:

A survey. Wireless Networks, 27(2), 1515–1555. https://doi.org/
10.1007/s11276-020-02535-5.

11. Ferraz Junior, N., Silva, A., Guelfi, A., & Kofuji, S. T. (2019).

IoT6Sec: reliability model for internet of things security focused

on anomalous measurements identification with energy analysis.

Wireless Networks, 25(4), 1533–1556. https://doi.org/10.1007/

s11276-017-1610-2.

12. Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., & Boubeta-Puig, J.

(2020). A stream processing architecture for heterogeneous data

sources in the Internet of Things. Computer Standards & Inter-
faces, 70, 103426. https://doi.org/10.1016/j.csi.2020.103426.

13. Ortiz, G., Boubeta-Puig, J., Criado, J., Corral-Plaza, D., Garcia-

de-Prado, A., Medina-Bulo, I., & Iribarne, L. (2022). A

microservice architecture for real-time IoT data processing: A

reusable Web of things approach for smart ports. Computer
Standards & Interfaces, 81, 103604. https://doi.org/10.1016/j.csi.
2021.103604.

14. Ren, H., Anicic, D., & Runkler, T.A. (2021) The synergy of

complex event processing and tiny machine learning in industrial

IoT. In: Proceedings of the 15th ACM International Conference

on Distributed and Event-based Systems. DEBS ’21,

pp. 126–135. Association for Computing Machinery, New York,

NY, USA . https://doi.org/10.1145/3465480.3466928

15. Roldán-Gómez, J., Boubeta-Puig, J., Pachacama-Castillo, G.,

Ortiz, G., & Martı́nez, J. L. (2021). Detecting security attacks in

cyber-physical systems: A comparison of Mule and WSO2

intelligent IoT architectures. Peer Journal of Computer Science,
7, 787. https://doi.org/10.7717/peerj-cs.787.

16. Lima, M., Lima, R., Lins, F., & Bonfim, M. (2022). Beholder - A

CEP-based intrusion detection and prevention systems for IoT

environments. Computers and Security. https://doi.org/10.1016/j.
cose.2022.102824.

17. Soni, D., & Makwana, A. (2017) A survey on MQTT: A protocol

of internet of things(iot). In: 2021 IEEE International Conference

on Telecommunication Power Analysis and Computing Tech-

niques (ICTPACT - 2017)

18. Rosa-Bilbao, J., & Boubeta-Puig, J. (2022). Model-driven engi-

neering for complex event processing: A survey. The Journal of
Object Technology, 21(4), 1–13. https://doi.org/10.5381/jot.2022.
21.4.a10.

19. Query Guide - Siddhi. https://siddhi.io/en/v5.1/docs/query-guide/

Accessed 2022-07-05

20. Sun, Y., Li, G., & Ning, B. (2020) Automatic rule updating based

on machine learning in complex event processing. In: 2020 IEEE

40th International Conference on Distributed Computing Systems

(ICDCS), pp. 1338–1343. https://doi.org/10.1109/ICDCS47774.

2020.00176

21. Lee, O.-J., & Jung, J. E. (2017). Sequence clustering-based

automated rule generation for adaptive complex event processing.

Future Generation Computer Systems, 66, 100–109. https://doi.
org/10.1016/j.future.2016.02.011.

22. Luong, N.N.T., Milosevic, Z., Berry, A., & Rabhi, F. (2020) An

open architecture for complex event processing with machine

learning. In: 2020 IEEE 24th International Enterprise Distributed

Object Computing Conference (EDOC), pp. 51–56. https://doi.

org/10.1109/EDOC49727.2020.00016

23. Bruns, R., & Dunkel, J. (2022). Bat4CEP: A bat algorithm for

mining of complex event processing rules. Applied Intelligence,
52(13), 15143–15163. https://doi.org/10.1007/s10489-022-

03256-2.

24. Naseri, M.M., Tabibian, S., & Homayounvala, E. (2021) Intelli-

gent Rule Extraction in Complex Event Processing Platform for

Health Monitoring Systems. In: 2021 11th International Confer-

ence on Computer Engineering and Knowledge (ICCKE),

pp. 163–168. https://doi.org/10.1109/ICCKE54056.2021.

9721525

25. Lv, J., Yu, B., & Sun, H. (2022) CEP Rule Extraction Framework

Based on Evolutionary Algorithm. In: 2022 11th International

Conference of Information and Communication Technology

(ICTech), pp. 245–249. https://doi.org/10.1109/ICTech55460.

