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Transport of molecules through the membrane occurs via 
simple diffusion, facilitated diffusion, active transport, and 
endocytosis (Paul 2019; Wu et al. 2023). Most molecules 
have to be transported across the cell membrane with the 
help of intrinsic or extrinsic transmembrane proteins. There 
is an enormous number of channels, pumps and carriers 
found in different organisms, many of which are compre-
hensively discussed by Stein and Litman (2014). Detailed 
categorization and knowledge about different types of 
microbial transport systems was performed by Winkelmann 
(2001). Different categorizations of membrane transport 
proteins (MTPs) exist in the literature. The most compre-
hensive classification of transport systems can be found in 
The Transporter Classification Database (TCDB). It subdi-
vides MTPs into nine main superfamilies which includes 
channels/pores, electrochemical potential-driven transport-
ers, primary active transporters, group translocators and 
transmembrane electron carriers (Saier et al. 2021) (Fig. 1). 
There are also accessory factors in transport and incom-
pletely characterized transport systems in the list. Channels 
and pores family involves different channel-type facilitators 

Introduction

The cell membrane separates the interior part of cells 
from the outside environment. It consists of a phospho-
lipid bilayer with embedded proteins (Mishra et al. 2016). 
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Abstract
Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special 
transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which 
belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs includ-
ing aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of 
microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has 
been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and 
antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration 
of the research on the discovery of their properties and the development of innovative products in which these unique 
properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel trans-
porter protein to the mining and screening of them in a large transporter library for particular functions, from simulations 
and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as 
biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and 
focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.
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including α-type channels, which are ubiquitously found in 
the membranes of all type of organisms, and β-barrel porins 
with their β-strands spanning the breadth of the outer mem-
brane of Gram-negative bacteria (Nikaido 1992). In order 
for many molecules to effectively cross the outer membrane, 
they must enter through these porins. Maintaining osmolar-
ity, salt, and nutrient transport and contributing virulence 
are other functions of the porins (Donev 2022). The study 
investigating structures of beta-barrel porins including 
Escherichia coli LamB, OmpA, OmpC, and OmpF shows 
that these porins have mosaic evolution patterns resulting 
in high variability in their external parts. Interestingly, these 
regions coincide with the binding sites of bacteriophages 
(Chen et al. 2022) which emphasizes another function of 
the porins like rapid avoidance of the invasion of phages or 
antibiotics.

Active transporters which are also known as TonB-
dependent transporters, and channel type facilitators like 
channels and porins modulate flux through the membrane 
by selecting the molecules according to their size, chemical 
composition, and charge. Unlike porins and channel pro-
teins, these membrane transporters change their conforma-
tion while transporting the solute to the other side of the 
membrane (Alberts et al. 2002). They can also couple uphill 
substrate translocation with the movement of ions down 
their electrochemical gradient, or by ATP hydrolysis. These 
processes enable bacteria to scavenge nutrients that may be 
scarce (Nikaido et al. 1992; Davies et al. 2021). Transport-
ers with low or high specificity also function in passive dif-
fusion of metabolites helping facilitate diffusion through the 
membrane. Low-specificity transporters can also be called 
mechanosensitive channels since they open mechanically 
due to the swelling of cells in the hypoosmotic environment 
(Wang et al. 2014). Corynebacterium glutamicum MscCG, 
responsible for glutamate excretion is an example of that 
kind of facilitated transporter. The lysine uptake system of 
the same bacterium is on the other hand a kind of active 
transporter that is powered by the externalization of other 
amino acids (Broer and Kramer 1990; Becker et al. 2013).

In the present review, channels, porins, and transporters 
especially important for biotechnological applications are 
discussed mainly. The idea of the existence of molecular 
water channels that permit the osmotic flow of water across 
membranes belongs to Koefoed-Johnsen et al. (1953). The 
earliest studies on membrane transporters are on porins of 
Salmonella and E. coli (Nakae 1976; Nikaido and Rosen-
berg 1981). The other examples of early studies on transport 
proteins are on MalKGFE maltose transporter (Szmelcman 
et al. 1976), which is a type of primary active transporter 
depending on ATP hydrolysis and LacY lactose permease, 
a secondary transporter needing an electrochemical gradi-
ent (West and Stein 1973). The transporters which do not 

need energy usually transport water or ions. E. coli GlpF 
glycerol channel (Sweet et al. 1990), aquaporins of many 
different bacteria such as E. coli Aqp Z(Calamita et al. 
1995) and Halomonas elongata(Çalıcıoğlu et al. 2018) and 
nitrite/formate transporters from various bacteria including 
S. typhumirium and E. coli(Rycovska et al. 2012; Yılmaz 
et al. 2023) can be given as examples to these facilitated 
transport proteins. The nitrite transporter (NirC), the for-
mate efflux transporter (FocA), and other members of the 
formate-nitrite transporter (FNT) family found in bacteria, 
archaea, and yeasts are categorized under α- type channels.

