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Abstract

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives
and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation
of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs,
researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of
microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste,
and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumula-
tion, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating
efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing
microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-
recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising
biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates

prospects in sustainable REE resource management and environmental remediation.
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Introduction

Rare earth elements (REEs) are groups of 17 elements in
the periodic table including yttrium, scandium and 15 lan-
thanides. Despite their name, REEs are not actually rare
in terms of their abundance in the Earth’s crust. However,
they are often dispersed in low concentrations, making their
extraction and separation complex and expensive. Due to
their importance in modern technologies, there has been
growing concern about the supply and sustainability of
REEs. They are integral to many aspects of human lives,
from the devices we use to the technologies that help address
environmental challenges. They are critical in a variety of
products including permanent magnets in electric motors
or wind turbines, catalysts, lighting, electronics, advanced
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weapons systems or clean energy technologies like solar
panels and rechargeable batteries (Balaram 2019). China
has historically dominated the production of rare earths,
which has led to concerns about supply chain security. For
example, US imported 80% of REEs from China in 2022 and
EU imports up to 98% (U.S. Geological Survey 2023; Euro-
pean Commission 2023). Efforts are being made in various
countries to diversify rare earth production and recycling
methods to reduce dependency on a single source (Brown
et al. 2023).

REEs are primarily mined and extracted from ore
sources like monazite, bastnasite, or xenotime by heat-
ing in acids and solvents (Congressional Research Service
2020). Solid and liquid REE-bearing wastes are generated
in various industries (Omodara et al. 2019). Notably, there
has been an explosive increase in waste electric and elec-
tronic equipment (WEEE). The WEEE were estimated at
over 52 million metric tons by 2021 and are considered as
secondary sources of REEs (Isildar et al. 2019). Conven-
tional physicochemical methods of REE recovery (e.g.,
solvent extraction, ion exchange, coprecipitation, and crys-
tallization) are energy-intensive and often cause further
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pollution. Low-cost and eco-friendly technologies includ-
ing biosorbents, bio-electrochemical systems, bioleach-
ing, and biomineralization, have become alternatives in
the recovery of REEs (Yu et al. 2020). Microorganisms,
including bacteria, algae, fungi, yeast and archaea, have
been found to play a significant role in the natural cycling
of REEs and researchers are exploring the potential of
harnessing these microorganisms for the purpose of recov-
ering REEs from various sources (Jalali and Lebeau 2021).
However, a relatively low recovery rate and selectivity
severely hinder their large-scale applications. Neverthe-
less, analyses in terms of economic perspectives indicate
that REE bio-recovery from waste materials may be a cost-
effective approach. This focus was expanded to exploit
novel strain resources, genetic engineering of strains and
other strategies to improve bio-recovery efficiency (Jung
et al. 2023).

The bio-recovery of REEs include particularly bioleach-
ing, biosorption or bioaccumulation (Fig. 1). Bioleaching
is based on dissolving REEs from the mineral matrix with
organic acids produced by some bacteria and archaea (Dev
et al. 2020). Biosorption is a passive, non-metabolic pro-
cess where REEs are bound to functional groups (such
as carboxyl, hydroxyl, and phosphate groups) on the cell
walls of both living and dead cells (Giese 2020). In con-
trast, bioaccumulation is an active process where metals
must enter the cell and accumulate inside. Metal uptake
is only possible in living cells (Zabochnicka-Swiatek and
Krzywonos 2014). The mechanisms of uptake and bio-
recovery of REEs on the cellular level are schematically
summarized in the Fig. 2.

Mechanisms of bio-recovery
Bioleaching

Bioleaching is a process by which microorganisms, usu-
ally bacteria or fungi, are used to extract metals from ores,
minerals, or secondary sources (Adentuji et al. 2023; Devi
and Ganesh 2023). This method is an alternative to tradi-
tional chemical or physical processes for metal extraction.
Bioleaching is particularly effective for the recovery of met-
als from low-grade ores or complex mineral sources that are
not easily processed using conventional methods.

The bioleaching process generally involves the follow-
ing steps: (a) Attachment and colonization: microorgan-
isms attach themselves to mineral surfaces; (b) Metabolic
activity: Microorganisms release organic acids, enzymes,
and other metabolites, promoting the dissolution of minerals
and leaching of metals; (c) Recovery: Dissolved metals can
be recovered through various methods, such as precipitation,
solvent extraction, ion exchange or bio-methods.

