Skip to main content

Advertisement

Log in

Trust-aware energy-efficient stable clustering approach using fuzzy type-2 Cuckoo search optimization algorithm for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the advancement of communication and sensor technologies, it has become possible to develop low-cost circuitry to sense and transmit the state of surroundings. Wireless networks of such circuitry, namely wireless sensor networks (WSNs), can be used in a multitude of applications like healthcare, intelligent sectors, environmental sensing, and military defense. The crucial problem of WSN is the reliable exchange of data between different sensors and efficient communication with the data collection center. Clustering is the most appropriate approach to prolong the performance parameters of WSN. To overcome the limitations in clustering algorithms such as reduced cluster head (CH) lifetime; an effective CH selection algorithm, optimized routing protocol, and trust management are required to design an effective WSN solution. In this paper, a Cuckoo search optimization algorithm using a fuzzy type-2 logic-based clustering strategy is suggested to extend the level of confidence and hence network lifespan. In intra-cluster communication, a threshold-based data transmission algorithm is used and a multi-hop routing scheme for inter-cluster communication is employed to decrease dissipated energy from CHs far away from BS. Simulation outcomes indicate that the proposed strategy outperforms other communication techniques in the context of the successful elimination of malicious nodes along with energy consumption, stability period, and network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

[27]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  2. Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2017). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks., 23, 249–266.

    Article  Google Scholar 

  3. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications, Surveys & Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  4. Halawani, S., & Khan, A. W. (2010). Sensors lifetime enhancement techniques in wireless sensor networks—A survey. Journal of Computing, 2(5), 34–47.

    Google Scholar 

  5. Memon I., & et al. (2019). Smart intelligent system for mobile travelers based on fuzzy logic in IoT communication technology. In International conference on intelligent technologies and applications (pp 22–31).

  6. Memon, I., & Mirza, H. T. (2018). MADPTM: Mix zones and dynamic pseudonym trust management system for location privacy. International Journal of Communication Systems, 31(17), e3795.

    Article  Google Scholar 

  7. Memon, I. (2015). A secure and efficient communication scheme with authenticated key establishment protocol for road networks. Wireless Personal Communications, 85(3), 1167–1191.

    Article  Google Scholar 

  8. Purkar, S. V., & Deshpande, R. S. (2018). Energy efficient clustering protocol to enhance performance of heterogeneous wireless sensor network: EECPEP-HWSN. Journal of Computer Networks and Communications. https://doi.org/10.1155/2018/2078627.

    Article  Google Scholar 

  9. Liang, Q., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems, 8(5), 535–550.

    Article  Google Scholar 

  10. Hwang, J. H., Kwak, H. J., & Park, G. T. (2011). Adaptive intervaltype-2 fuzzy sliding mode control for unknown chaotic system. Nonlinear Dynamics, 63(3), 491–502.

    Article  MathSciNet  Google Scholar 

  11. Salgotra, R., Singh, U., & Saha, S. (2018). New cuckoo search algorithms with enhanced exploration and exploitation properties. Expert Systems with Applications, 95, 384–420.

    Article  Google Scholar 

  12. Heinzelman, W. B., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of 33rd annual Hawaii international conference on system sciences (HICSS-33). IEEE (p. 223). https://doi.org/10.1109/hicss.2000.926982.

  13. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings of the IEEE AEROSPACE CONFERENCE, Big Sky, MT, USA, 9–16 March 2002 (vol. 3, pp. 1125–1130).

  14. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 2004(3), 366–379.

    Article  Google Scholar 

  15. Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy-efficient unequal clustering mechanism for wireless sensor networks. In Proceedings of the IEEE international conference on mobile adhoc and sensor systems, Washington, DC, USA, 7–10 November 2005 (pp. 598–604).

  16. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  17. Tripathi, M., Battula, R. B., Gaur, M. S., & Laxmi, V. (2013). Energy efficient clustered routing for wireless sensor network. In Proceedings of the 2013 IEEE 9th international conference on mobile ad hoc and sensor networks, Dalian, China, 11–13 December 2013 (pp. 330–335).

  18. Mechta, D., Harous, S., Alem, I., & Khebbab, D. (2014). LEACH-CKM: Low energy adaptive clustering hierarchy protocol with K-means and MTE. In Proceedings of the 2014 10th international conference on innovations in information technology (IIT), Al Ain, UAE, 9–11 November 2014 (pp. 99–103).

  19. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In 15th international parallel and distributed processing symposium (IPDPS’01) Workshops, USA, California (pp. 2009–2015).

  20. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In International parallel and distributed processing symposium, Florida (pp. 195–202).

  21. Aderohunmu, F. A., & Deng, J. D. (2009). An enhanced stable election protocol (E-SEP) for clustered heterogeneous WSN, Department of Information Science, University of Otago, Dunedin 9054, New Zealand.

  22. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of international workshop on SANPA. http://open.bu.edu/xmlui/bitstream/handle/2144/1548/2004-022-sep.pdf?sequence=1.

  23. Kang, S. H., & Nguyen, T. (2012). Distance based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters, 16(9), 1396–1399. https://doi.org/10.1109/LCOMM.2012.073112.120450.

    Article  Google Scholar 

  24. Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15(3), 189–199.

    Article  Google Scholar 

  25. Tarhani, M., Kavian, Y. S., & Siavoshi, S. (2014). SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sensors Journal, 14(11), 3944–3954. https://doi.org/10.1109/JSEN.2014.2358567.