Apart from the membrane transport proteins already dis-
cussed, a class of auxiliary proteins known as viroporins 
might be considered prospective targets for pharmaceuti-
cals. Viroporins are a varied class of multifunctional pro-
teins that are found in a wide range of viral families, with a 
focus on RNA viruses (Nieva et al. 2012). They are usually 
made of 50–120 amino acids and commonly take on tet-
rameric structures when they form homo-oligomers (Wang 
et al. 2011a). These hydrophilic porins are selectivity filter 
that allows ions or tiny solutes to flow through the mem-
branes of the host cell along their electrochemical gradient. 
They also have specified charge selectivity and transloca-
tion efficiency (Breitinger et al. 2022). Viroporins actively 
contribute to several of the functions of viruses, most 
notably the promotion of viral particle release from cells. 
Additionally, the glycoprotein transport system, membrane 
permeability, and cell vesicle systems are all impacted by 
these proteins (Nieto-Torres et al. 2015). Viroporins are not 
required for virus replication, although they do typically 
promote viral proliferation when they are present. In order 
to improve contact with the interfacial lipid bilayer, certain 
viroporins may additionally include other motifs, such as 
domains rich in aromatic amino acids or basic amino acid 
residues. Hydrophilic holes appear in the membranes of 
virus-infected cells as a result of viroporin oligomerization 
(Farag et al. 2020). Influenza A virus (IAV) M2, the first and 
most studied viroporin, was discovered in 1992 (Pinto et al. 
1992). Later, other viral ion channel proteins were found in 
additional dangerous animal viruses, including the corona-
viruses (CoV), HIV-1, and hepatitis C virus (HCV) (Sze and 
Tan 2015).

Structure and transport mechanisms of MTPs

Unlike water-soluble proteins, it is hard to study mem-
brane proteins in vitro since they expose their hydrophobic 
residues to the membrane, instead of burying them in the 
protein interior. Their hydrophilic residues are found out-
side the membrane interacting with different hydrophilic 
residues or neighboring lipid headgroups at the membrane 
edges, sometimes inside of the protein structure, like in the 

1 3

71  Page 2 of 17



World Journal of Microbiology and Biotechnology (2024) 40:71

case of channels (Harris and Booth 2012). The structure and 
positioning of different membrane transport proteins are 
illustrated in Fig. 1. Transporters often have more than one 
domain or even multiple subunits, which create further diffi-
culties in vitro studies (Lemieux 2008; Boudker and Verdon 
2010; Harris and Booth 2012). For the investigation of their 
structures, crystallization and X-ray crystallography are 
applied. Commonly, engineered proteins fused to tags for 
purification, which are frequently truncated at their termini, 
are used for transport mechanism studies (Bill and Hedfalk 
2021). Although these studies are very helpful for enlight-
ening the solute specificity and transport mechanisms of 
MTPs, the problems are still encountered during their het-
erologous expression and purification such as low levels of 
expression and the need for some interfering detergents for 
their extraction from the membrane. The necessity of their 
re-alignment in liposome structures due to the lack of activ-
ity outside of the membrane is another challenging side of 
studying MTPs. Stopped flow light scattering spectroscopy 
is commonly used for studying substrate specificity of the 
channels and pores placed in liposome structures (Yılmaz 
et al. 2023; Kumar et al. 2007; Borgnia et al. 1999). Lipid 
bilayer electrophysiology (Lü et al. 2012) and cryo-electron 
tomography (Chang et al. 2023) are also used for the func-
tional and structural characterization of bacterial MTPs. 

Cryo-electron microscopy has been proven to be a power-
ful tool for studying the structures of intricate membrane 
proteins that were previously intractable using other meth-
ods like X-ray crystallography. The recent improvements 
in cryo-EM technology made it possible to investigate 
the molecular mechanism of many previously intractable 
integral membrane proteins at the atomic resolution level 
(Nygaard et al. 2020).

