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Abstract
The software-defined networks-enable mobile edge computing (SDN-enable MEC) architecture, which integrates SDN and

MEC technologies, realizes the flexibility and dynamic management of the underlying network resources by the MEC,

reduces the distance between the access terminal and computing resources and network resources, and increases the

terminal’s access to resources. However, the static distribution relationship between MEC servers (MECSs) and controllers

in the multi-controller architecture may result in unbalanced load distribution among the controllers, which would degrade

network performance. In this paper, a multi-objective optimization MECS redistribution algorithm (MOSRA) is proposed

to decrease the response time and overhead. A controller response time model and link transmit overhead model are

introduced as basis of an evolutionary algorithm which is proposed to optimize MECS redistribution. The proposed

algorithm aims to select an available sub-optimizes individual by using a strategy based coordination transformation from

Pareto Front. That is, when the master controller of the MECS is redistributed, both of the network overhead of the MECS

to the controller and the response time of the controller to the MECS processing request are optimized. Finally, the

simulation results demonstrate that the MOSRA can solve the redistribution problem in different network load levels and

different network sizes within the effective time, and has a lower control plane response time, while making the edge

network plane transmission overhead lower, compared with other algorithms.

Keywords Redistribution � Response time � SDN-enabled MEC � Transmission overhead � Evolutionary algorithm �
Coordinate transformation

1 Introduction

5G wireless infrastructure needs to support a large number

of devices and complex applications. This will require the

network to support high scalability, ultra-low latency, high

throughput, and reliable data transmission. These critical

delays and bandwidth requirements have prompted the

European Telecommunications Standards Institute (ETSI)

to propose multi-access edge computing as a viable solu-

tion to push services to the edge and closer to end users.

Compared with high-performance servers on the cloud,

MEC servers have limited computing resources. It is nec-

essary to handle the heterogeneity of requests from

terminal devices, that is, to meet the requirements of dif-

ferent requests for computing power and delay, and to

achieve load balancing between MEC servers. An available

way to solve this problem is to introduce an MEC coor-

dinator into the network.

In the SDN-enable MEC architecture, MECSs are

deployed on the edge access network, reducing the distance

between the access terminal and the computing resources

and network resources, and increasing the terminal’s access

to resources [1]. The MEC coordinator can be integrated

with the controller and the centralized controller has a

global view of the network. Collecting information from

the network, the MEC coordinator acts as many applica-

tions [2]. Those applications connect to various agents of

the correct MEC server and makes corresponding decisions

based on various factors such as server functions, current

load and its location.
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However, there are some challenges in the distributed

control structure of SDN-enable MEC architecture, such as

DDoS attacks [3–5] and load balancing [6–8]. In wireless

networks, the peer-to-peer quality of service in the network

needs to be optimized [9] and control plane scalability of

distributed networks [10]. A portion of the controller’s

computing power is consumed, while other controllers are

idle, which may cause the controller’s response time to

increase. The load of the controller is not balanced, and the

transmission overhead in the network may also increase.

The current research on the controller is mainly to reduce

the response time of the control by redistributing the con-

troller load in SDN network [11, 12].

1.1 Related works

The switches migration problem (SMP) is an NP-hard bin

packing problem [13–15]. In other words, it is a challenge

to effectively solve the switch redistribution problem in a

valid time. Tao Hu et al. [16] defined the migration effi-

ciency based on the changes in controller load and balance

caused by the redistribution switch, and they proposed

efficiency-aware switch migration (EASM) algorithm to

achieve load balancing at a minimum cost. The redistri-

bution cost of switches is inevitable, and the message

exchange cost cannot be ignored in this process of redis-

tribution [17]. Switches with different request rates will

impose different burdens on the controller. During the

process of switch redistribution, it is necessary to monitor

the load state of the switch and controller, but frequent

switch redistribution will cause more control overhead and

other costs [18]. Qiang He et al. [19] collected data such as

the request rate of switches at the edge of the plane net-

work, and predicted the request rate of other switches by

their algorithms in a short period of time, which greatly

reduced the cost of network load detection. The redistri-

bution of switches will change the distance between

switches and controllers generally, which results in the

communication cost change in the network [20]. Yang Xu

et al. [21] proposed BalCon algorithm to measure the cost

of switch redistribution from the routing computational

load and load cost. Controller deployment [13, 22] and task

scheduling [23] based on network traffic prediction.

