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Abstract
The development of wireless technologies and the popularity of mobile devices is responsible for generating large amounts

of trajectory data for moving objects. Trajectory datasets have spatiotemporal features and are a rich information source.

The mining of trajectory data can reveal interesting patterns of human activities and behaviors. However, trajectory data

can also be exploited to disclose users’ privacy information, e.g., the places they live and work, which could be abused by a

malicious user. Therefore, it is very important to protect the users’ privacy before publishing any trajectory data. While

most previous research on this subject has only considered the privacy protection of stay points, this paper distinguishes

itself by modeling and processing semantic trajectories, which not only contain spatiotemporal data but also involve POI

information and the users’ motion modes such as walking, running, driving, etc. Accordingly, in this research, semantic

trajectory anonymizing based on the k-anonymity model is proposed that can form sensitive areas that contain k - 1 POI

points that are similar to the sensitive points. Then, trajectory ambiguity is executed based on the motion modes, road

network topologies and road weights in the sensitive area. Finally, a similarity comparison is performed to obtain the

recordable and releasable anonymity trajectory sets. Experimental results show that this method performs efficiently and

provides high privacy levels.

Keywords Mobile services � Location-based services � Semantic trajectory � Trajectory privacy protection

1 Introduction

Due to the development of mobile devices and positioning

technologies, various kinds of mobile positioning devices,

such as car navigation systems, GPS-enabled mobile

phones, mobile wearable devices, tablet computers and

position sensors, have been made available to consumers in

recent years [1–5]. The popularity of mobile positioning

devices has spawned numerous location-based services

(LBSs) [6–8] and has generated large amounts of locational

data as well [9–11]. According to statistics, each moving

object in LBSs transmits its current location every 15 s on

average, which indicates that more than 100 million pieces

of location information are transmitted per second. And the

data are extensively applied in everyday life, thereby

constantly influencing people’s lifestyles, working habits

and thinking modes. By making observations of a person’s

personal life, it is possible to provide a person with con-

venient location-based services by speculating on where he

or she lives or where he or she goes every day. For

instance, it is feasible to design ideal travel routes for a

person in accordance with the person’s available quantity

of motion trajectory data [12–16].

Location data have created both benefits and problems,

and of the problems, privacy disclosure is the most
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prominent issue [17–23]. In fact, the abuse of location data

may lead to the disclosure of a user’s most important

personal information such as their personal interests, social

relationships and living habits. For instance, potential

attackers can not only identify the locations visited by a

mobile user but also discover their home address and job

location by analyzing their spatiotemporal trajectories.

They can even derive private information such as a user’s

behavioral patterns from their daily motion trajectories,

thereby posing a great threat to the user’s safety and

property. There have been cases when exposure of trajec-

tory data caused damaging privacy disclosures and threat-

ened a user’s personal safety.

Researchers have proposed multiple solutions for solv-

ing privacy disclosure problems caused by LBSs. The

existing privacy protection methods for LBSs mainly

include data encryption, pseudoaddresses, space conver-

sions and anonymity areas [24–29]. These methods are

mostly focused on the location data, without delving into

the relationships between the location data and the users, or

the privacy implications of the location data. It is difficult

to capture the significance of real-time human activities.

Therefore, a growing number of researchers have studied

location privacy protection based on semantics, with a view

toward achieving a deeper level of protection. The pro-

tection of semantics-based moving object trajectories has

also become a focus of more research [30–32].

With the increasing awareness of semantic information

in trajectories, trajectory protection methods have gradu-

ally developed into methods based on semantics. Monreale

et al. classified locations in order to generate generalized

user access addresses, which enabled the creation of

anonymity trajectory datasets that ensured that the proba-

bility of identifying user IDs and accessing sensitive

locations was lower than a given threshold [33]. Lee et al.

also imposed a threshold on the information obtainable by

adversaries [34]. They suggested exploring location

semantics by observing users’ length of stay. Moreover, the

ratio of suppressed frequent sequences is a direct indication

of anonymized data quality for trajectory pattern mining

[35, 36]. This paper regards the length of stay as a semantic

feature extractable for LBSs and considers it a location

semantics metric that can protect users’ privacy. It should

be noted that the above methods merely involve semantic

privacy protection for stay points. In fact, semantic tra-

jectories can contain more information (i.e., motion modes

of moving objects such as walking, running, cycling and

driving) due to new developments in mobile technology.