The transport mechanisms and solute specificity of MTPs 
could be revealed by using the above-mentioned methods. 
Although it is regarded that membrane transporters are spe-
cific to their solutes and they mostly transport a specific ion, 
sometimes two, their selectivity is not perfect (Ansoborlo 
and Adam-Guillermin 2012). For example, there is a sig-
nificant sequence homology in bacterial members of the 
formate nitrite transporter (FNT) family, and they probably 
transport structurally related oligoatomic anions, such as 
formate and nitrite (Rycovska et al. 2012).

Many studies are reporting the low specificity of porins 
allowing passage of diverse small hydrophilic molecules 
(Mckinlay 2023). For some of the nutrients, bacteria may 
not even need these porins for basal growth. It was recently 
discovered that a Pseudomonas aeruginosa mutant lacking 
all 40 porins was able to grow on some nutrients like the 
wild type did (Ude et al. 2021). Mycobacterium tuberculosis 

Fig. 1  Types of membrane transport proteins
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There are an enormous number of microbial membrane 
transporters which have unique structural properties. In this 
review, details of the structure of transport proteins and the 
transport mechanisms have been tried to be presented by 
focusing on two different channel proteins, aquaporins and 
FNTs.

Aquaporins

Aquaporins are integral membrane proteins facilitating the 
transport of water and sometimes other small molecules 
across the lipid bilayer (Tong et al. 2019). They fold into 
an hourglass shape forming tetramers in which each subunit 
forms a central pore allowing the water molecules through 
while rejecting the protons, hence the name aquaporin 
(Fig. 2A). They have six transmembrane α-helices and two 
NPA (asparagine-proline-alanine) motifs responsible for the 
formation of an hourglass shape and Arg residue by the nar-
rowest point of the selectivity filter rejecting the charged 
solutes. They typically form tetramers, while oligomeriza-
tion is not essential for water transport activity (Verkman 
2013). Aquaporins have a highly efficient selectivity filter 
achieving both size exclusion and charge repulsion. They 

which has one of the most rigid cell envelopes lacks the clas-
sical porins. When a fast-growing non-pathogenic myco-
bacteria’s heterologous MspA porin was expressed in M. 
tuberculosis, its virulence traits decreased and its suscep-
tibility to antibiotics increased considerably (Mailaender et 
al. 2004; Lamrabet et al. 2014). Recent research indicates 
that these slow-growing mycobacteria may have substituted 
some PE/PPE family proteins for porins as molecular trans-
port channels to enable the uptake of nutrients necessary to 
live in the constrained host environment. Although bacteria 
may change their transport mechanisms and find a way to 
cope with the lack of porins their balance in cell machinery 
depends on the proper functioning of the transport system. 
The lack of different porins in E. coli significantly elevated 
the amounts of fatty acids and phospholipids and also 
caused structural changes in protein and DNA (Kilicaslan 
et al. 2023). Also, secondary structures of these channels 
are very important for their function and three-dimensional 
architecture and localization in the membrane. For example, 
lysine residue changed with arginine results in lower con-
ductance in OprP and OprO porins (functional in selective 
uptake of phosphate molecules) of P. aeroginosa (Piselli et 
al. 2023).

Fig. 2  Structure and membrane localization of (A) aquaporin and (B) 
nitrite channel protein (NirC, a member of the FNT family) of E. coli. 
Although monomers of FNT channels and aquaporins are similar in 
their positioning in the cell membrane and the topology of the six 

transmembrane helices is conserved, small alterations in the monomer 
cause a significant change in the quaternary structure: FNT channels 
remain stable as pentamers, but aquaporins behave as tetramers (Lü 
et al. 2012)
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transport (Wang et al. 2009; Lü et al. 2012). Although they 
are named after the main anion, they are capable of translo-
cation of other small anions and weak organic acids. There 
are also two clusters under the YfdC subfamily YfdC-a and 
Yfdc-b, however, they are uncharacterized, and their func-
tions are not identified yet. A recent computational study 
by Mukherjee et al. (2020) suggested that YfdC-a might be 
responsible for the translocation of neutral or cationic sub-
strates (Mukherjee et al. 2020).

FocA of Escherichia coli is the first FNT channel pro-
tein to be identified (Suppmann and Sawers 1994). Saier et 
al.’s phylogenetic characterization revealed that NirC from 
E. coli and Salmonella typhrium is a possible nitrite trans-
porter, FdhC from Methanobacterium formicicum a prob-
able formate transporter (Saier et al. 1999). Saier’s database 
for FNTs sharing the FNT models and basic details of them 
had only a couple of sequenced proteins of the FNT fam-
ily in the ‘90s, however, today there are more than 4000 
sequences for FocA alone.