    Article  Google Scholar 

  26. Mittal, N., & Singh, U. (2015). Distance-based residual energy-efficient stable election protocol for WSNs. Arabian Journal of Science and Engineering, 40(6), 1637–1646. https://doi.org/10.1007/s13369-015-1641-x.

    Article  Google Scholar 

  27. Mittal, N., Singh, U., & Sohi, B. S. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23(6), 1809–1821. https://doi.org/10.1007/s11276-016-1255-6.

    Article  Google Scholar 

  28. Adnan, Md A, Razzaque, M. A., Ahmed, I., & Isnin, I. F. (2014). Bio-mimic optimization strategies in wireless sensor networks: A survey. Sensors, 14, 299–345. https://doi.org/10.3390/s140100299.

    Article  Google Scholar 

  29. Hussain, S., & Matin, A. W. (2006). Hierarchical cluster-based routing in wireless sensor networks. In IEEE/ACM international conference on information processing in sensor networks, IPSN.

  30. Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12, 1950–1957. https://doi.org/10.1016/j.asoc.2011.04.007.

    Article  Google Scholar 

  31. Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2011.06.004.

    Article  Google Scholar 

  32. Khalil, E. A., & Attea, B. A. (2013). Stable-aware evolutionary routing protocol for wireless sensor networks. Wireless Personal Communications, 69(4), 1799–1817.

    Article  Google Scholar 

  33. Mittal, N., Singh, U., & Sohi, B. S. (2017). A novel energy efficient stable clustering approach for wireless sensor networks. Wireless Personal Communications, 95, 2947–2971.

    Article  Google Scholar 

  34. Mittal, N., Singh, U., & Sohi, B. S. (2017). Harmony search algorithm based threshold-sensitive energy-efficient clustering protocols for WSNs. Ad Hoc & Sensor Wireless Networks, 36, 149–174.

    Google Scholar 

  35. Mittal, N., Singh, U., Salgotra, R., & Sohi, B. S. (2018). A Boolean spider monkey optimization based energy efficient clustering approach for WSNs. Wireless Networks, 24(6), 2093–2109.

    Article  Google Scholar 

  36. Mittal, N., Singh, U., Sohi, B. S. (2018). An energy aware cluster-based stable protocol for wireless sensor networks. In Neural computing and applications (NCAA) (pp 1–18).

  37. Mittal N., Singh U., Salgotra R., & Bansal M. (2019) An energy efficient stable clustering approach using fuzzy enhanced flower pollination algorithm for WSNs. Neural computing and applications (NCAA) (pp 1–25). https://doi.org/10.1007/s00521-019-04251-4.

  38. Mittal N., Singh U., Sohi B. S. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing 1–13.

  39. Kim J. M., Park S. H., Han Y. J., Chung T. M. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th international conference on advanced communication technology (Vol. 1, pp. 654–659).

  40. Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal of Information & Computational Science, 7, 767–775.

    Google Scholar 

  41. Lee, J. S., & Cheng, W. L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12, 2891–2897.

    Article  Google Scholar 

  42. Bagci, H., & Yazici, A. (2013). An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Applied Soft Computing, 13, 1741–1749.

    Article  Google Scholar 

  43. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151–165.

    Article  Google Scholar 

  44. Kumar G. S., Vinu P. M., & Jacob K. P. (2008). Mobility metric based leach-mobile protocol. In 16th International conference on advanced computing and communications (pp. 248–253).

  45. Wang, W., Du, F., & Xu, Q. (2009). An improvement of LEACH routing protocol based on trust for wireless sensor networks. In 5th international conference on wireless communications, networking and mobile computing (pp. 1–4).

  46. Liu, B., & Wu, Y. (2015). A secure and energy-balanced routing scheme for mobile wireless sensor network. Wireless Sensor Network, 7(11), 137.

    Article  Google Scholar 

  47. Chen, Z., He, M., Liang, W., & Chen, K. (2015). Trust-aware and low energy consumption security topology protocol of wireless sensor network. Journal of Sensors. https://doi.org/10.1155/2015/716468.

    Article  Google Scholar 

  48. Sandhya R., & Sengottaiyan N. (2016). S-SEECH secured-scalable energy efficient clustering hierarchy protocol for wireless sensor network. In International conference on data mining and advanced computing (SAPIENCE) (pp. 306–309).

  49. Rehman, E., Sher, M., Naqvi, S. H. A., Badar, Khan K., & Ullah, K. (2017). Energy efficient secure trust based clustering algorithm for mobile wireless sensor network. Journal of Computer Networks and Communications. https://doi.org/10.1155/2017/1630673.

    Article  Google Scholar 

  50. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In World congress on Nature and biologically inspired computing, 2009 (pp. 210–214). NaBIC 2009. IEEE.

  51. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  52. Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102.

    Article  Google Scholar 

  53. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–1. Information Sciences, 8, 199–249.

    Article  MathSciNet  Google Scholar 

  54. Arain, Q. A., et al. (2016). Clustering based energy efficient and communication protocol for multiple mix-zones over road networks. Wireless Personal Communications, 95(2), 411–428.

    Article  Google Scholar 

  55. Mittal, N. (2018). Moth flame optimization based energy efficient stable clustered routing approach for wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-6043-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, N., Singh, S., Singh, U. et al. Trust-aware energy-efficient stable clustering approach using fuzzy type-2 Cuckoo search optimization algorithm for wireless sensor networks. Wireless Netw 27, 151–174 (2021). https://doi.org/10.1007/s11276-020-02438-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02438-5

Keywords

Navigation