Basing on the matching principle, Hu Tao et al. [24]

proposed a bidirectional matching strategy (BMS) to

examine the redistribution process from the perspective of

switch and controller respectively, which can quickly solve

the redistribution problem of switches. However, when the

performance of the controller is excessive, some controllers

may have a high load because of the defects of the

matching mechanism, while the other controllers are under

loading or even empty. To avoid the disadvantages caused

by using matching algorithm alone, Tao Wang et al. [25]

added the coalitional game algorithm to the stable match-

ing algorithm. Due to the introduction of the game mech-

anism, the under loading controllers can also participate in

the switch redistribution. To reduce the complexity of

migration, Chuan’an Wang et al. [20] proposed the switch

migration-based decision-Making (SMDM) algorithm.

According to a controller load diversity matrix, controllers

are divided to outmigration controllers (OM_S) and

immigration controllers (IM_S) in their paper. Their

algorithm will reduce the search space, so it can solve the

switch redistribution problem in a very short time when the

network load is low. However, a controller can belong to

both the OM_S and IM_S at the same time when the load

difference of the controller is large, which will lead to the

solution time of their algorithm is too long or even no

solution. The more switches allowed to be redistributed,

the higher the load balance of the network, and the higher

the demand for network performance, the more switches

need to be redistributed [26].

Multiple objectives need to be considered for dynamic

switch redistribution in SDN. In this paper, we consider

reducing controller response time and transmission over-

head. Optimizing the average response time of the con-

troller can guarantee the quality of service of the data

plane, and reducing the PACKET_IN transmission over-

head of the data plane can save more bandwidth resources.

In the redistribution problem of SDN switch, it is necessary

to design an effective algorithm so that the switches can be

rapidly redistributed in effective time. In order to solve the

multi-objective optimization problem, we use the decom-

position based multi-objective evolutionary algorithm

(MOEA/D) framework to decompose the target problem

into multiple scalar sub problems. On the one hand, we

wish to get a lower redistribution of switch controller

response time. On the other hand, due to the way of

communication controller and switches is in-band com-

munication, we also hope that redistribution of the switches

and the controller message exchange will not cause more

costs, so that we can save more link bandwidth for the

resources-limited edge network plane. In addition, the

redistribution of switches can readjust the load between

controllers and improve the utilization of network resour-

ces in the control plane.

1.2 Contribution

In this paper, we comprehensively consider response delay

transmission overhead and propose a switch redistribution

method based on delay and overhead optimization. By

minimizing the average response delay of the control

plane, the load balancing of the controller is realized, and

the network performance of the control plane can be

improved. On the other hand, by minimizing the average
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transmission overhead to reduce the hop number between

controller and switch, at the same time adjust the load of

the controller and improve the network performance. In

this paper, we proposed a switch redistribution algorithm

based on delay overhead optimization to minimize

response delay and transmission overhead.

In the existing researches, the response time of the

controller mainly considers the number of switch requests

processed by the controller, and does not consider the

influence of the hop number between switch and controller.

The controller response time model constructed, in this

paper, can balance the load between the controllers, bal-

ance the distribution of the requests of the switch PACK-

ET_IN packets processed by the controller, and to a certain

extent, reduce the overhead on the links related to the

controller. In the link transmission cost model, solving the

minimum transmission cost reduces the number of node

hop number between the controller and the switch, and

balances the amount of requests processed between the

controllers, making the transmission delay between the

controller and the switch more lower, at the same time

make the load of the controller more balanced, so that the

response delay of the controller is further reduced.