Bioleaching has several advantages over traditional meth-
ods, including lower energy consumption, reduced environ-
mental impact, and the ability to process ores using methods
that are not economically viable using conventional tech-
niques (Pollmann et al. 2018). It is used for the extraction
of various metals including REEs. However, the success of
bioleaching depends on factors such as the type of microor-
ganisms used, characteristics of the ore, and the environmen-
tal conditions of the bioleaching operation (temperature, pH,
pulp density, particle size, medium composition, aeration
and stirring) (Owusu-Fordjour and Yang 2023).
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Fig. 1 Scheme of bio-recovery of rare earth elements
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Fig.2 Scheme of the mechanisms of uptake and bio-recovery of rare
earth elements. Solid to aqueous phase mobilization occurs through
(i) redoxolysis, (ii) acidolysis and (iii) complexolysis methods. REEs
can either (a) bind with functional groups on microbial surface—

Biosorption

Biosorption is defined as the transport of toxic metals from
aqueous solutions to the surface of dead or living biomass
(Jais et al. 2017). Research is focused on removal of toxic
metals or metalloids by biomass of different origins. In con-
trast to physical and chemical methods, biosorption is quick,
reversible, inexpensive, and environmentally friendly. Apart
from plants, algae are well studied naturally inspired biosor-
bents that offer various advantages (Goswami et al. 2022).
These are mainly: easy production, cultivation under a wide
range of growth conditions and high metal binding capac-
ity (Ramirez-Calderén et al. 2020). Cell walls play a main
role in the biosorption of metals, exposing binding sites for
metal ions. The functional groups (OH™, SO42‘, NH, etc.)
of polysaccharides, lipids, and proteins of algal cell walls
(these differ in red, brown, or green algae) act as binding
sites (Cheng et al. 2019; Giese 2020). The most studied
microalga for biosorption is the green alga Chlamydomonas
reinhardtii due to its unicellular nature, rapid growth, and
ability to adapt to various environments (Mantzorou et al.
2018). Its cell wall structure and surface characteristics make

biosorption, (b) accumulate inside the cell through channels—bio-
accumulation, or (c) get precipitated with inorganic phosphate liber-
ated through phosphatase enzymes—bioprecipitation (Lhamo and
Mahanty 2022)

it suitable for adsorbing heavy metals and other pollutants,
making it a promising candidate for biosorption studies. In
addition, its relatively simple genetic arrangement facilitates
genetic engineering for enhanced biosorption capabilities.

There are several reports that show that living algal bio-
mass can be effectively used for biosorption, but mostly
inactive biomass and non-living algae have been used for
this purpose, including carbonized Parachlorella biomass
used for recovery of REEs from clay minerals (Ponou et al.
2014). According to Kumar et al. (2009), five green marine
macroalgae, namely Cladophora fasicularis, Ulva lactuca,
Chaetomorpha sp, Caulerpa sertularioides, Valoniopsis
pachynema can accumulate significant amounts of heavy
metals.

Bioaccumulation
Bioaccumulation has been referred to as a two-phase mecha-
nism. The first phase represents passive metal binding to

the cell wall. A second phase, metal uptake into the cell,
is only possible in living cells (Zabochnicka-Swiatek and
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Krzywonos 2014). Microalgae use various strategies to
maintain intracellular metal concentrations at optimal lev-
els and to prevent the entry of non-essential metals in order
to maintain inner metal homeostasis (Torres et al. 2008).
These mechanisms include metal exclusion or metallic efflux
systems and intracellular accumulation. Intracellular accu-
mulation of metals represents an important mechanism for
metal tolerance and detoxification (Sriprang and Murooka
2007). Microalgae can produce chelators that are able to
complex with metals. These complexes are then localized in
the cell to avoid the toxic effects of metals (Nowicka 2022).
Metallothioneins (MTs) and phytochelatins (PCs) are the
most powerful compounds in metal detoxification, probably
having independent functions (Shukla et al. 2016). MTs are
metal binding proteins controlling physiological intracellular
metal levels (Gaur and Rai 2001). Molecules of MTs pos-
sess a number of sulthydryl groups that allow the binding of
metals (Joshi et al. 2016). PCs are short polypeptides found
in higher plants, algae (including cyanobacteria), yeasts and
nematodes (Wang et al. 2017), playing a role in metal detoxi-
fication (Shukla et al. 2016). They were proven to be syn-
thesized and used in algae for detoxification (Balzano et al.
2020). Metals bound to PC are stored in vacuoles, playing a
key role in the metal detoxification of the cytoplasm (Joshi
et al. 2016; Sriprang and Murooka 2007). Several studies
have shown that REEs can accumulate in chloroplasts of
algae (Guo et al. 2000; Shen et al. 2002, 2003). Similarly,
the REEs Nd and Ce preferentially accumulated in chloro-
plasts in the green alga Desmodesmus quadricauda while La
and Gd were found in the cytoplasm (Rezanka et al. 2016).