In the coming years, NirC as a nitrite channel was identi-
fied by Clegg et al. (2002). NirC functions as an importer 
of nitrite anions. It translocates nitrite from the periplasm 
to the cytoplasm, where nitrite is reduced to ammonium by 
the nitrite reductase NirBD. NirC is encoded in the same 
operon as NirBD, and their physiological roles are mainly 
in nitrogen assimilation and detoxification.

HSC (also named FNT3 or AsrD) is very similar to 
NirC and part of the assimilatory sulfite reduction pathway, 
where it removes the toxic end product hydrosulphide from 
the cytoplasm. While in the literature, it can be seen much 
research concentrated on the NirC and FocA subfamilies 
from different bacteria, on HSC there is only one study 
in which Czyzewski and Wang (2012) characterized HSC 
from Clostridium difficile.

The top view of FNT channels which belong to FocA 
of S. typhimurium shows that they form stable pentamers 
in the cytoplasmic membrane (Lü et al. 2011). The chan-
nel structure contains five individual pores in which the 
translocation takes place (Fig.  2B). In the FNT structure, 
there are two narrow constrictions on both ends of the cen-
tral vestibule, one on the periplasmic side and the other on 
the cytoplasmic side. FNT channels overcome the hydro-
phobic barrier to transport anions through a mechanism that 
involves a histidine residue. This histidine residue plays a 
key role in the transport process by transiently protonating 
the transported anion.

FNT proteins anion translocation mechanisms have been 
studied largely for different family members(Suppmann and 
Sawers 1994; Rycovska et al. 2012; Lü et al. 2012; Beyer 
et al. 2013; Hunger et al. 2014; Erler et al. 2018) and FocA 
and other FNTs are classified as channels but there were 
studies in the literature reporting FNTs also as a transporter. 

are abundant among all living organisms from prokaryotes 
to mammals and responsible for fast water transport rates of 
red blood cells and renal tubules. Along with their conven-
tional roles in water transport, aquaporins have been linked 
with the transport of other small solutes including glycerol, 
H2O2, urea, O2, and CO2. Several reports describe aquapo-
rins with lactate permeability (Schmidt et al. 2021).

The discovery of human aquaporins pioneered the dis-
covery of aquaporin orthologs in other species ranging from 
microbes to plants (Azarafza et al. 2023). Microbial aqua-
porin genes have been identified in mollicutes, Gram-posi-
tive and negative bacteria, Archea, yeast, and mold. The first 
identified microbial aquaporin was AqpZ from Escherichia 
coli, which was held accountable for the adaptation of the 
bacterium in hypoosmotic conditions and rapid growth in 
the logarithmic growth phase (Calamita et al. 1998). Sub-
sequent reports emphasize the roles of microbial aquapo-
rins are rather specific to the growth environment of species 
such as tolerance for rapid freezing (Tanghe et al. 2004) and 
CO2 transport (Ding et al. 2013).

In addition to controlling water transport across plasma 
membranes, aquaporins have been associated with other 
important vital functions such as cell migration, diarrhea, 
and cancer cell proliferation (Ishibashi et al. 2011). They are 
targeted by certain drug families and employed as reporter 
genes for monitoring the recombinant protein expression 
via diffusion-weighed MRI.

Although structures of FNTs and aquaporins have very 
similar protein folds  (Fig.  2), FNTs facilitate weak acid 
anion/H+ cotransport, whereas AQP water channels strictly 
exclude charged substrates including protons. Schmidt and 
Beitz (2022) analyzed the protonation status of the cen-
tral histidine during substrate transport by mutation of this 
residue. Constrictions-widening mutations revealed that 
enlargement of the constrictions in FocA of E. coli exhibited 
water permeability similar to AQPs.

Formate/nitrite transporters (FNTs)

FNTs are a family of membrane intrinsic proteins that allow 
the passage of monovalent anions. Like the other known 
AQP and monocarboxylate transporters (MCT), FNT also 
makes material transport possible via electrostatic attrac-
tion. While AQPs are ubiquitous, FNT exists in only micro-
organisms including prokaryotes (bacteria and archaea) and 
lower eucaryotes. This property actually gives rise to its use 
in drug targets for pathogens in the human body or more 
generally in mammals who do not have FNT in their cell 
membranes.