MOSRA that we designed is roughly divided into two

steps. The decomposition based evolutionary algorithm

decomposes the target problem into multiple scalar sub

problems instead of solving it as a multi-objective opti-

mization whole. And by using the co-evolutionary mech-

anism between multiple sub-problems, the difficulty of

fitness allocation is reduced. Therefore, the computational

complexity of the algorithm is relatively low. The optimal

solution of each scalar sub problem is obtained on the

Pareto Front, and finally a set of Pareto optimal solutions of

the target problem is obtained. Wei Fang et al. [27]

demonstrated that on a convex Pareto Front in evolutionary

algorithms, individuals with greater target fitness based on

coordinate transformation are better. Therefore, the coor-

dinate transformation strategy is adopted to screen the

individuals with the maximum population spacing as the

target solution, after the coordinate transformation on

Pareto Front.

In this paper, our contributions are as follows:

• We formulate the model of controller’s average

response time and the model of transmission overhead,

respectively. After that, we defined the improvement

degree function, and then consider the redistribution

problem of the MECS as the minimization of response

time of control plane and PACKET_IN transmission

overhead.

• We design MOSRA in MOEA/D algorithm framework.

In the update strategy of genetic operators, we add

maximum allowable limit MECS redistribution in

genetic operators to reduce the search space of the

algorithm. It is able to solve the MECS redistribution

problem in effective time, and it can converge to the

suboptimal solution which has a small gap with the

optimal solution.

• The simulation results show that the MOSRA algorithm

proposed by us has good effects on the average

response time and transmission overhead of the con-

trollers compared with other comparison algorithms,

and it still performs well even the network load is high.

The rest of this article is structured as follows. Section 2

introduces the system model and describes the research

problem. Section 3 presents the MOSRA algorithm we

proposed. Section 4 describes how do we set the simulation

conditions and analyze the simulation results. Section 5

concludes this article and the last part is the future work.

2 System model

In this section, we will explain the construction of network

model, controller average response time model, and the

PACKET_IN transmission overhead model as well as the

symbols and formulas used. We focus on how to formulate

accurate mathematical models of network performance

indicators, and then formulate the MECS redistribution as

multi-objective optimization problem.

2.1 Network model

We present the SDN-enabled MEC as illustrated in Fig. 1.

Adding SDN to the MEC architecture can achieve greater

flexibility and dynamics in the network. SDN allows a

global view of the underlying network, so flow control

rules can be applied to implement complex service chain

solutions [28]. These flow control rules hosted on MECSs

are called Flow Table. It can be used to manage the net-

work of interconnected distributed MEC servers. MEC

Coordinator Northbound Application (MEC-CNA) can be

deployed in the SDN controller, which can be programmed

to process various situations. The MEC coordinator

northbound application can control the flow of the under-

lying network through the SDN controller.

The control plane considered in this paper is a multi-

controller structure. The SDN controllers and a part of the

MECS are connected through a southbound physical link,
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while the other MECSs and the SDN controller are logi-

cally connected. The request generated by those access

devices will first be assigned to the closer MECS in the

edge network plane. If there is no required application, the

request will be routed to the MECS hosting the corre-

sponding application. As shown in Fig. 1, there is no

application requested by the access devices on MECS6,

and the flow table on MECS6 generates Table-Miss. Then

MECS6 will send PACKET_IN to the SDN controller to

ask for route calculation. In the relevant literatures

[16, 21, 29], PACKET_IN is the main component of the

SDN controller load. So the load of the controller consid-

ered in this paper is all PACKET_IN sent by the MECS it

serves.

In this paper, we denote a SDN-enabled MEC network

as G ¼ ðV ;EÞ, which consists of N MEC servers S ¼
s1; s2; :::; sNf g and M controllers C ¼ c1; c2; :::; cMf g. Let

l ¼ l1; . . .; lMf g denote the processing capacity of the

controllers, which represents the number of PACKET_IN

as the controller can handle per unit time. Specifically, in

this paper, we do not consider the deployment of the SDN

controllers and MEC servers in the network. Preserved a

certain residual capacity for controllers, they can cope with

the sudden increase of network traffic in a short period of

time. We define the capacity usage limit factor of con-

trollers, which indicates the maximum ratio of processing

capacity that the controllers can use, and denote it as

f ¼ f1; . . .; fMf g. The logical connection relationship

between MECS and controller is defined as xij, where xij ¼
1 means that MECS i is logically distributed to controller j,

and xij ¼ 0 means that MECS i is not assigned to controller

j. According to the Open Flow protocol, one switch can

only be connected to a master controller at the same time.