Bio-recovery by microalgae

Common microalgae that can be used for metal recovery or
wastewater treatment cover a wide spectrum of green, red
and brown algae and cyanobacteria. Thanks to their ability
to fix CO, and grow phototrophically they are promising cell
factories to produce bioenergy and high-value products with
potential for a circular economy (Anyaoha et al. 2024; Gos-
wami et al. 2023). Except for photoautotrophy, there are sev-
eral types of algae able to grow under chemoheterotrophic
or mixotrophic metabolic regimes, which is beneficial in
the use of industrial wastewaters containing high organic
loads. The most studied strains from this point of view are
the green alga Chlorella vulgaris, and the cyanobacterium
Arthrospira platensis, cultivated on a wide range of waste-
waters of different origins (Wollmann et al. 2019).
Microalgae specialized for growth on harsh habitats (so
called extremophiles) are potential candidates for biotech-
nologies. Strains isolated from such places can grow under
severe conditions needed for metal recovery (Malavasi et al.
2020). Such conditions include very low or very high pH
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(pH2 or pH11), extreme temperatures (< 10 °C or > 40 °C),
high organic doses, high salt, or high metal levels. Extre-
mophiles consist of two categories—extremotolerant micro-
organisms that can survive under extreme conditions but
grow optimally under normal conditions and those that need
extreme conditions for their metabolic activity (Rampelotto
2013; Varshney et al. 2015).

One of the promising extremophiles with a strong bio-
technological potential is the unicellular red alga Galdieria
sulphuraria (Ciikové et al. 2019b). Strains of this Rhodo-
phyta can grow not only phototrophically but also mixo-
trophically and heterotrophically on 27 different sugars and
sugar alcohols; this is unique among microalgae (Gross and
Schnarrenberger 1995; Nahlik et al. 2021). G. sulphuraria
withstands highly acidic environments, up to pH 1.8, and
temperatures up to 56 °C (Merola et al. 1981; Selvaratnam
et al. 2014). Metabolic diversity, combined with the produc-
tion of high value phycobiliprotein phycocyanin, makes G.
sulphuraria a very promising tool for biotechnology (Wan
et al. 2016). The next promising acidophilic strain is the
green alga Chlamydomonas acidophila isolated from an
acidic river in a mining area with a very low pH, and able
to grow mixotrophically on glucose, glycerol, and starch
(Cuaresma et al. 2011). It produces antioxidants such as the
carotenoid lutein (Garbayo et al. 2008).

The advantage of using microalgae for bio-recovery lies
mainly in their simple cell structures, easy access to CO, and
nutrients and the ability to grow in extreme environments
(Leong and Chang 2020). As a result, they are more effi-
cient in converting energy into biomass (Priyadarshani et al.
2012). Several species of microalgae are already known to
be powerful accumulators of toxic metals (e.g., Scenedesmus
subspicatus, Chlamydomonas sp., Cyclotella cryptica, Phae-
odactylum tricornutum, Porphyridium purpureum, Phor-
midium ambiguum, Pseudochlorococcum typicum, Chlorella
kessleri, Chlorella vulgaris, Phormidium sp., Rhizoclonium
hookeri, Spirulina sp., etc.) (Guleri et al. 2020; Schmitt et al.
2001; Shanab et al. 2012). Their success strongly depends
on conditions and species used. Moreover, the microalgal
biomass can be further reused for other applications such as
biofuel production, aquaculture and animal feed, fertilizers,
or for the biosynthesis of bioactive compounds such as vita-
mins and pigments (Goswani et al. 2022; Brar et al. 2017;
Schnurr and Allen 2015).

Bio-recovery of REEs
Bacteria, yeast, and fungi
Bio-recovery or bioleaching of REEs using bacteria, yeast,

and fungi is an innovative and environmentally friendly
approach to extract these valuable materials from ores (namely
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monazite, bastnasite, or apatite) or various industry wastes
(Vo et al. 2024). REEs occur in various forms as phosphates,
sulphates, or silicates in these primary resources. Secondary
REE resources typically comprise wastes like phosphogyp-
sum, red mud, coal-related resources, and WEEE (Fathol-
lahzadeh et al. 2019; Shi et al. 2023). Traditional extraction
methods often involve the use of harsh chemicals and can have
significant environmental impacts. Bio-recovery, on the other
hand, harnesses the metabolic capabilities of microorganisms
to selectively leach and recover REEs (Danouche et al. 2024).
Microorganisms active in bioleaching can be both autotrophic
and heterotrophic.

