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Abstract
In order to deal with the difficulty of spectrum sensing in cognitive satellite wireless networks, a large-scale cognitive

network spectrum sensing algorithm based on big data analysis theory is studied, and a new algorithm using mean

exponential eigenvalue is proposed. This new approach fully uses all the eigenvalues in sample covariance matrix of the

sensing results to make the decision, which can effectively improve the detection performance without obtaining the prior

information from licensed users. Through simulation, the performance of various large scale cognitive radio spectrum

sensing algorithms based on big data analysis theory is compared, and the influence of satellite to ground channel

conditions and the number of sensing nodes on the performance of the algorithm is discussed.

Keywords Big data theory � Dynamic spectrum access � Satellite communication network � Spectrum sensing

1 Introduction

The development of satellite communication technology

makes it play an important role in satellite TV broadcast-

ing, Internet, distance education, military applications and

mobile communications. Satellite has become an indis-

pensable way for realizing seamless global personal com-

munication and high-speed Internet in the air because of its

long distance and not being easily affected by time, region,

and airspace [1]. As business demands increase, frequency

resources become more and more precious. However, the

unreasonable allocation and low utilization rate of spec-

trum resources in the satellite communication system have

further caused the problem of spectrum shortage. At pre-

sent, there are many ways to improve the utilization of unit

spectrum resources, such as using multiple carrier fre-

quency multiplexing or multi-antenna transmission tech-

nology [2]. But the starting point of this kind of technology

is fixed spectrum allocation strategy, which cannot

fundamentally solve the unbalanced spectrum allocation

[3]. In order to fundamentally solve this contradiction and

improve the utilization of spectrum resources, people

consider applying cognitive radio theory to satellite com-

munication system, and then put forward the concept of

satellite cognitive radio network [4].

In recent years, many scholars have conducted extensive

research on the application scenarios, network architecture

and key technologies of satellite cognitive wireless net-

work. Traditional fast spectrum sensing algorithms, such as

energy detection algorithm [5], cannot provide good

sensing performance under such low SNR conditions.

Other algorithms with good detection performance, such as

cyclic stationary feature detection algorithm [6], have high

complexity and long detection time. These algorithms are

mainly applicable to a single sensor node, and are not

applicable to scenarios where multiple sensor nodes are

jointly detected. In 2013, European scientists launched the

‘‘Cognitive Radio for Satellite Communications’’ (CoR-

aSat) project, which aims to research, develop and build

cognitive radio technology that can be applied to satellite

communication systems [7]. Reference [8] analyzed the

specific application scenarios, operating frequency bands

and challenges of the satellite cognitive wireless network in

the CoRaSat project. Reference [9] comprehensively ana-

lyzes the key technologies of satellite cognitive wireless
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network, including spectrum sensing, interleaving and

database technology, and matches the existing satellite

multibeam pattern with the actual scene of European map

to analyze the feasibility of satellite cognitive wireless

network. The Institute of Microsystems, Chinese Academy

of Sciences has studied the feasibility of applying cognitive

radio technology to satellite communication system. The

results show that cognitive radio technology can solve low

spectrum utilization and low anti-interference ability.

Reference [10] analyzes the application prospects of cog-

nitive radio technologies in low earth orbit satellite com-

munication systems. Although many scholars have done

some theoretical research on related technologies, there is

still no perfect application scheme for cognitive radio

technology in satellite communication system.

Considering the particularity of satellite communication

channel, the traditional single sensing node cognitive radio

spectrum sensing algorithm is easily to be interfered,

resulting in the performance degradation [11]. Therefore,

the centralized multi-node spectrum sensing method is

adopted to improve the spectrum sensing performance and

realize the rapid and accurate sensing of authorized signals.

Based on the traditional large-scale cognitive radio spec-

trum sensing algorithm, the eigenvalue exponential mean

algorithm based on big data analysis theory is proposed.