Therefore, we stipulate that one MECS can only be severed

by a SDN controller, so xij satisfies the condition that
P

j xij ¼ 1; i 2 S; j 2 C.

2.2 Controller response time model

In order to redistribute the load on the controller through

delay optimization, in this section we will model the

response time of the controller. Assumed that the request

rate of PACKET_IN sent by the MECSs follows the

Poisson distribution with parameter ki [13], so the load of

the controller is

hj ¼
X

i
kixij ð1Þ

One controller needs to process PACKET_IN for all

MECSs it serves, so it will generate a queue to be pro-

cessed within the controller. We assume that the queue

conforms to the M/G/1 queuing service model in queuing

theory, and the request rate ki between MECSs is inde-

pendent of each other. The average sojourn time of

PACKET_IN packet in controller j can be calculated as

follow

ssj ¼
hj

2 lj � hj
� �þ 1

 !
1

lj
ð2Þ

where lj denotes the processing capacity of controller j.

To facilitate calculation, the response time of the con-

troller that we considered consists of the sojourn time of

the PACKET_IN packet in the controller and the trans-

mission time between MECSs. The average response time

of controller j can be calculated as follow

srj ¼ ssj þ
s0P
i xij

�
X

i
dijxij ð3Þ

The previous term represents the average propagation

time of all MECSs served by the controller j, and the latter

item represents the average transmission time between two

adjacent nodes in the network. During the transmission

process, the transmission delay between adjacent nodes

does not differ much, so we treat it as a constant.

The average response time of all controllers in the

control plane is

sr ¼ 1

M

X

j

hjP
j hj

� srj

 !

ð4Þ

Before the implementation of a MECS redistribution

scheme, the average response time sr0 of the control plane

MECS4

MECS2

MECS7

MECS1

MECS5

MECS6MECS3

Smart Phone AP PC Base Station

Control Plane

Edge Network Plane

Flow Table MEC Server SDN Controller

Table Miss

MEC Coordinator 
Northbound Application

Redistribution

Southbound Physical Link Logical Link

PACKET_IN

MEC Coordinator
Service Discovery APP Load Balancing APP

Fig. 1 SDN-enabled MEC architecture
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was known in advance. In order to evaluate the improve-

ment degree of an allocation scheme on the average

response time, we formulate a normalized function to

quantify the improvement degree. The closer the value of

the function is to 0, the better effect of the distribution

scheme on the improvement of delay is

G ¼ exp 1� sr

sr0

� �

ð5Þ

2.3 Links transmission overhead model

The network’s dynamic changes in time and space as well

as the demand for diversity lead to a high request rate of

PACKET_IN, so it is necessary to evaluate the overhead of

a large number of PACKET_IN during the transmission.

The link transmission overhead model will be described

below. The average transmission overhead of a PACK-

ET_IN to controller j is calculated as follow.

ej ¼
P

i mdijxijki
hj

ð6Þ

where m denotes the overhead of a single-hop transmission

of PACKET_IN, and dij is the hop number from MECS i to

controller j. Then we can calculate the average overhead

from MECSs to controllers across the network by Eq. (6).

e ¼ 1

N

X

i

X

j
ejxij

� �
ð7Þ

Before the implementation of a MECS redistribution

scheme, we can calculate e0, the average transmission

overhead of the control plane. And we formulate a stan-

dardized function as Eq. (7). The closer the function value

is to 0, the better the average transmission overhead is

improved by this redistribution scheme.