Certain bacteria, such as acidophilic bacteria, are well-
suited for bioleaching. They thrive in acidic environments and
produce organic acids that help dissolve minerals containing
REEs. Bacterial strains like Acidithiobacillus ferrooxidans and
Acidithiobacillus thiooxidans were studied for their ability to
solubilize REEs from ores (Hong et al. 2023; Hosseini et al.
2022; Tayar et al. 2022). Bioleaching by bacteria can be fol-
lowed by accumulation of REEs by algae Euglena sp. (EugVP)
and Chlamydomonas sp. (ChlSG) (Garcia-Balboa et al. 2022).

Some yeast species were found to play a role in bioleach-
ing processes. Yeasts like Yarrowia lipolytica have demon-
strated the ability to extract REEs from ores or electronic
waste (Ferreira et al. 2022; Shen et al. 2023). Yeasts often
produce organic acids and excrete metabolites that facilitate
the dissolution of minerals and enhance the availability of
REE:s.

Fungi are also employed in bioleaching due to their abil-
ity to produce organic acids and enzymes that can break
down mineral structures. Fungal species like Aspergillus
niger or Penicillium spp. were investigated for their poten-
tial to extract REEs and were reported as being the two most
common chemoautotrophs used for bioleaching (Owusu-
Fordjour and Yang 2023; Zhou et al. 2024). Microorgan-
isms efficient in the bioleaching of REEs are summarized
in Table 1.

Benefits of bio-recovery/bioleaching include reduced
environmental impact, lower energy consumption, and often,
a higher selectivity for target elements compared to con-
ventional methods. Harnessing the biological capabilities of
bacteria, yeast, and fungi for the bio-recovery of REEs holds
great promise for future sustainable and eco-friendly mining
practices. However, challenges such as the slow kinetics of
the process and the need for optimization remain areas of
ongoing research.

Algae

Biosorption of REEs by algae was described, for example,
in the seaweed Sargassum sp., where biomass quickly and
efficiently acquired Eu, Gd, La, Nd, Pr and Sm (Oliveira

and Garcia 2009; Oliveira et al. 2011, 2012). Similar
results were obtained with other species of brown seaweed,
such as Sargassum polycystum (Diniz and Volesky 2005,
2006) Sargassum hemiphylum, Ulva pertusa, Schizyme-
nia dubyi (Kano 2013) and Turbinaria conoides (Vijayara-
ghavan et al. 2010, 2011). Gracilaria gracilis was able to
efficiently accumulate, in 70% yield, low concentrations
(0.5 mg/1) of REEs (Y, Ce, Nd, Eu and La) occurring in
wastewater . The ability of G. gracilis to uptake REEs
from such low concentrations overcomes one of the great-
est difficulties in recycling these elements so far (Jacinto
etal. 2018). A promising candidate for the selective recov-
ery of Sc and REEs from the aquatic environment is the
seaweed Posidonia oceanica (Ramasamy et al. 2019).
Macroalga Ulva sp. was used for recovery of REEs from
industrial wastewaters (Manikandan and Lens 2022; Viana
et al. 2023).