Therefore, it is necessary to adopt different trajectory pri-

vacy protection strategies for different motion modes.

More importantly, increases in the semantic information

contained in trajectories have posed greater challenges for

user privacy protection.

This paper presents a semantic-based trajectory anon-

ymity protection method. The semantic trajectory is mod-

eled based on the data it obtains including longitude,

latitude, timestamp, POI yellow page information, velocity

and motion mode. Subsequently, users’ sensitive points

(stay points) are identified and combined with the different

motion modes as inputs for a pruning process. The pruning

processing is carried out in the geographical space that

covers the sensitive points. Finally, similarity comparisons

are performed to obtain recordable and releasable anon-

ymity trajectory datasets.

2 Semantic trajectory anonymity protection
algorithm

In this section, an algorithm is proposed, and it consists of

four main steps, as follows:

Step 1 Semantic trajectory modeling: The algorithm

preprocesses the raw data and extracts spatiotemporal

sequences, important spatial points (starting points, end

points and stay points), velocities and motion modes. In

other words, the raw data acquired are transformed into

semantic trajectories as defined in Definition 1.

Step 2 Sensitive area construction: The sensitive point is

processed based on the k-anonymity model, eventually

forming a coverage area that contains k - 1 POI points

of a similar type to the sensitive point. The coverage area

is referred to as the sensitive area.

Step 3 Trajectory ambiguity: Trajectory ambiguity is

performed according to the users’ motion modes, the

road network topologies and the road weights in the

sensitive area. The targets of ambiguity mainly include

the start–end points and the stay points. The ambiguity

methods can be divided into two types, trajectory

segment pruning and trajectory segment addition.

Step 4 K-anonymity set construction: A similarity

comparison is performed to form an anonymity set that

contains the other k - 1 trajectories with the highest

similarity.

Step 2 can effectively prevent semantic location attacks

and reduce the attack probability to 1/K. Step 3 can

effectively prevent maximum velocity attacks. It prunes the

existing trajectory segments or constructs new trajectory

segments, thereby preventing the attackers from effectively

calculating the users’ range of motion. Finally, the privacy

protection effects can be significantly improved by

releasing the trajectory k-anonymity datasets.
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2.1 Semantic trajectory modeling

Semantic information such as velocity, timestamp and

motion mode is all directly obtainable from the client. The

sampling locations merely contain the latitude and longi-

tude and contain no actual semantic information. The

acquisition of useful semantic location information

depends on the client and the GIS server. This section

mainly describes how to extract the start–end and the stay

points from the original location data. The start–end point

refers to the starting and the ending points of a trajectory,

while the stay point refers to the locations visited by mobile

users. Both contain important semantic information on the

moving objects and are regarded as sensitive points that

need special protection. Therefore, semantic trajectories

can be defined as follows:

Definition 1 The semantic trajectory model is expressed

as ST =h(x0,y0,z0,p0,s0,w0),…,(xn,yn,zn,pn,sn,wn) i, where xi,

yi, zi, pi, si and wi represent the longitude, latitude, times-

tamp, POI yellow page information, velocity and motion

mode, respectively.

There are mainly two methods for extracting the stay

points. One method is to extract stay points based on the

length of stay, which is also the simplest method. It is

necessary to set a time threshold, tth, when this method is

adopted. A stay occurs when the time interval between two

consecutive sampling locations is greater than tth and the

distance between the two locations is smaller than the

displacement threshold dth. Another method is to extract

stay points based on the sampling density, which is

essentially a supplement to the first method. Users tend to

move at a low velocity when they stop at a certain outdoor

location. Therefore, the actual stay points of users can be

obtained by clustering low-velocity sampling points (the

velocity is close to 0), as shown in Fig. 1.

In practice, the two methods are usually combined,

thereby obtaining important location information.

2.2 Sensitive area construction

The entire geographic space is divided into several grid

areas before sensitive area construction and detonated as

SGm�n ¼ fGði; jÞj1� i�m; 1� j� ng. Based on the actual

conditions of the city where the objects are located and the

roads shared by users, the unit length Dl of each grid area

Gði; jÞ can range from 0.02 to 0.05 latitude and longitude

coordinate intervals. Here, we select the intervals based on

latitude and longitude coordinates mainly because the road

network is generally stored in the spatial database in the

latitude and longitude format.