M ¼ exp 1� e
e0

� �

ð8Þ

2.4 Problem description

In this paper, we formulate the average response time

model and the transmission cost model to minimize the

average response time and transmission overhead. Because

there is a large dimensional difference between the values

of the two objective functions, it should not to solve the

multiple objects directly by aggregation. Fortunately, the

MOEA/D class algorithm allows solving the objective

functions after standardization. We establish improvement

assessment function for the average response time and

average overhead in this paper, and design the MECSs

redistribution algorithm. The mathematical model of the

problem is expressed as P1.

P1:

min
xij

G ð9Þ

min
xij

M ð10Þ

s:t:hj � fj�lj; 8j ð11Þ
X

j
xij ¼ 1; 8i ð12Þ

xij 2 0; 1f g; 8i; j ð13Þ

d� dmax ð14Þ

In order to find the solution to the target problem, we set

some constraints here, including controller processing

capacity constraints, binary constraints and the maximum

number of allowed redistribution MECSs.

In Eq. (10), fj 2 ð0; 1Þ represents the limiting factor of

the controller capacity, and reserves a certain processing

capacity for the controller to deal with the burst flow in the

network. The Eqs. (11), (12) are binary constraints of the

MECS, ensuring that there is only one controller served for

one MECS.

Equation (13) restricts the number of MECS redis-

tributed in a redistribution scheme. Redistribute the logical

relationship between the MECSs and the controllers, that

is, the control logic of the MECS is transferred between the

controllers. This process requires frequent communication

with the MECS and controllers, which consume a certain

amount of controller calculation and memory resources

[24]. Therefore, in a redistribution scheme, if a large

number of MECSs perform redistribution operations at the

same time will cause the resource consumption of con-

trollers in the entire network to increase sharply, which

may increase the controller response time and reduce the

reliability of the network. In general, the maximum

allowable redistribution quantity is an important factor that

cannot be ignored. Due to differences in controller per-

formance and quantity, different networks can support

different numbers of concurrent redistributions, so we set

different maximum redistribution number for networks of

different network sizes. The maximum number of MECSs

allowed to redistributed in a redistribution scheme is

dmax ¼ jNb c ð15Þ
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where j 2 0; 1ð Þ represents the limiting factor of the

maximum redistribution quantity of MECSs, which is

determined by the network size. The function �b c means

rounding down.

3 Multi-objective optimization MECS
redistribution alogrithm

In this section, we propose a multi-objective evolutionary

algorithm to acquire the redistribution of MECS for the

SDN-enable MEC architecture.

3.1 MOEA/D algorithm

P1 will be solved in this section. As a mathematical model

for multi-objective problems is constructed in this paper,

considering that the SMP problem has been proved to be a

NP-hard binary constraint backpack problem, we use a

multi-objective evolutionary algorithm with good perfor-

mance to solve multi-objective problems. The algorithm is

divided into two parts. First, the optimal Pareto Front of the

P1 problem is solved by MOEA/D. Then, the individual

distance after coordinate transformation between the solu-

tions on the Pareto Front is calculated, and we choose the

individual with the smallest coordinate transformation

distance as output. The chosen individual represents the

logical connection relationship between the MECSs and

controllers.

In the multi-objective problem solving algorithm, com-

pared with the weighted aggregation method, the Cheby-

shev aggregation method can better handle the non-convex

situation of the Pareto Front. Based on the Chebyshev

aggregation method in this document, the multi-objective

problem in this paper is expressed as

minFðxÞ ¼ min GðxijÞ;MðxijÞ
� �

¼ min f1ðxÞ; f2ðxÞð Þ
ð16Þ

In Eq. (15), f1 and f2 are the two objective functions in

the multi-objective problem. So we can convert P1 to

minF xjx; z�ð Þ ¼ max x1 f1ðxÞ � z�1
� �

;x2 f2ðxÞ � z�2
� �� 	

ð17Þ
s:t:ð12Þ� ð15Þ

In Eq. (16), z� ¼ ðz�1; z�2Þ is the reference point for the

objective function value, and z�i ¼ min fiðxÞf g. There is a

weight vector for any individual on Pareto Front to make

the optimal solution of the Eq. (16), and the solution is also

the Pareto optimal solution of the original problem [30].