Also, some microalgae, such as Chlorella spp. and Nan-
nochloropsis spp. or cyanobacteria Microcystis spp. were
shown to be active biosorbents of REEs (La** and Ce’*)
(Richards and Mullins 2013; Zhou et al. 2004). The abil-
ity to accumulate REEs has also been demonstrated in the
red alga G. sulphuraria from aqueous solutions contain-
ing a mixture of Nd**, Dy** and La®* at pH 2.5, with
an efficiency higher than 90% and at a lanthanide con-
centration of 0.5 ppm (Minoda et al. 2015). The authors
also showed that REEs accumulated inside cells, i.e. they
were not only adsorbed onto the cell wall. G. sulphuraria
accumulated significant levels of Ce, Nd, La and Y from
red mud, a byproduct of alumina production (Nahlik et al.
2023), and REEs from waste luminophores (Singh et al.
2023). Another red alga Galdieria phlegrea was used to
test bioaccumulation of REEs from luminophores from
fluorescence lamps and energy saving light bulbs added
into the medium in the form of a powder. Algal cells were
cultured mixotrophically in a liquid medium with the
addition of glycerol as a source of carbon. G. phlegrea
could grow in the presence of luminophores and accu-
mulate REEs (Cizkova et al. 2021). The cyanobacterium
Anabaena accumulated dissolved Eu, Sm and Nd and
formed Eu particles inside its cell (Fischer et al. 2019).
Successful biosorbents of La are also immobilized micro-
algal cells Ankistrodesmus sp. and Golenkinia sp. (Correa
et al. 2016). Recovery of REEs from red mud, was suc-
cessfully tested in three species of green microalgae D.
quadricauda, C. reindhardtii and Parachlorella kessleri.
The best growing species was D. quadricauda (2.71 cell
doublings /day), which accumulated REEs to the highest
level (27.3 mg/kg/day), compared with C. reinhardtii and
P. kessleri (Cizkova et al. 2019a). As a promising accumu-
lator of REEs, N. oculata was studied, accumulating up to
83% of Ce (Wu et al. 2022). Algae and cyanobacteria effi-
cient in the recovery of REEs are summarized in Table 2.
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Table 1 Bacteria, yeasts and fungi efficient in REE recovery

REE Microorganism Mechanism  Conditions References
La Magnetospirillum magneticum Biosorption  batch, 4d, 30 °CC, pH6 Mohammadi et al. (2022)
Saccharomyces cerevisiae Biosorption  batch, 30 °CC, pH4 Di Caprio et al. (2016)
Ce, Dy, Er, Eu, Gd, Ho, La, Acidophilium multivorum Bioleaching  batch, 15d, 30 °CC, pH3 Garcia-Balboa et al. (2022)
Lu, Nd, Pr, Sm, Tb, Tm Leptospidillum ferriphilum Bioleaching  batch, 15d, 30 °CC, pH3
La, Nd, Ce; Yarrowia lipolytica IM-UFRJ  Bioleaching  batch, 45 min, 50 °CC Ferreira et al. (2022)
REE ore 50678) Bioleaching  batch, pH6 Shen et al. (2023)
Yarrowia lipolytica
Heavy REEs Bacillus subtilis Biosorption  batch, 2-4d, 30 °CC Breuker et al. (2020)
Leinsingeria methylohalidi- Biosorption  batch, 2d, 20 °CC Takahashi et al. (2005)
vorans
La, Sm Bacillus subtilis-alginate Biosorption  batch, 1 h, 30 °CC Coimbra et al. (2019)
Bacillus subtilis Biosorption  batch, 20 min, 30 °CC, pH3 Giese and Jordao (2019)
Gd, Dy, Yb, Lu Saccharomyces cerevisiae Biosorption  batch, 2-4d, 30 °CC Breuker et al. (2020)
La, Nd, Dy, Yb Pichia naganishii Biosorption  batch, 2-4d, 30 °CC Breuker et al. (2020)
Preference for: Gd Pichia sp. Biosorption  batch, 2-4d, 30 °CC Breuker et al. (2020)
Preference for: Ce, Nd, Gd, Dy Catenulostroma chromoblas- Biosorption  batch, 2-4d, 30 °CC Breuker et al. (2020)
tomyces
Preference for: Gd, Yb, Lu Pezicomycotina sp. Biosorption  batch, 10d, 30 °CC Breuker et al. (2020)
Preference for: Nd, Gd, Gy, Lu  Fusarium sp. Biosorption  batch, 24 d, 30 °CC Breuker et al. (2020)
heavy REEs Escherichia coli Biosorption  batch, 30 min, 37 °CC Takahashi et al. (2005)
Park et al. (2020)
La, Eu, Yb Pseudomonas aeruginosa Biosorption  batch, 30 °CC, pHS5 Texier et al. (1999)
Nd Kluyveromyces marxianus Biosorption  batch, pH1 Vlachou et al. (2009)
Candida colliculosa Biosorption  batch, pH1
Debaromyces hansenii Biosorption  batch, pH1
Saccharomyces cerevisiae Biosorption  batch, pH1
Ce; Aspergillus niger Biosorption;  batch, 10d, 30 °CC, pH5 Cheng et al. (2022)
REEs from industry wastes Aspergillus flavus Bioleaching  batch, 3d, 28 °CC, pH2 Sallam et al. (2014)
Bacillus licheniformis Bioleaching  batch, 3d, 28 °CC, pH2 Barnett et al. (2020)
Bioleaching  batch, 25 °CC, pH2 Bahaloo-Horeh and Mousavi
Bioleaching  semicontinuous, 4d, 30 °CC, (2022)
pH5.3 Shen et al. (2023)
Ma et al. (2023)
Castro et al. (2023b)
La, Ce Agrobacterium sp. HN1 Biosorption  batch, 2 h, 30 °CC, pH6.8 Xu et al. (2011)
Sc,La, Sm, Y Candida utilis Biosorption  batch, pH5 Korenevsky et al. (1999)
Eu Bacillus thuringiensis Biosorption  batch, 2d, pH8 Pan et al. (2017)
Tb Caulobacter crescentum Biosorption  batch, 20 min, 30 °CC, pH6 Park et al. (2016)
REEs Arthrobacter niicotianae Bioleaching  batch, 30 min Park et al. (2020)
REE ore Aspergillus niger Bioleaching  batch, 7d, 38 °CC, pH5 Zhou et al. (2024)
Acidithiobacillus ferrooxidans Bioleaching  batch, 60d, 30 °CC, pH3 Fatollahzadeh et al. (2018b)
Gluconobacter oxydans Bioleaching  batch, 5d, 30 °CC, pH3 Tian et al. (2022)
Gao et al. (2023)
REEs from phosphogypsum; Acidithiobacillus thioxidans Bioleaching  batch, 8d, 30 °CC, pH3 Tayar et al. (2022)
gold mine Hong et al. (2023)
Hosseini et al. (2022)
REEs from monazite Enterobacter aerogenes Bioleaching  batch, 18d, 30 °CC Fathollahzadeh et al. (2018a)
Penicillium sp. Bioleaching  batch, 8d, 30 °CC Corbett et al. (2018)
Pantoea agglomerans Bioleaching  batch, 14d, 37 °CC Castro et al. (2023a)
Pseudomonas putida Bioleaching  batch, 14d, 37 °CC
Burkholderia thailandensis Bioleaching  batch, 21d, 30 °CC, pH5.3
REEs from fly ash Candida bombicola Bioleaching  batch, 3d, 28 °CC, pHS5.5 Park and Liang (2019)
Phanerochaete chrysosporium  Bioleaching  batch, 3d, 28 °CC, pH5.5
Cryptococcus curvatus Bioleaching  batch, 3d, 28 °CC, pHS5.5
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Table 2 Algae and cyanobacteria efficient in REE recovery