The paper is organized as follows. In Sect. 2, we

introduce the system model of satellite cognitive radio

networks. In Sect. 3, the spectrum sensing algorithms

based on big data analysis theory for large scale cognitive

networks are investigated, and a new algorithm using mean

exponential eigenvalue is proposed. The performance of

the spectrum sensing algorithms is verified in Sect. 4.

Finally, the conclusion is given in Sect. 5.

2 System model

The spectrum sensing scenario based on big data analysis

in satellite cognitive wireless network is shown in Fig. 1.

In the cognitive network, there are multiple sensing nodes

and cognitive users that perceive the signals of authorized

users (users using authorized frequency bands). For the

received signal x tð Þ, the sampling interval is Ts, and the

received signal samples are:

x n½ � ¼ x nTsð Þ ð1Þ

According to the spectrum sensing theory of cognitive

radio, when the sensing node only receives noise, the

decision is H0, which means that the authorized user does

not occupy the spectrum. When both the signal and noise

are received, the decision is H1, which means that the

spectrum is occupied. Therefore, the received sampling

signal can be expressed as:

H0 : x n½ � ¼ w n½ � ð2Þ
H1 : x n½ � ¼ s n½ � þ w n½ � ð3Þ

where w n½ � is the received independent and identically

distributed gaussian white noise, the mean value is 0 and

the variance is r2. Assuming that the sensing node cannot

predict the current channel condition, the mean value and

variance of the received authorized user signal s n½ � are

unknown.

Detection probability Pd and false alarm probability Pf

are used to measure detection performance. Pd indicates

that the sensing node correctly detects the signal when the

authorized user occupies the spectrum. Pf indicates that

when the authorized user does not occupy the spectrum, the

sensing node misjudges that the signal of the authorized

user exists, that is:

Pd ¼ P D1jH1ð Þ ð4Þ
Pf ¼ P D1jH0ð Þ ð5Þ

where D1 indicates that the cognitive radio network

determines that the authorized user is occupying the

spectrum.

The sample space Cx collected by the sensing node are

divided into several subspaces, and each subspace contains

Ntot sampling data. The subspace Cx;i is regarded as com-

posed of N sample vectors Xi of length L, that is:

Cx;i ¼ X i�1ð ÞNþ1;X i�1ð ÞNþ2; . . .;X i�1ð ÞNþN

� �
ð6Þ

Xi ¼ x i½ �; x iþ 1½ �; . . .; x iþ L� 1½ �½ �T ð7Þ

where L called smoothing factor, ðÞT represents the trans-

pose of matrix. Assume Xi �N 0;Rxð Þ, where Rx is the

covariance matrix of the received signal. In practical

applications, Rx is often unknown, but it can be approxi-

mated by the sample covariance matrix R̂x.

R̂x ¼
1

N

XN

i¼1

XiX
T
i ð8Þ

In large-scale cognitive radio networks, multiple sensing

nodes are usually used to obtain large amounts of data.

Multivariate analysis based on big data usually assumes

that the sample of variables is large enough, that is, N=L is

large enough. The satellite cognitive wireless network

covers a wide range, there are a large number of sensing

nodes and cognitive users, and it is easy to obtain a large

amount of cognitive data. Centralized processing of the

sensory data can obtain a sufficiently large sample sub-

space in the fusion center and improve the detection

capability.
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3 Spectrum sensing algorithms based
on big data theory

In recent years, the use of big data analysis to extract

statistical features of sample subspaces has become a hot

spot in the study of spectrum sensing in large-scale cog-

nitive wireless networks. The dimensionality of the

observation space occupied by the authorized user signal is

smaller than that of the noise, and the frequency spectrum

of the authorized signal and Gaussian white noise is very

different, so the spectrum sensing algorithm uses the

sample covariance matrix for signal detection.