A coordinate conversion strategy was used to find a

relatively compromised solution between multiple objec-

tives on the Pareto Front. The application of the coordinate

transformation strategy to the model solving in this paper

will be introduced below.

Suppose that there are two individuals p1 and p2 on

Pareto Front. Considering individual p1 as the origin of the

coordinate system of the coordinate transformation, the

objective function value of individual p2 is adjusted to

f 0kðp2Þ ¼
fkðp1Þ � fkðp2Þ ; if fkðp1Þ[ fkðp2Þ
0 ; otherwise




; k ¼ 1; 2

ð18Þ

Individual p2 In the reference system with individual p1
as the origin, the inter-individual distance after coordinate

transformation is

dis f ðp1Þ; f 0ðp2Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 01ðp2Þ
� �2þ f 02ðp2Þ

� �2
q

ð19Þ

Then the distance between individuals p1 in the popu-

lation is

DISf ðp1Þ ¼
1

pop� 1

Xpop�1

e¼1

dis f ðp1Þ; f 0ðpeÞð Þ ð20Þ

In Eq. (19), pop is the total population number. DIS

reflects the quality of the individual p1 corresponding

solution.

In the coordinate transformation strategy, the fitness of

individual pe is normalized to

Fe ¼ DISe �
min diseð Þ
max diseð Þ �min diseð Þ ð21Þ

3.2 MOSRA algorithm

Based on the MOEA/D algorithm, we design and imple-

ment the MOSRA algorithm. Different from the objective

function weight aggregation method commonly used in the

previous research of SDN load balancing algorithms, we

use the MOEA/D algorithm to transform a multi-objective
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problem into a set of single-objective scalar optimization

problems. The pseudo code is shown in Algorithm 1.

4 Performance evaluation

In this section, we will show the advantages and disad-

vantages of the proposed algorithm. The comparison

algorithms are SMDM, SM, MORSA and SAS (static

allocation schemes). Three environments are set up in the

simulation, which are the scale-free network (SFN),

SWITCH and OS3E network in Internet2 topology zoo.

For simplicity of calculation, we represent the processing

power of the controller as the number of requests that can

be processed per unit time.

4.1 Simulation setting

For the simulation we used Intel(R) Xeon(R) CPU E5-1620

v4@3.5GHz, 3.49GHz, 8 Cores, RAM 64G, running

Matlab-R2016b. The population of MORSA algorithm is

100, and the number of iterations is 200. We performed a

total of 100 times to take the average during the simulation

(Table 1).

4.2 Results and analyses

The simulating results show that, if the number of migra-

tion constraints is set to 0.5, the algorithm proposed in this

paper can calculate the result within the effective time. In

the simulation, the maximum concurrent migration number

factor j is set to 0.5, that is, the number of MECS redis-

tribution in each scheme does not exceed half of the

number of MECSs. Figure 2 shows that under the condition

of k ¼ 18000 packets/s, the final algorithm of this paper

convergence of PF. The horizontal and vertical axes are the

normalized values of the two objective functions, respec-

tively. Specially, because we use discrete k for simulation,

the interval between request rates is 1000 packets/s, so the

response time and overhead curves on the simulation dia-

gram only showed a dozen points, and some images show a

surge.

As shown in Figs. 3, 4 and 5 , the comparison of the

average response delay as the request rate increases of the

controller in the network OS3E, SFN and SWITCH solved

by the SMDM, SM and MOSRA algorithm respectively.

As shown in legend SAS, it can be seen from the Figs. 3, 4

and 5 that when the MECS and controller adopt a static

allocation relationship, the average response time of con-

trollers in the network increases dramatically with the

request rate increase. All three dynamic redistribution

algorithms can effectively suppress the growth of con-

troller response time.