REE Alga Mechanism Conditions References
Nd Ankistrodesmus gracilis Biosorption batch, 1d, pH1.5 Palmieri et al. (2000)
Ankistrodesmus densus Biosorption batch, 1d, pH1.5 Guo et al. (2000)
Monoraphidium sp. Biosorption batch, 1d, pH1.5 Shen et al. (2002)
Chlorella minutissima Biosorption batch, 1d, pH1.5 Heilmann et al. (2015)
Euglena gracilis Bioaccumulation  batch, 30 min
Chlamydomonas reinhardtii ~ Biosorption batch, 3 h
Arthronema africanum Biosorption batch, 3 h
Calothrix brevissima Biosorption batch, 3 h
Chlorella sorokiniana Biosorption batch, 3 h
Euglena mutabilis Biosorption batch, 3 h
Euglena stellata Biosorption batch, 3 h
Euglena viridis Biosorption batch, 3 h
Galdieria sulphuraria Biosorption batch, 3 h
Lyngbya taylori Biosorption batch, 3 h
Nostoc ellipsosporum Biosorption batch, 3 h
Nostoc punctforme Biosorption batch, 3 h
Porphyridium purpureum Biosorption batch, 3 h
Prymnesium saltans Biosorption batch, 3 h
Taselmis chuii Biosorption batch, 3 h
Arthrospira platensis Biosorption batch, 3 h
Messastrum gracilis Biosorption batch, 3 h
La, Ce Chaetoeros mulleri Biosorption batch, 10d, 35 °CC, 26 °CC  Richards and Mullins (2013)
Pavlova lutheri Biosorption batch, 10d, 35 °CC, 26 °CC ~ Zhou et al. (2004)
Tetraselmis chuii Biosorption batch, 10d, 35 °CC, 26 °CC
Nannochloropsis spp. Biosorption batch, 10d, 35 °CC, 26 °CC
Microcystis spp. Biosorption batch, 4d, 28 °CC, pHS,
2000 Ix
La, Eu; Chlorella vulgaris Biosorption batch, 20 min, pH3 Heidelmann et al. (2017)
Nd Biosorption batch, 20 min, pH4, pHS Ozaki et al. (2003)
Biosorption batch, 90 min, 21 °CC, Kiiciiker et al. (2017)
Biosorption 35 °CC, 50 °CC, pH5 Tunali and Yenigun (2021)
batch, RT, 300 pumol/s/m?
Er, Yb; Sargassum sp. Biosorption batch, 3040 min, 20 °CC, Palmieri et al. (2001)
La, Nd, Eu, Gd; Biosorption pHS Oliveira and Garcia (2009)
Sm, Pr batch, 20 °CC, 30 °CC, pH5  Oliveira et al. (2012)
Oliveira et al. (2011)
La, Eu, Yb Sargassum polycystum Biosorption batch, 1d, pH3, pH4.5 Diniz and Volesky (2005,
Sargassum hemiphylum Biosorption batch, 1d, pH3, pH4.5 batch, 2006)
Schizymenia dubyi Biosorption 1d, pH4 Kano (2013)
La, Ce, Eu, Yb Turbinaria conoides Biosorption batch, 50 min, 6 h, pH4.9 Vijayaraghavan et al. (2010,
2011)
La, Yb Ulva pertusa Biosorption batch, 1d, pH4 Kano (2013)
Y, Eu, La, Ce; Ulva sp. Biosorption batch Viana et al (2023)
La, Nd, Dy batch Manikandan and Lens (2022)
La Sargassum fluitans Biosorption batch, 45 min, pH4, pH5 Palmieri et al. (2001)
Chloroidium saccharophilum Biosorption batch, 5 h, pH6 Birungi and Chirwa (2013)
Stichococcus bacillaris Biosorption batch, 5 h, pH6 Birungi and Chirwa (2014)
Desmodesmus multivariabilis Biosorption batch, 6 h, pH6 Correa et al. (2016)
Chlorella vulgaris Biosorption batch, 5 h, pH6 Sakamoto et al. (2008)
Scenedesmus acuminutus Biosorption batch, 5 h, pH6
Chlamydomonas reinhardtii  Biosorption batch, 5 h, pH6
Ankistrodesmus sp. Biosorption batch, 8 h, 23 °CC, pH7.5
Golenkinia sp. Biosorption batch, 8 h, 23 °CC, pH7.5
Ulva innatifida Bioaccumulation  batch, 1.25d, 15 °CC, pH3
Sargassum hemiphyllum Bioaccumulation  batch, 1.25d, 15 °CC, pH3
Eu Acutodesmus acuminutus Biosorption batch, 40 °CC, pH4, pH7 Furuhashi et al. (2019)
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Table 2 (continued)