3.1 Estimation-correlation (EC) algorithm

The EC algorithm performs sensing based on the prior

information of authorized user signals. It is assumed that

the sensed signal is a zero-mean Gaussian random process,

and the covariance matrix is known. First, assume that the

noise w n½ � in the channel is Gaussian white noise, which is

not related to the signal, and the variance is r2. The signal
s n½ � is also zero mean. From Eqs. (2) and (3), the sample

vector Xi of the sensing node obeys:

H0 : Xi �N 0; r2I
� �

ð9Þ

H1 : Xi �N 0;Rs þ r2I
� �

ð10Þ

where Rs is the covariance matrix of the signal and I is the

unit matrix.

In the cognitive radio system, the given false alarm

probability Pf . According to the Neyman-Pearson (NP)

criterion [12], when Eq. (11) is established, it is considered

that the authorized user is occupying the spectrum.

H1 : L Xð Þ ¼ p X;H1ð Þ
p X;H0ð Þ [ c ð11Þ

where p X;H0ð Þ and p X;H1ð Þ are the probability density

functions of random variables X in the case of H0 and

H1,respectively. The decision threshold c is related to the

expected false alarm probability a, which can be deter-

mined by:

Pf ¼
Z

X:L Xð Þ[ cf g
p X;H0ð ÞdX ¼ a ð12Þ

In addition, the function L Xð Þ in Eq. (11) is called the

likelihood ratio, which represents the similarity of variable

x between H0 and H1. Therefore, it is also called likelihood

ratio detection or NP detection.

The probability density functions of the sample vector

Xi at the sensing node satisfy the following expressions

respectively:

p Xi;H1ð Þ ¼ 1

2pð Þ
N
2det

1
2 Rs þ r2Ið Þ

�

exp � 1

2
XT
i Rs þ r2I
� ��1

Xi

� � ð13Þ

p Xi;H0ð Þ ¼ 1

2pr2ð Þ
N
2

exp � 1

2r2
XT
i Xi

� �
ð14Þ

where det �ð Þ denotes the determinant of the matrix.

According to the NP criterion, when the likelihood ratio

L Xið Þ satisfies the Eq. (15), the cognitive radio system will

consider that the authorized user is occupying the

spectrum.

Sensing node

Cognitive user
Base station 
processing

Authorized satellite user

Sample space Spectrum 
sensing

Sensing 
results

Fig. 1 Satellite cognitive

wireless network spectrum

sensing scenario
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L Xið Þ ¼

exp �1
2
XT
i Rsþr2Ið Þ�1

Xi

� 	

2pð Þ
N
2 det

1
2 Rsþr2Ið Þ

exp � 1

2r2
XT
i Xi

� 	

2pr2ð Þ
N
2

[ c ð15Þ

After taking the logarithm and simplifying, we get:

l Xið Þ, ln L Xið Þf g

¼ 1

2
ln

r2N

det Rs þ r2Ið Þ


 �
�

1

2
XT
i Rs þ r2I
� ��1� 1

r2
I

� �
Xi

ð16Þ

At this time, when l Xið Þ[ ln c, it is determined that the

vector Xi contains the signal of authorized user. For the

sake of simplicity, only the part of Eq. (16) that contains

the vector Xi is considered, which is simplified to:

� 1

2
XT
i Rs þ r2I
� ��1� 1

r2
I

� �
Xi [ c0 ð17Þ

Then we can get:

T Xið Þ,r2XT
i

1

r2
I � Rs þ r2I

� ��1
� �

Xi [ 2r2c0 ð18Þ

For invertible matrices A,B,C and D, it has the following

property:

Aþ BCDð Þ�1¼ A�1 � A�1B DA�1Bþ C�1
� ��1

DA�1

ð19Þ

Let A ¼ r2I, B ¼ D ¼ I, C ¼ Rs, then:

r2I þ Rs

� ��1¼ 1

r2
I � 1

r4
1

r2
I þ R�1

s


 ��1

ð20Þ

Combining Eqs. (18) and (20), we can get:

T Xið Þ ¼XT
i

1

r2
1

r2
I þ R�1

s


 ��1
" #

Xi

¼XT
i

1

r2
1

r2
Rs þ r2I
� �

R�1
s

� ��1

Xi

¼XT
i Rs Rs þ r2I
� ��1

Xi

,XT
i Ŝ

ð21Þ

Alternatively, T Xið Þ can be written as the product of

discrete signals:

T Xið Þ ¼
XL�1

k¼0

x iþ k½ �ŝ iþ k½ � ð22Þ

Therefore, for the sample vector Xi, the sensing node

only needs to calculate T Xið Þ according to the prior

information Rs and r2 of the authorized user signal, and

compare it with the threshold c00 under the specific false

alarm probability a.

In satellite cognitive wireless networks, sufficient sam-

ple subspace can be obtained. Therefore, the N vectors

Xi i ¼ 1; 2; � � � ;Nð Þ in the subspace can be estimated and

correlated, and then the detection results can be averaged to

improve the detection performance. When authorized users

occupy the spectrum, there is:

H1 : TEC ¼ 1

N

XN

i¼1

XT
i Rs Rs þ r2I
� ��1

Xi [ cEC ð23Þ

where cEC is the threshold. Equation (23) is the expression

for estimation-correlation detection using the prior infor-

mation Rs and r2 of the authorized user signal.

3.2 Eigenvalue template matching (ETM)
algorithm

In the actual spectrum sensing process of cognitive radio,

the prior information Rs and r2 are often unknown. In this

case, the sensing node uses the previous sample subspace

to extract features as a prior information, and compare with

the features extracted in the current sample subspace to

determine whether there is a spectrum hole.

The ETM algorithm uses the covariance matrix Rx of the

sample subspace Cx;i for sensing, and extracts the first

eigenvector of the matrix (that is, the eigenvector corre-

sponding to the largest eigenvalue) as the feature of the

subspace Cx;i, denoted as gi. If the subspace contains only

noise vectors, the feature is random, and if it contains

signal, the feature is stable. Therefore, the ETM algorithm

uses an adaptive feature learning algorithm (FLA) to

automatically extract features from two consecutive sample

subspaces, that is, to compare the similarity of the two

subspace features.

TFLA ¼ max
l¼1;2;���;L�kþ1

XL

k¼1

gi k½ �giþ1 k þ l½ �
�����

�����
ð24Þ

where gi and giþ1 are the feature vectors of two continuous

sample subspaces Cx;i and Cx;iþ1 respectively. If the value

of TFLA is higher than cFLA, the feature learning process will
end. The vector giþ1 at this time is regarded as the feature

/s of the authorized signal.

Then use /s as the prior information, the vector gcurrent
corresponding to the current subspace Cx;current with /s are

calculated for similarity. If similarity TETM is higher than

the threshold cETM , it is determined that the current sub-

space contains the signal of the authorized user. The

detection expression of ETM algorithm is:

H1 : TETM ¼ max
l¼1;2;���;L�kþ1

XL

k¼1

/s k½ �gcurrent k þ l½ �
�����

�����
[ cETM

ð25Þ
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The algorithm consists of two stages: First, the simi-

larity function is used in feature learning to automatically

extract the signal features of authorized users. Second, in

the decision-making process, compare the similarity

between the characteristics of authorized user signal and

the current subspace to determine whether the authorized

signal is included.

3.3 Matrix function detection (MFD) algorithm

The MFD algorithm uses the positive semi-definiteness of

the covariance matrix for detection, and does not need to

calculate the eigenvalues of matrix, but uses the trace of the

matrix as the criterion for decision-making. Assume that

the covariance matrices of authorized user signal and noise

are Rs and Rn, respectively. When the signal contains

authorized user signal and noise, there is:

Rx ¼ Rs þ Rn þ E swT
� �

þ E wsT
� �

ð26Þ

where E �ð Þ means the average. When the sample value of

the sensing node is large, it can be assumed that the signal

is not correlated with the noise, then

E swTð Þ ¼ 0,E wsTð Þ ¼ 0.