The most known FNT subfamily types are FocA for for-
mate (Suppmann and Sawers 1994), NirC for nitrite (Clegg 
et al. 2002), HSC for hydrosulphide, and PfFNT for lactate 
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porins and pass through the channel to exert their activity 
(Prajapati et al. 2021). For example, OprD is a substrate-
specific porin that facilitates the diffusion of basic amino 
acids, small peptides, and carbapenems (Trias and Nikaido 
1990). Decreased expression of this porin was shown to be 
related to resistance to antibiotics in some pathogens includ-
ing Acinetobacter baumannii and Pseudomonas aerogi-
nosa (Strateva and Yordanov 2009; Ebrahimi et al. 2023). 
OprD of these bacteria which have mutations in their DNA 
sequence had a unique porin diameter and decreased anion 
selectivity compared to the wild-type strain (Ebrahimi et 
al. 2023). Efflux pumps are also found to be related to the 
multidrug resistance mechanisms of A. baumannii (Sharma 
et al. 2023). Another well-known porin in A. baumannii 
is CarO (carbapenem-associated outer membrane protein) 
which was reported to contribute to the resistance to car-
bapenem antibiotics. Potent drug candidates with a better 
binding affinity to CarO have been identified with molecular 
docking and dynamic simulation study (Gopikrishnan and 
George Priya Doss 2023). Understanding the ion mobility 
across the channels can potentially lead to the development 
of more effective drug molecules (Piselli et al. 2023). Inter-
estingly, these outer membrane proteins are induced in high 
numbers if the bacteria are in contact with lung epithelial 
cells (Chugani and Greenberg 2007; Chevalier et al. 2017), 
which results in higher resistance to common antibiotics.

Novel drugs targeting membrane transport proteins are 
being discovered and they have high potential to be used for 
disease treatment. FNT channel proteins can be utilized as a 
drug target since human cells do not have these special chan-
nel proteins in their membrane making them perfect targets 
for killing the parasites causing diseases in humans. In 2015, 
the Plasmodium lactate transporter of PfFNT was identified 
almost concurrently by two studies (Wu et al. 2015; Mar-
chetti et al. 2015). PfFNT was shown to be responsible for 
the lactate transport in Plasmodium. Glycolytic oxidation 
is critical for rapidly proliferating cells to create effective 
virulence. Glycolysis therefore requires very fast glucose 
influx and two times faster lactate efflux. Targeting lactate 
transporter of PfFNT of the parasite would be then a viable 
strategy to combat malaria. The study proved that PfFNT 
of Plasmodium takes lactate in ion form and co-transports 
it together with a proton (symport of Lactate/Proton) and 
this bi-directional transport can be inhibited by diethyl-
pyrocarbonate (DEPC) (Wu et al. 2015). Therefore, being 
in only microbial cell membranes, PfFNT was identified as 
a putative drug target for malaria. Later it was shown that 
PfFNT indeed is a valid drug target in follow-up studies by 
many researchers (Golldack et al. 2017; Walloch et al. 2021; 
Davies et al. 2023).

Another parasite, Toxoplasma gondii’s FNT proteins in 
the plasma membrane were also studied and three FNTs 

For example, a family member of FocA was first shown to 
take the role of only exporting the formate ion from the cell 
cytoplasm, while NirC and HSC, can provide bidirectional 
transport (Lü et al. 2012). However, later the structures of 
FocA obtained from different bacteria showed that they are 
very similar in TMS packing to AqpZ and Glycerol channel 
GIpF.

The studies on the mechanism of the transport of anions 
are very crucial in terms of both providing an understanding 
of the role of FNTs in changing conditions and developing 
biotechnological products aiming at specific membrane gate 
automation. Schmidt and Beitz (2022) for example tried dif-
ferent mutations on areas controlling the constriction-wid-
ening which is vital for the transport process.

Identifying new FNTs and understanding the details 
of the mechanisms of known FNTs have high potential in 
improving the efficiency of bioproduction processes in the 
biotechnological industry, developing effective drug targets 
as well as designing highly selective separation and efficient 
purification systems.

Biotechnological applications of membrane 
transport proteins

Interest and research on the structure and function of chan-
nel proteins are increasing each day since their potential for 
biotechnological applications and the production of value-
added substances has been noticed. In this part, potential 
application areas are given and the importance of different 
transporters for industrial applications is discussed. The fab-
rication of biomimetic filtration membranes, the develop-
ment of biosensors using the advantages of porins, and the 
targeting of MTPs for disease treatment are several of these 
studies (Fig. 3). Table 1 lists the examples of MTPs and their 
biotechnological application areas. Most of the research in 
this table are lab scale experiments and several of them are 
presented as possible future applications. Unique proper-
ties of MTPs also lead the design and production of nature-
inspired transport control systems.