REE Alga Mechanism Conditions References
Nd, Eu Chlorella brevissima Biosorption batch, RT, 25 °CC, 60, 80, Heilmann et al. (2021)
Chlorella kessleri Biosorption 100 pumol/s/m?
Calothrix brevissima Biosorption batch, RT, 25 °CC, 60, 80,
100 umol/s/m?
batch, RT, 25 °CC, 60, 80,
100 pumol/s/m?
Pr Turbinaria conoides Biosorption batch, 1 h, pH5 Vijayaraghava and Jegan
Sargassum wightii Biosorption batch, 1 h, pHS (2015)
La, Nd, Dy; Galdieria sulphuraria Bioaccumulation  batch, 0.5d, 42 °CC, pH1.5 Minoda et al. (2015)
Y, Sm; Bioaccumulation  batch, 45 °CC, pH3 Sun et al. (2022)
Ce, Eu, Tb Bioaccumulation  batch, 1d, 37 °CC, pH2.5— Tovinella et al. (2022)
5.5, 50 umol/s/m>
Sc, REE Posidonia oceanica Biosorption batch, 1d, 20 °CC, pH5 Ramasamy et al. (2019)
La, Ce Cystoseira indica Biosorption batch, 8 h, 55 °CC, pH5-5.5 Keshtkar et al. (2018)
Ce Arthrospira sp. Biosorption batch, pH5-5.5, 300 umol/s/  Sadovsky et al. (2016)
2
m
Y, La, Ce, Pr, Nd, Eu, Gd, Ulva lactuca Biosorption batch, 3d, 20 °CC, pH8.5 Pinto et al. (2020)
Tb, Dy Ulva intestinalis Biosorption batch, 3d, 20 °CC, pH8.5
Fucus spiralis Biosorption batch, 3d, 20 °CC, pH8.5
Fucus vesiculosus Biosorption batch, 3d, 20 °CC, pH8.5
Gracilaria sp. Biosorption batch, 3d, 20 °CC, pH8.5
Osmundea pinnatifida Biosorption batch, 3d, 20 °CC, pH8.5