Second, each grid area G is further divided into k � k

subgrids Gk�k ¼ fgði; jÞj1� i� k; 1� j� kg. The unit

length of each subgrid is a 0.006 latitude and longitude

coordinate interval, corresponding to an actual length of

approximately 1 km. This unit of length not only achieves

high computational accuracy but also reduces computa-

tional labor.

Sensitive area construction can be performed after

dividing the areas and obtaining the semantic trajectories.

This project adopts the k-anonymity model for sensitive

area construction, that is, the area must contain at least

k - 1 location points of a similar type.

The sensitive area constructed based on the k-anonymity

model can be quickly obtained through a k-nearest neigh-

bor query of the GIS database. This project adopts the

PostGIS spatial database – a database that can be obtained

through the following query statements:

SELECT g1.gid g2.gid FROM points as g1, polygons g2 
WHERE g1.gid <> g2.gid AND g1.type = g2.type
ORDER BY g1.gid, ST_Distance(g1.the_geom,g2.the_geom)

LIMIT k;

On the other hand, a MBB that satisfies the k value may

be too large, eventually reducing the availability of the

semantic trajectory. Therefore, it is necessary to determine

the maximum value for a MBB. This paper considers the

subgrid area that covers the sensitive point as the largest

MBB possible.

2.3 Trajectory ambiguity

The trajectory ambiguity refers to the ambiguity processing

of trajectories based on sensitive areas and other semantic

information. The targets of ambiguity mainly include start–

end points and stay points. The ambiguity method can be

divided into two types, namely, trajectory segment pruning

and trajectory segment addition. The pruning method, as

the name suggests, removes trajectory segments that con-

tain sensitive points. These trajectory segments tend to

exist in the vicinity of sensitive points, and users tend to

move at a low velocity in these areas. The addition method

involves constructing new trajectory segments and com-

bining them with real trajectory segments to form new

Fig. 1 The sampling density-

based method
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trajectories. The two methods can be combined together to

form new trajectories, thereby achieving the goal of user

privacy protection.

2.3.1 Start–end point ambiguity

The main steps for accomplishing start–end point ambi-

guity are as follows:

• The first step is to calculate the sensitive area.

• A trajectory can be directly pruned when the trajectory

contains the start–end point, involves the motion mode

of walking and satisfies the following two conditions:

– There are trajectory segments that contain different

motion modes in the sensitive area.

– The sensitive point is at least 300 m (200–500 m)

away from the end point of the trajectory section

that contains the starting point of the trajectory, or

the starting point of the trajectory section that

contains the end point of the trajectory. The

remaining trajectory segments will form new

semantic trajectories.

• When the conditions are not satisfied, it is necessary to

recalculate the weights of roads in the sensitive area and

select a point in the road with the lowest weight as the

new start–end point (the start–end point should be at

least 300 m away from a sensitive point). The point will

be combined with the starting point or ending point of

the original trajectory segment in the sensitive area to

form a new trajectory segment, eventually forming a

new semantic trajectory.

For instance, the semantic trajectory in Fig. 2 can be

considered to be ST = hSTs1,STs2i. STs1 mainly involves the

motion mode of walking and contains semantic informa-

tion of the starting point (home), while STs2 mainly

involves the motion mode of driving. Suppose that the

starting point (home) is set as a sensitive point. The first

thing to do is calculate the sensitive area (red rectangle in

the figure). Since the end point of STs1 is less than 300 m

from a sensitive point (home), the trajectory cannot be

simply pruned. It is necessary to recalculate the weights of

the roads in the sensitive area and select the road with the

lowest weight to construct a new trajectory segment. In the

figure, the blue road indicates an arterial road and has the

lowest weights. Therefore, the red point is selected as the

new starting point and combined with the black point to

form the shortest path. Consequently, a new trajectory

segment set ST = hSTs3,STs2i is formed.

2.3.2 Stay point ambiguity

In contrast to start–end point ambiguity, stay point ambi-

guity can directly prune a trajectory segment that contains

a stay point. The remaining trajectory segments can be

processed according to the length of stay.

• The length of stay exceeds the threshold Dt.

When the user stays at a location for a long time, a

recombination of the remaining trajectory segments will

lead attackers to search for abnormal semantic information

and obtain privacy information due to the rich semantic

information contained in the semantic trajectory. To

address this problem, this paper directly splits the

remaining set of trajectory segments and recombines the

trajectory segments by using start–end point ambiguity.