2022.00056

26. Roldán, J., Boubeta-Puig, J., Luis Martı́nez, J., & Ortiz, G.

(2020). Integrating complex event processing and machine

learning: An intelligent architecture for detecting IoT security

attacks. Expert Systems with Applications, 149, 113251. https://
doi.org/10.1016/j.eswa.2020.113251.

27. Roldán-Gómez, J., Boubeta-Puig, J., Castelo-Gómez, J.M., Car-

rillo-Mondéjar, J., & Martı́nez, J.L. (2022) Attack Pattern

Recognition in the Internet of Things using Complex Event

Processing and Machine Learning. In: 2021 IEEE International

Conference on Systems, Man, and Cybernetics (SMC),

pp. 1919–1926. https://doi.org/10.1109/SMC52423.2021.

9658711

28. Simsek, M. U., Yildirim Okay, F., & Ozdemir, S. (2021). A deep

learning-based CEP rule extraction framework for IoT data. The
Journal of Supercomputing, 77(8), 8563–8592. https://doi.org/10.
1007/s11227-020-03603-5.

29. Shapira, G., & Schuster, A. (2022) Unsupervised Frequent Pat-

tern Mining for CEP. arXiv. https://doi.org/10.48550/arXiv.2207.

14017

30. Liu, Y., Yu, W., Gao, C., & Chen, M. (2022). An Auto-extraction

framework for CEP rules based on the two-layer LSTM attention

mechanism: A case study on city air pollution forecasting.

Energies, 15(16), 5892. https://doi.org/10.3390/en15165892.
31. Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incre-

mental learning for robust visual tracking. International Journal

Wireless Networks

123

https://doi.org/10.1109/ICACCS.2019.8728530
https://doi.org/10.1007/s00500-021-05926-8
https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/10.3233/JIFS-179348
https://doi.org/10.3233/JIFS-179348
https://doi.org/10.1109/ICIC53490.2021.9691507
https://doi.org/10.1109/ICIC53490.2021.9691507
https://doi.org/10.1109/COMST.2019.2962586
https://doi.org/10.1109/COMST.2019.2962586
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1007/s11276-020-02535-5
https://doi.org/10.1007/s11276-020-02535-5
https://doi.org/10.1007/s11276-017-1610-2
https://doi.org/10.1007/s11276-017-1610-2
https://doi.org/10.1016/j.csi.2020.103426
https://doi.org/10.1016/j.csi.2021.103604
https://doi.org/10.1016/j.csi.2021.103604
https://doi.org/10.1145/3465480.3466928
https://doi.org/10.7717/peerj-cs.787
https://doi.org/10.1016/j.cose.2022.102824
https://doi.org/10.1016/j.cose.2022.102824
https://doi.org/10.5381/jot.2022.21.4.a10
https://doi.org/10.5381/jot.2022.21.4.a10
https://siddhi.io/en/v5.1/docs/query-guide/
https://doi.org/10.1109/ICDCS47774.2020.00176
https://doi.org/10.1109/ICDCS47774.2020.00176
https://doi.org/10.1016/j.future.2016.02.011
https://doi.org/10.1016/j.future.2016.02.011
https://doi.org/10.1109/EDOC49727.2020.00016
https://doi.org/10.1109/EDOC49727.2020.00016
https://doi.org/10.1007/s10489-022-03256-2
https://doi.org/10.1007/s10489-022-03256-2
https://doi.org/10.1109/ICCKE54056.2021.9721525
https://doi.org/10.1109/ICCKE54056.2021.9721525
https://doi.org/10.1109/ICTech55460.2022.00056
https://doi.org/10.1109/ICTech55460.2022.00056
https://doi.org/10.1016/j.eswa.2020.113251
https://doi.org/10.1016/j.eswa.2020.113251
https://doi.org/10.1109/SMC52423.2021.9658711
https://doi.org/10.1109/SMC52423.2021.9658711
https://doi.org/10.1007/s11227-020-03603-5
https://doi.org/10.1007/s11227-020-03603-5
https://doi.org/10.48550/arXiv.2207.14017
https://doi.org/10.48550/arXiv.2207.14017
https://doi.org/10.3390/en15165892

of Computer Vision, 77(1), 125–141. https://doi.org/10.1007/

s11263-007-0075-7.

32. Patel, E., & Kushwaha, D. S. (2020). Clustering cloud workloads:

K-means vs Gaussian mixture model. Procedia Computer Sci-
ence, 171, 158–167. https://doi.org/10.1016/j.procs.2020.04.017.

33. Blei, D. M., & Jordan, M. I. (2006). Variational inference for

Dirichlet process mixtures. Bayesian Analysis, 1(1), 121–143.

https://doi.org/10.1214/06-BA104.