H1 : Rx ¼ Rs þ Rn ð27Þ

Correspondingly, when authorized user do not occupy

the spectrum, there is:

H0 : Rx ¼ Rn ð28Þ

In the MFD algorithm, the sample subspace Cx;i is

divided into K segments. Each segment contains Nk ¼
N=K sample vectors. Therefore, the covariance matrix of

the k-th segment is:

Rx;k ¼
1

Nk

Xk�1ð ÞNkþNk

i¼ k�1ð ÞNkþ1

XiX
T
i ð29Þ

From Eqs. (27) and (29), when the authorized user

occupies the spectrum, the covariance matrix is:

H1 : Rx;k ¼ Rs;k þ Rn;k ð30Þ

Since the sample covariance matrix is positive semi-

definite, for any k ¼ 1; 2; . . .;K, we have:

Rs;k þ Rn;k�Rn;k ð31Þ

In the case of H1, the elements of the sample covariance

matrix of any segment have larger values. We use this

property to determine whether the subspace contains signal

from authorized users. In order to improve the robustness,

we average the sample covariance matrix of each segment.

From Eq. (31), we can get:

1

K

XK

k¼1

Rs;k þ Rn;k

� �
� 1

K

XK

k¼1

Rn;k ð32Þ

For A � B, we can usually find a monotonically

increasing function f ðÞ, such that f Að Þ � f Bð Þ. The output

of the function f ðÞ is also a matrix, which is still difficult to

compare. Therefore, we look for the trace of matrix to

make the result a real number, and then compare.

For positive semi-definite matrix A;B 2 Cn�n, suppose

A � B, let f : ½0;1Þ ! ½0;1Þ satisfy: � f 0ð Þ ¼ 0, `f ðÞ is
continuous increasing functions, then

Tr f Að Þð Þ\Tr f Bð Þð Þ ð33Þ

Combining Eqs. (32) and (33), we can get:

Tr f
1

K

XK

k¼1

Rs;k þ Rn;k

� �
 ! !

�Tr f
1

K

XK

k¼1

Rn;k

 ! !

ð34Þ

Equation (34) shows that when the authorized user

occupies the spectrum, the left end of the formula is greater

than the right end. The process of averaging the covariance

matrix of each segment can stabilize the inequality. If TMFD

is higher than the threshold cMFD, it is assumed that the

authorized user is occupying the spectrum. The detection

expression of MFD algorithm is as follows:

H1 : TMFD ¼ Tr f
1

K

XK

k¼1

Rx;k

 ! !

[ cMFD ð35Þ

The monotonically increasing matrix function f ðÞ used

by the MFD algorithm will affect the performance of the

entire algorithm, so it is called the detection algorithm

based on matrix function. In addition, F. Lin pointed out

that monotonically increasing matrix function f Xð Þ ¼ X

can provide near optimal detection performance for MFD

detection algorithm [13].

3.4 Maximum-minimum eigenvalue ratio (MME)
algorithm

The MME detection algorithm is based on the generalized

likelihood ratio, does not require any prior information of

the detection signal, and is suitable for spectrum sensing

scenarios in satellite cognitive wireless networks. Under

the framework of big data, the MME algorithm makes

decisions based on the statistical characteristics of the

sample subspace. First, it calculates the maximum and

minimum eigenvalues of the sample covariance matrix,

denoted as kmax and kmin, respectively. If the sample sub-

space only contains noise, then kmax=kmin ¼ 1. If it con-

tains the detection signal, then kmax=kmin [ 1. According to

this property, we can get the detection expression of MME

algorithm as follows:
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H1 : TMME ¼ kmax

kmin

[ cMME ð36Þ

where cMME is the threshold value.

When the prior information of the authorized user signal

is unknown, the MME algorithm can use the information

obtained in the signal sample subspace. The signal and

noise are distinguished by the ratio of the maximum and

minimum eigenvalues of the sample covariance matrix.