La, Ce, Nd, Gd

Y, Ce, Nd, Eu, La
Tm

Ce, Nd, Tb, La

Eu, Sm, Nd

REEs from luminophores

REEs from red mud

REEs from ore

Desmodesmus quadricauda

Gracilaria gracilis

Turbinaria conoides

Nostoc sp.
Synechococcus elongatus
Calothrix brevissima
Desmonostoc muscorum
Komarekiella

Anabaena sp.
Anabaena cylindrica

Galdieria sulphuraria
Galdieria phlegrea

Galdieria sulphuraria
Phormidium sp.
Oscillatoria sp.
Lyngbya sp.

D. quadricauda

C. reinhardtii

P. kessleri

Phormidium

Bioaccumulation

Bioaccumulation

biosorption

Biosorption
Biosorption
Biosorption
Biosorption
Biosorption

Biosorption
Biosorption
Bioaccumulation
Bioaccumulation

Bioaccumulation
Bioaccumulation
Bioaccumulation
Bioaccumulation
Bioaccumulation
Bioaccumulation
Bioaccumulation

Biosorption

batch, 1d, 30 °CC, pH6.5—
7.5, 50750 umol/s/m>

batch, 2d, 20 °CC
batch, 3.5 h, 32 °CC, pH5

Batch, 23 °CC, 37 °CC, pHS,
300 umol/s/m?

batch, 23 °CC, 37 °CC, pHS,
300 umol/s/m>

batch, 23 °CC, 37 °CC, pHS,
300 umol/s/m>

batch, 23 °CC, 37 °CC, pHS,
300 umol/s/m?

batch, 23 °CC, 37 °CC, pHS,
300 umol/s/m>

batch, 12d, 22 °CC, pH6.8

batch, 12d, 22 °CC, pH6.8

batch, 1d, 40 °CC, pH3,
350 umol/s/m>

batch, 5d, 39 °CC, pH4,
150 umol/s/m?

batch, 3d, 40 °CC, pH3,
500 umol/s/m>

batch, 45d

batch, 45d

batch, 45d

batch, 5d, 30 °CC, pH
6.5-7.5, 500 plmol/s/m2

batch, 5d, 30 °CC, pH6.5—
7.5, 500 umol/s/m>

batch, 5d, 30 °CC, pH
6.5-7.5, 500 umol/s/m>

batch, 1-120 min, RT, pH
1-8

Rezanka et al. (2016)

Jacinto et al. (2018)

Rangabhashiyam and
Vijayaraghavan (2019)
Paper et al. (2023)

Fischer et al. (2019)

Singh et al. (2023)
Cizkova et al. (2021)

Nahlik et al. (2023)
Dubey and Dubey (2011)
Cizkova et al. (2019a)

Kim et al. (2011)
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Conclusion

The global significance of REEs underscores the potential
for substantial benefits through research progress in their
recovery. Advancements in REE recovery methods not only
contribute to a more secure and diversified supply chain but
also alleviate dependence on limited sources. Additionally,
enhanced recovery techniques can mitigate environmental
impacts associated with conventional extraction, promot-
ing sustainability and responsible utilization of resources.
Progress in REE recovery research holds the promise of
fostering technological innovation, economic growth, and
environmental stewardship on a global scale.

However, despite the promise of microbial recovery
methods, challenges remain, including optimizing the effi-
ciency of REE recovery, scaling up laboratory processes
for industrial applications, and understanding the ecologi-
cal impact of introducing engineered microorganisms into
natural environments. To overcome all these challenges,
research in this field needs to focus on improving the effi-
ciency, cost-effectiveness and environmental sustainability
of microbial recovery methods for REEs, including explor-
ing mechanisms and molecular regulation within cells dur-
ing bio-recovery.

A multidisciplinary approach is crucial for addressing the
challenges associated with the recovery of REEs. A compre-
hensive strategy that integrates expertises from various fields
such as geology, chemistry, engineering, and environmental
science is essential. Additionally, economists, policymakers,
and industry experts are important in creating a supportive
framework that incentivizes responsible REE recovery. Ulti-
mately, a multidisciplinary strategy will not only enhance
the efficiency of the recovery process but will also promote
sustainable practices, contributing to the responsible utiliza-
tion of these critical resources.
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