• The length of stay does not exceed the threshold Dt.

In this case, this paper performs ambiguity processing

on the semantic information of other trajectory segment

datasets in the sensitive area, to achieve the goal of sen-

sitive point protection. The ambiguity method mainly

includes velocity ambiguity (random average velocity) and

Fig. 2 Start-end point

ambiguity
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timestamp ambiguity (random average time). The ambi-

guity of velocity and time prevents the attackers from

directly obtaining abnormal semantic information, thereby

preventing them from obtaining information about the

sensitive point.

For instance, the semantic trajectory in Fig. 4 can be

considered to be ST = hSTs1,STs2,STs3i . STs1 and STs3

mainly involve the motion mode of driving, while STs2

mainly involves the motion mode of walking. In addition,

STs2 contains semantic information for the hospital. Sup-

pose that the hospital is set as a sensitive point. The first

step is to construct a sensitive area (red rectangle in the

figure). Subsequently, STst2 can be directly pruned and the

time interval between STst1 and STst3 can be evaluated.

If the time interval is less than the threshold Dt, it is

necessary to perform velocity and timestamp ambiguity on

STst1 and STst3 and reset the corresponding semantic

information. For instance, the average velocity is set to:

(dist(STs1) ? dist(STs3))/(time(STs1) ? time(STs2) ? time(STs3)).

If the time interval exceeds the threshold Dt, it is nec-

essary to split the remaining trajectory segment set and

recombine the trajectory segments by using start–end point

ambiguity. For instance, ST = hSTs1,STs2,STs3i in Fig. 3 is

split into ST1= hSTs1i and ST2= hSTs3i. Suppose the red

point is selected as a new start–end point; then, the new

trajectory sets are ST1
’ = hSTs1’i and ST2

’ = hSTs2’,STs3i,
respectively.

3 Trajectory set construction based
on the K-anonymity model

Trajectory sets can be constructed on the basis of the

k-anonymity model after semantic trajectory ambiguity is

accomplished. The construction of anonymity sets mainly

depends on two factors, namely, spatiotemporal similarity

and semantic similarity. Spatiotemporal similarity mainly

refers to the similarity of two trajectories in geospatial and

temporal dimensions, while semantic similarity mainly

refers to the semantic similarity of two trajectories for stay

points and motion modes.

3.1 Spatial distance measurement

In terms of spatial similarity, this paper adopts a similarity

algorithm based on the Hausdorff distance (HD). The HD

is a measure of the degree of similarity and is a defined

form of the distance between two sets of points. HD can

effectively calculate the distance between images without

establishing a corresponding relationship between the

templates and the sample pixels, and thereby, it is widely

used in the field of mode recognition.

Definition 2 Hausdorff distance (HD)

Given two point sets A = {a1,…,ap} and B = {b1,…,bq},

the HD between the two point sets can be calculated as

follows:

H A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þð Þ ð1Þ

where

h A;Bð Þ ¼ max
ai2A

min
bj2B

ai � bj

�
�

�
�

� �

ð2Þ

h B;Að Þ ¼ max
bj2B

min
ai2A

bj � ai

�
�

�
�

� �

ð3Þ

k�k is the distance paradigm between the two point sets A

and B.

Since the HD is highly sensitive to outliers such as noise

points, even a few noise points can significantly affect the

distance values. To address this problem, some scholars

have proposed the modified Hausdorff distance (MHD).

The MHD is defined as follows:

Definition 3 Modified Hausdorff distance (MHD)

H A;Bð Þ ¼ 1

ma

X

ai2A

min
bj2B

ai � bj

�
�

�
� ð4Þ

where ma is the number of objects in point set A.

The spatial distance between trajectories can be calcu-

lated by using the following equation.Fig. 3 Stay point ambiguity
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Definition 4 Given two point sets A = {a1,…,ap} and

B = {b1,…,bq}, the spatial distance between the two point

sets can be calculated as follows:

HspatialðA;BÞ ¼ maxðhspatialðA;BÞ; hspatialðB;AÞÞ ð5Þ

where

hspatial ¼
1

lA

X

ai2A

ai�1 � aik k þ ai � aiþ1k k
2

� min
bj2B

ai � bj

�
�

�
�

� �

ð6Þ

where lA is the total spatial length of trajectory A.