Therefore, it can provide better detection performance in

low signal-to-noise ratio (SNR) and complex electromag-

netic environment.

3.5 Absolute value of covariance (CAV)
algorithm

Both MFD and MME algorithms do not need the signal of

authorized user as prior information for detection, but they

need to find the eigenvalue of sample covariance matrix.

When the dimension of covariance matrix is large, the

computational complexity is very high, and the detection

complexity and detection time will increase accordingly.

CAV algorithm has low complexity and does not need

prior information. First, the covariance matrix Rx of the

current subspace Cx;i is calculated. Second, the variables T1
and T2 are used for detection.

T1 ¼
1

L

XL

i¼1

XL

j¼1

rij
�� �� ð37Þ

T2 ¼
1

L

XL

i¼1

riij j ð38Þ

where rij; 1	 i	 L; 1	 j	 L are the elements in covari-

ance matrix. The detection expression of CAV algorithm

is:

H1 : TCAV ¼ T1
T2

[ cCAV ð39Þ

3.6 Eigenvalue exponential mean (EEM)
algorithm

The spectrum sensing algorithm based on big data analysis

theory essentially describes the statistical characteristics of

subspace in a way that is easy to quantify and compare

under the framework of big data. In satellite cognitive radio

networks, cognitive base stations and cognitive users often

do not know the prior information of the authorized user

signal. In order to better distinguish between signal and

noise in this ‘‘blind detection’’ state, the spectrum sensing

algorithm needs to make full use of the subspace contain-

ing the current received signal. Based on this, a eigenvalue

exponential mean (EEM) algorithm is proposed to provide

better detection performance without knowing the prior

information of authorized user signals.

Similar to MME algorithm, the proposed EEM algo-

rithm also uses the eigenvalues of the covariance matrix to

distinguish the signal and noise. However, MME algorithm

only uses the ratio of the maximum and minimum eigen-

values to distinguish. In the case of low SNR, the size of

eigenvalues will be easily affected by noise, which will

reduce the stability and performance of the algorithm.

The EEM algorithm uses all the eigenvalues ki Rxð Þf g to

make decision, and improve the robustness and detection

performance. Specifically, the EEM algorithm takes the

exponential mean of L eigenvalues of the sample covari-

ance matrix as the judgment basis. The detection expres-

sion of the EEM algorithm is as follows:

H1 : TEEM ¼ ln
1

L

XL

i¼1

eki

 !

[ cEEM ð40Þ

where cEEM is the threshold. If the sample subspace only

contains noise, then TEEM ¼ ln L� e=Lð Þ ¼ 1. If it contains

authorized signal, then TEEM [ 1.

4 Simulation results and analysis

4.1 Algorithm performance comparison

The false alarm probability is set to 1%, and the Rice factor

K of Rice channel is set to 6 dB. The cognitive radio

spectrum sensing algorithms based on big data discussed

above are all applied to satellite cognitive radio networks,

and the detection probabilities under different SNR are

compared, as shown in Fig. 2. In order to improve the

Fig. 2 Detection probability of spectrum sensing algorithm with SNR

(false alarm probability is 1%, 10 sensing nodes, rice factor

K = 6 dB)
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robustness of the simulation, the algorithm uses Monte

Carlo simulation 2000 times in each SNR.

The spectrum sensing algorithm based on big data

analysis can provide good spectrum sensing performance in

the low SNR environment of - 15 dB. The EC algorithm

has the best detection performance and can accurately

detect the authorized signals with the SNR of - 23 dB. In

the actual sensing process, it is often impossible to obtain

the prior information of authorized users, so the EC algo-

rithm is not applicable in actual engineering. The perfor-

mance of ETM algorithm is second only to EC algorithm,

because it can automatically extract the prior information.

However, when the SNR is lower than - 24 dB, the

sensing node is affected by noise and it is difficult to

extract the authorized user signal from the subspace, and

the detection probability is very low. When the SNR

increases, the signal features of authorized users are easier

to extract. Once the prior information is accurately

extracted, the detection probability will be greatly

improved.