34. De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L.

(2000). The Mahalanobis distance. Chemometrics and Intelligent
Laboratory Systems, 50(1), 1–18. https://doi.org/10.1016/S0169-
7439(99)00047-7.

35. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein,

E., Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., &

Kallitsis, M., et al. (2017) Understanding the Mirai botnet. In:

26th USENIX Security Symposium (USENIX Security 17),

pp. 1093–1110

36. Roldán-Gómez, J. (2022) Dataset for an automatic unsupervised

complex event processing rules generation architecture for real-

time iot attacks detection. Mendeley data. https://data.mendeley.

com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-

11ec45124a44. https://doi.org/10.17632/pzhm3jnw6w.1

37. Chicco, D., & Jurman, G. (2020). The advantages of the Mat-

thews correlation coefficient (MCC) over F1 score and accuracy

in binary classification evaluation. BMC Genomics, 21, 6. https://
doi.org/10.1186/s12864-019-6413-7.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

José Roldán-Gómez obtained a

degree in computer engineering

from the University of Castilla-

La Mancha in 2017, obtained a

university master’s degree in

computer engineering from the

University of Castilla-La Man-

cha in 2018, and is currently a

doctoral candidate at the

University of Castilla-La Man-

cha, he is also an interim pro-

fessor at the University of

Oviedo. His main interests are

artificial intelligence applied to

threat detection in IoT environ-

ments and automatic rule generation in CEP engines.

Jesus Martinez del Rincon is

presently a Senior Lecturer in

the School of Electronics,

Electrical Engineering and

Computer Science at the

Queen’s University of Belfast.

He received a BSc in Telecom-

munication Engineering in 2003

and was awarded a PhD in

Computer Vision in 2008 from

the University of Zaragoza for

his work into the development

of tracking algorithms for video

surveillance and human motion

analysis. He also worked as

DIRC Research Fellow at Kingston from 2009 to 2012, leading

research on human pose estimation

Juan Boubeta-Puig received the

Ph.D. degree in computer sci-

ence and engineering from the

University of Cadiz (UCA),

Cádiz, Spain, in 2014. He is an

Associate Professor with the

Department of Computer Sci-

ence and Engineering, UCA.

His research interests include

real-time big data analytics

through complex event pro-

cessing, event-driven service-

oriented architecture, Internet of

things, blockchain and model-

driven development of

advanced user interfaces, and their application to smart cities,

industry 4.0, e-health, and cybersecurity. Dr. Boubeta-Puig was

honored with the Extraordinary Ph.D. Award from UCA and the Best

Ph.D. Thesis Award from the Spanish Society of Software Engi-

neering and Software Development Technologies.

Jose Luis Martiınez received his

M.Sc. and Ph.D. degrees in

Computer Science and Engi-

neering from the University of

Castilla-La Mancha (Spain) in

2007 and 2009, respectively. In

2005, he joined the Department

of Computer Engineering at the

University of Castilla-La Man-

cha, where he was a researcher

in the Computer Architecture

and Technology group at the

Albacete Research Institute of

Informatics (I3A). After com-

pleting his Ph.D, in 2010, he

joined the department of Computer Architecture at the Complutense

University in Madrid, where he was an assistant lecturer. In 2011, he

rejoined the Department of Computer Engineering of the University

of Castilla-La Mancha, where he is currently full professor. His

research interests include topics related to cybersecurity such as

threats detection and classification techniques, with a particular focus

on IoT. . He has also been a visiting researcher at the Florida Atlantic

University, Boca Raton (USA), and the Centre for Communication

System Research (CCSR), at the University of Surrey, Guildford

(UK). He has over 110 publications in international refereed journals

and conference proceedings.

Wireless Networks

123

https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1016/j.procs.2020.04.017
https://doi.org/10.1214/06-BA104
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1016/S0169-7439(99)00047-7
https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44
https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44
https://data.mendeley.com/datasets/pzhm3jnw6w/draft?a=1565272f-bc8b-4eac-a566-11ec45124a44
https://doi.org/10.17632/pzhm3jnw6w.1
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7

	An automatic unsupervised complex event processing rules generation architecture for real-time IoT attacks detection
	Abstract
	Introduction
	Background
	MQTT protocol
	Complex event processing

	Related work
	Supervised with prior rules
	Supervised without prior rules
	Unsupervised with prior rules
	Unsupervised without prior rules

	Proposed architecture
	Preprocessing
	PCA phase
	GMM phase
	Threshold phase
	Sending phase

	Experiments and results
	Experimental scenario 1: Detecting new attacks
	Experimental scenario 2: Detecting new attacks and updating existing ones

	Conclusions and future work
	Open Access
	References