3.2 Temporal distance measurement

The temporal attributes (i.e., the timestamp) of trajectories

are generated along with the spatial sampling. It is mean-

ingless to discuss the temporal distance of moving objects

without considering the specific forms of the spatial tra-

jectories. Therefore, MHD can be also used to measure the

temporal distance between trajectories. The definition is as

follows:

Definition 5 Given two point sets A = {a1,…,ap} and

B = {b1,…,bq}, the temporal distance between the two

point sets can be calculated as follows:

HtemporalðA;BÞ ¼ maxðhtemporalðA;BÞ; htemporalðB;AÞÞ ð7Þ

where

htemporal ¼
1

tA

X

ai2A

tai�1
� tai

j j þ tai
� taiþ1

�
�

�
�

2
� tai

� tbj

�
�

�
�

� �

ð8Þ

where tA is the total temporal length of trajectory A.

3.3 Spatial–temporal distance measurement

The method of measuring the spatiotemporal similarity

between trajectories can be derived from the spatial and

temporal distance measurement methods.

Definition 6 Given two point sets A = {a1,…,ap} and

B = {b1,…,bq}, the spatiotemporal distance between the

two point sets can be calculated as follows:

Hspatial�temporalðA;BÞ ¼ ðHspatialðA;BÞ;HtemporalðA;BÞÞ ð9Þ

3.4 Semantic distance measurement

Cosine similarity is a measure of the similarity between

two nonzero vectors of an inner product space that mea-

sures the cosine of the angle between them. Since cosine

similarity can be applied to a comparison of vectors of any

dimension, it is widely used in similarity measurements,

especially in text similarity measurements. This paper

adopts the cosine similarity method to measure the simi-

larity between the semantic trajectories in stay points and

motion modes.

Cosine similarity is defined as follows:

Definition 7 Suppose that the semantic values of two

locations vectors are sem(A) and sem(B). The similarity

between the two semantic values can be expressed as

follows:

Si
simðA;BÞ ¼ semðAÞsemðBÞ

semðAÞk k semðBÞk k ð10Þ

where i indicates the semantic contents compared.

The cosine value is limited to a range of [0,1]. The

higher the semantic similarity between the two locations is,

the closer the cosine value is to 1. The lower the semantic

similarity is, the closer the value is to 0.

3.5 Semantic trajectory similarity measurement

Definition 8 The similarity between two semantic trajec-

tories STa and STb can be defined as follows:

The specific calculation steps are described below:

Step 1 Perform noise reduction on the two trajectories A

and B (the trajectory segments merely include the start–

end point, velocity outlier, stay point and road network

node).

Step 2 Interpolate the various points in trajectories A and

B into a third trajectory, to eliminate the impacts of

different sampling sizes, reference locations and

strategies.

Step 3 Calculate the spatial distance between the two

trajectories by using Eq. 5.

SimðSTa; STbÞ ¼ Hspatial�temproalðA;BÞ; 1

mpoi

X

Spoi
simðA;BÞ; 1

nway

X

Sway
sim ðA;BÞ

� �

ð11Þ
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Step 4 Calculate the temporal distance between the two

trajectories by using Eq. 7.

Step 5 Calculate the spatiotemporal similarity between

the two trajectories by using Eq. 9.

Step 6 Calculate the semantic similarity between the two

trajectories for the start–end and stay points.

Step 7 Calculate the semantic similarity between the two

trajectories for motion modes.

Step 8 Obtain the similarity between the two trajectories.

In summary, the pseudocode of the k-anonymity model-

based trajectory set construction algorithm is as follows:

4 Evaluation

The algorithm was written in Java and implemented on a

DELL Optiplex host (CPU Core: 2 Duo 2 GHz; RAM:

4096 MB). The relational database system and the GIS

database were Postgre9.1 and Postgis1.5, respectively. All

the road datasets in the experiment came from national

road datasets provided by OpenStreetMap. All the trajec-

tory information came from the MyMap App. The exper-

iment involved a total of 352,234 road data records and

36,825 trajectory records.