For FMD, MME, EEM and CAV algorithms, which do

not depend on the prior information, their detection per-

formance is lower than the former two algorithms. How-

ever, these algorithms do not require prior information and

have lower complexity, are easier to implement in engi-

neering, and have more practical significance. Among

these ‘‘blind detection’’ algorithms, the EEM algorithm has

the highest detection probability. However, the EEM

algorithm needs to calculate eigenvalues, which has higher

requirements for the computing power of the fusion center.

The MFD algorithm has the lowest detection probability

when the SNR is higher than -21db, but it only needs to

calculate the trace of the sample covariance matrix, so it is

easier to implement.

4.2 Influence of channel conditions on algorithm
performance

The Rician factor is increased to 10 dB, and other system

parameters remain unchanged. For each SNR, the detection

probability of the spectrum sensing algorithm based on big

data analysis is simulated by Monte Carlo 2000 times, and

the simulation result is shown in Fig. 3.

Comparing Figs. 2 and 3, when the size of the subspace

is unchanged, the detection probability of various spectrum

sensing algorithms changes similarly. In addition,

increasing the Rician factor can improve the detection

probability to a certain extent. Therefore, in the satellite

cognitive wireless network, the sensor node should be

located in an open area with good channel conditions, and

try to avoid the shelter of trees and tall buildings.

On the other hand, the increase of the Rician factor can

greatly improve the detection performance of EC, ETM,

MME and EEM algorithms, enabling the ETM algorithm to

obtain the signal characteristics of authorized users from

the sample subspace with a lower SNR. However, the

detection performance of MFD and CAV algorithms are

not sensitive to changes in channel conditions.

4.3 Influence of sensing nodes number
on algorithm performance

The number of sensor nodes in the satellite coverage area is

set to 20, the false alarm probability is 1%, and the Rice

coefficient is 10 dB. In a sensing process, the sensing node

samples the signals of authorized satellite users 50 times,

and the sampling frequency remain unchanged. Therefore,

128,000 data points are collected for each sensing process

and converge to form a subspace at the fusion center. The

curve of the detection probability is shown in Fig. 4.

Comparing Figs. 3 and 4, the detection performance can

be improved by increasing the number of sensing nodes

under the same channel conditions. As the subspace

becomes larger, it is easier for the fusion center to extract

statistical features under the framework of big data, and to

better distinguish between signal and noise.

In order to obtain better detection performance in

satellite cognitive wireless networks, the number of sensing

nodes and sampling time can be increased. However, this

will increase the cost of data transmission between the

sensing node and the fusion center, the amount of calcu-

lation of the fusion center, and the sensing time. Therefore,

it is necessary to make a trade-off between perception

performance and system complexity according to the actual

situation.

Fig. 3 Detection probability of spectrum sensing algorithm with SNR

(false alarm probability is 1%, 10 sensing nodes, rice factor

K = 10 dB)
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5 Conclusion

In the context of satellite cognitive radio networks, tradi-

tional spectrum sensing algorithms based on big data

analysis theory are studied, including EC, ETM, FMD,

MME and CAV algorithms. These algorithms utilize the

wide coverage of satellite network and the large number of

sensing nodes, and transmit the sampling data of the

sensing nodes to the fusion center to form a sample sub-

space. Make judgments based on different statistical rules

of sample data under the framework of big data. This paper

proposes the EEM algorithm based on big data analysis

theory, which uses all the eigenvalues of the sample

covariance matrix to make decision, and the detection

performance is better than traditional algorithms. The

simulation results show that under the condition of SNR

above - 18 dB, different algorithms can provide good

detection performance. Based on big data analysis theory,

the influence of channel conditions and the number of

sensing nodes on the spectrum sensing algorithm is veri-

fied. In addition, compared with traditional algorithms,

EEM algorithm provides higher detection probability

without knowing the prior information of authorized users.
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