Table 1 Simulation parameters

Parameter Value

OS3E 34 nodes

SFN 42 nodes

SWITCH 42 nodes

PACKET_IN Request rate k 17000*29000 packets/s

Processing capacity of controller l 180000 packets/s

Capacity constraint f 0.85 ? 0.1*Rand(1)
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For the SM algorithm, because the MECSs and con-

trollers use the Galer-Shapley bi-directional selection

mechanism, the MECSs has priority selection, and the

MECSs are preferentially assigned to the controller with

better processing performance, which means that the con-

troller with larger processing capacity cannot reject the

allocation. As the result, some high-performance con-

trollers will have a larger load, but poor-performance

controllers will not serve the MECSs.

It can be seen that the average response delay of the SM

first shows an upward trend, which is because the load

actually taken by the controller increases. Then it shows a

downward trend, which is because the number of con-

trollers that actually participating in load sharing has

increased. For example, when k ¼ 23000 packets/s, 5

controllers were sufficient to handle these loads while

satisfying the controller not overload. Due to the bi-di-

rectional selection mechanism of Gale-Shapley, there

remains 2 controllers were not serve the MECSs, thus there

is only 3 controllers participate in actually serving, which

would result the average response time is at a high level in

all three kinds of networks. When k ¼ 24000 packets/s or

k ¼ 25000 packets/s, the 5 controllers no longer meet the

processing requirement. The number of controller that

actual sharing load reaches 6, which means the average

load of the controller decreases, so the response time also

decreases. The SMDM algorithm is essentially a greedy

algorithm. It allocates a part of the heavier MECSs from

the heavier controllers to the lighter controllers, and repeats

this until all controllers’ load to be at a similar level.

Therefore, the response time is at a low level when

k\26000 packets/s, but rises sharply while k[ 26000

packets/s.

As shown in Figs. 6, 7 and 8, the comparison of the

average overhead as the request rate increases in the net-

work OS3E, SFN and SWITCH solved by the SMDM, SM

and MORSA algorithm respectively. The SMDM algo-

rithm multiplies the request rate and the hop number to

build the controller’s load model. The dimension of the hop

number is much smaller than the request rate in the load

Fig. 2 Pareto Front distribution at k ¼ 18000 packets/s, generation =

150

Fig. 3 Comparison of the average delay in OS3E

Fig. 4 Comparison of the average delay in SFN

Fig. 5 Comparison of the average time in SWITCH
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balancing problem. Therefore, the average cost cannot be

guaranteed when using the greedy strategy. So the average

cost curves shown in the graph are all at similar levels.

In the bi-directional selection process of the SM algo-

rithm, the MECSs preferentially select the controller with

better processing performance, and the controller will

reject the MECS with a longer distance when the controller

load threshold is exceeded, so its average cost will fluctuate

and fluctuate at that time. It is the same as the average

response delay analysis of the SM algorithm. This is

because the number of controllers that actually share the

load increases. It can be seen in Fig. 6 that there is a small

fluctuation when k\26000 packets/s, and a significant

decrease occurs when k[ 26000 packets/s, as well as the

average overhead began to rise when k[ 28000 packets/s,

which was caused by the increase of the average load

shared by the controller.

Because only the request rate is considered in the con-

struction of the load model, and the hop number is con-

sidered in the cost model, a multi-objective mathematical

model is constructed, and the average delay and average

overhead can be guaranteed when solved in MORSA. In

the case of weights, MOEA/D is used to solve Pareto Front.

Individual selection on Pareto Front is not determined by

weights. Instead, it is selected based on the difference in

the objective function value between individuals. Selecting

the largest individual distance after coordinate transfor-

mation can better achieve a compromise solution between

the two objective functions.

As shown in Figs. 9, 10 and 11 , the comparison of the

average response delay as the number of controller

increases in OS3E, SFN and SWITCH solved by the

SMDM, SM and MORSA algorithm respectively.