4.1 Overall performance

First, the overall performance of the algorithm was eval-

uated. We adopted the default grid division method to

divide the grids into subgrids with unit lengths of 0.006 of

the latitude and longitude coordinate interval (corre-

sponding to an actual length of about 1 km). We consid-

ered POI settings such as home, school, hospital, bank and

restaurant as the sensitive points and set the k value of the

sensitive area(sak) to 2, 3, 4 and 5. For the semantic tra-

jectory anonymity protection algorithm, we measured the

algorithm efficiency in the cases of k = 3, 5, 8 and 10, and

dataset amount ranges from 10 to 30 k separately and took

the average. The execution time of the algorithm is shown

in Fig. 4.

It can be seen from the figure that the average execution

time is lengthy, which indicates that the algorithm does not

have good efficiency. First, the algorithm needs to calculate

sensitive areas and sort the road weights in the trajectory

ambiguity process. Second, Dijkstra’s shortest-path algo-

rithm is adopted to construct new trajectory segments in

sensitive areas and regenerate new semantic trajectories.

For both of these reasons, the algorithm is time-consuming.

All the road network data are prestored in the GIS database

when the grid division method is adopted for sensitive area

construction. The construction of new trajectory segments

will be accelerated in that case. In other words, the overall

performance of the algorithm is improved by taking these

optimization measures. In general, the anonymity sets are

released when the database is offline; therefore, it has no

impact on the actual users.

4.2 Information loss rate

Information loss refers to the loss of the original trajectory

information caused by trajectory anonymization. It is cal-

culated by using the following equation:

IL ¼ Mpoi=Npoi ð12Þ

where k is the number of trajectories in the anonymity sets;

Mpoi is the number of sensitive points after ambiguity

processing; and Npoi is the number of sensitive points in the

original trajectory sets.

Figure 5 illustrates the information loss caused by an

anonymity set release. It can be seen from the figure that

the information loss rate gradually increases with the

increase in the k value. It is recommended that both k

values of sensitive area and semantic trajectory

anonymizing are set to a small threshold. Then, the privacy

level and information loss can both be acceptable.

Algorithm Semantic Trajectory Anonymizing based on K-anonymity Model
Input:

0{ ,..., }nST ST ST : semantic trajectory dataset; iST target semantic trajectory
Output:
AS( ST ): anonymized set of ST ;

Algorithm:
1:

=

begin
2: if AS < kthen
3: foreach jST in ST j iST ST do
4: computeSimilairty( iST , jST ); //fomular 5-12
5: S=(k-1)NN( iST );
6: AS.put(S);
7: returnAS;

≠
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4.3 Query error rate

The error rate of the spatial range query is also an impor-

tant measure of information loss. The so-called spatial

range count query means querying the number of moving

objects in a certain spatial area within a certain period of

time. It will inevitably produce a certain error after the

semantic trajectories are anonymously processed. The error

is represented by error and is obtained by calculating

Eq. 13.

error ¼ minðQðDÞ;DðD�ÞÞ
maxðQðDÞ;DðD�ÞÞ ð13Þ

where Q(D) is the value obtained by performing a spatial

range count query on the original trajectory data and Q(D*)

is the value obtained by performing a spatial range count

query on the data after privacy protection processing. The

query error rate is shown in Fig. 6.

It can be seen from the figure that the query error rate is

less than 20% in the case of k = 3 and sak is 2 or 3. In

addition, the error rate increases with the increase in the k

value. Using the k-anonymity model generally protects

semantic trajectory privacy. Considering the computational

efficiency and query accuracy, the k value usually ranges

between 3 and 5.

5 Conclusion

With regard to publishing trajectory data, this paper pro-

poses a privacy preserving method that adopts semantic

trajectory anonymizing based on the k-anonymity model.

In contrast to traditional trajectory data models, which only

contain the spatiotemporal attributes, our semantic trajec-

tory model incorporates semantic information from sensi-

tive points and users’ motion modes. The algorithm first

preprocesses the raw data and extracts spatiotemporal

sequences, important spatial points, velocities and motion

modes. Sensitive points are processed based on the

k-anonymity model, eventually forming a coverage area

that contains k - 1 POI points of a similar type to the

sensitive points that form a sensitive area. Trajectory

ambiguity is accomplished based on the motion modes,

road network topologies and road weights in the sensitive

area. Finally, a similarity comparison is performed to form

an anonymity set that contains the other k - 1 trajectories

with the highest similarity. The experimental results show

Fig. 4 Overall performance of the algorithm

Fig. 5 Information loss rate Fig. 6 Query error rate
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that the method performs efficiently and provides an out-

standing level of privacy.
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