It is obvious that the network can reduce the average

response delay and average overhead of the controller by

increasing the number of controllers, but reducing the load

and transmission overhead of the controller by adding

controllers is not ideal. It can be seen in Figs. 9, 10 and 11

that when the network load approaches the processing

capacity of the controller, increasing the controller can

effectively reduce the average response delay. The con-

troller number is less than 9 approximately. When the

Fig. 6 Comparison of the average overhead in OS3E

Fig. 7 Comparison of the average overhead in SFN

Fig. 8 Comparison of the average overhead in SWITCH

Fig. 9 Comparison of the average delay in OS3E
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controller’s number reaches a certain number, the average

response delay of the network is stably maintained within a

certain range and does not decrease. This is because when

reassigning, requests on a MECS cannot be distributed.

After the controller exceeds a certain number, the average

load of the controller will not decrease.

As shown in Figs. 12, 13 and 14, the comparison of the

average overhead as the number of controller increases in

OS3E, SFN and SWITCH solved by the SMDM, SM and

MORSA algorithm respectively. Simply increasing the

number of controllers in the network cannot effectively reduce

the average overhead. From the Figs. 12, 13 and 14, it can be

seen that the average overhead declining trend of all algo-

rithms is almost the same as the static allocation scheme. In

addition, it can be seen in the Fig. 14 that the average overhead

of the MORSA algorithm in the three networks is at the bot-

tom, indicating that its adaptability in the network is not bad.

Load balancing of controller is achieved through

MECSs’ redistribution, so it is necessary to consider both

the hop number and the load of controllers. Therefore, the

solution of SMP depends on the network topology and

network load. The simulation results show that the SMP

solution is closer to the hop number, when the MECS has a

higher request rate.

Increasing the number of network controllers shortens

the average distance from the MECs to the right controller

Fig. 11 Comparison of the average delay in SWITCH

Fig. 12 Comparison of the average overhead in OS3E

Fig. 13 Comparison of the average overhead in SFN

Fig. 14 Comparison of the average overhead in SWITCH

Fig. 10 Comparison of the average delay in SFN
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and reduces the average network overhead. Increasing the

number of controllers also reduces the average load on the

controller and reduces the average response delay of the

network. But when increasing the number of controllers in

the same network reaches a certain number, the average

response delay and the average network overhead can no

longer be reduced.

When the number of controllers is changed and

deployed them in the network, the network topology also

changes. Therefore, when the number of controllers in a

network is large, the network performance is not neces-

sarily better than when there are fewer.

5 Conclusion

In this paper, we introduce a MOEA algorithm to redis-

tribute the master controller of MECS for improving net-

work performance in SDN-enable MEC scenarios. The

proposed algorithm uses MOEA to obtain Pareto optimal

solution set and a coordinate transformation strategy to

select an available solution from the set. This work aims at

optimizing network performance by considering response

time of controller and overhead of network. That is, when

optimizing the MECSs redistribution plan, we can better

reduce the response time and overhead, if we comprehen-

sively considerate of the controller’s computing ability and

load, MECS request rate and the number of hops between

MECS and the controller. Compared to the OS3E and

SWITCH, the Scale-Free Network has serious uneven

distribution of the connection status (degrees) between

each node. It can be seen from the simulation results, in the

SFN, increasing the number of controllers without con-

sidering the topological characteristics between the con-

troller and MECS may even lead to a decrease in network

performance. The network load level has an obvious

influence on the response time of the controller, especially

in the uneven network. The phenomenon of controller

overload is more serious in the network. Compared with

uneven network (SFN), the overhead of even network

(OS3E) is higher relatively. Based on the test bed, we

simulated the MOSRA and evaluated its performance in

different topologies, rate of PACKET_IN and number of

controllers, which demonstrated the feasibility and advan-

tage of the proposed algorithm.

6 Future work

SDN-enabled MEC can achieve greater flexibility and

dynamics in the network. Programmable hierarchical net-

work will better support MEC task offloading and cloud-

edge collaboration. For our future work, based on the

proposed MOSRA, we will investigate energy consumption

at controller within complex network environment and

focus on efficient control plane scaling algorithm design.
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