MTPs as drug targets and tools for gene therapy

One of the most important application areas of membrane 
transport proteins is exploring novel drugs for the treatment 
of infectious diseases. Most of the antibiotics target cell wall 
or protein synthesis and they are widely used for the treat-
ment of diseases caused by pathogenic bacteria. However, 
novel antibiotics must be discovered, or modified forms 
of common antibiotics have to be synthesized due to the 
development of resistance against them. MTPs of pathogens 
have important roles in resistance development against anti-
biotics since most of the antibiotics have to interact with 
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Fig. 3  Biotechnological application examples for microbial transport proteins (a) novel drugs targeting MTPs; (b) use of channel proteins for entry 
of substrate in liposome-based biosensors (c) usage of aquaporins for increasing water flux through filtration membranes
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Protein type Transmembrane protein/PDB ID Source 
microorganism

Selectivity Biotechnological application 
area

Referance

Outer mem-
brane protein 
(porin)

LamB
1MPN

Vibrio sp nonspecific 
porins

vaccine candidate among the 
vibriosis

(Lun et al. 2014)

OmpF
3K1B

Escherichia coli nonspecific 
porins

liposome-based nano-biosensor (Yan et al. 2013)

CarO
4FUV

Acinetobacter 
baumannii

carbapenem 
associated outer 
membrane 
protein

drugs targeting (Gopikrishnan 
and George 
Priya Doss 
2023)

TbuX
3BRY

Ralstonia pickettii 
PK01

toluene selective monoaromatic hydrocarbon 
degradation

(Hearn et al. 
2008)

AltL
3DWO

Acinetobacter 
venetianus Rag-1

alkane transporter crude oil degradation (Liu et al. 
2022a)

FadL
1T16

Vibrio cholerae long-chain fatty 
acids

long-chain fatty acid transport, 
petroleum degradation

(Turgeson 2022)

MspA
1UUN

Mycobacterium 
smegmatis

beta barrel porin machine learning assisted struc-
tural profiling of proteins

(Liu et al. 
2022b)

mapping engineering sites 
of channel for nanoreactor 
configuration

(Zhang et al. 
2021)

Channel-type 
transporters

Cch1p/Mid1p
-

Saccharomyces 
cerevisiae

Ca2+ion channel improving ethanol production (Dong et al. 
2021)

AqpZ
2ABM

Halomonas 
elongata
Escherichia coli

water channel biomimetic membrane (micro-
pollutant removal, desalination)

(Yılmaz and 
Özkan 2022; 
Çalıcıoğlu et al. 
2018; Zhao et al. 
2012)

α-Hemolysin
3ANZ

Staphylococcus 
aureus

mitochon-
drial voltage-
dependent anion 
channel

length determination of DNA 
and RNA

(Kasianowicz et 
al. 1996)

MscCG
6PWP

Corynebacterium 
glutamicum

L-Glutamate production (Wang et al. 
2018; Wen and 
Bao 2019)

Carrier 
proteins

NirC (channel)
4FC4

Salmonella 
typhumirium

uni-, sym-, and 
antiporters

drug target for pathogenic 
Salmonella strains

(Wiechert et al. 
2017)

PfFNT
6VQQ

Plasmodium lactate transporter targeting lactate transporter of 
PfFNT of the parasite, strategy 
to combat malaria.

(Wu et al. 2015)
(Golldack et al. 
2017; Walloch et 
al. 2021; Davies 
et al. 2023)

TonB
2GRX

Escherichia coli iron ion channel microbial biosensors to detect 
specific metals

(Cuero et al. 
2012)

Viroporin Gramicidin A
1MAG

Brevibacillus 
brevis

antibiotic peptide rapid detection of influenza A 
virus

(Oh et al. 2008)

M2
2L0J

Influenza A membrane-span-
ning tetrameric 
proton channel

antiviral drugs amantadine and 
rimantadine

(Cady et al. 
2010)

P7
2M6X

Hepatitis C proton channel target for drugs (hexamethylene 
amiloride)

(Premkumar et 
al. 2004)

Vpu
1PI7

HIV-1 proton channel target for BIT225 (Khoury et al. 
2010)

E channel
Orf3a viroporin
6XDC

SARS-CoV-2 transport viral 
component 
within the 
infected host cell

flumatinib treatment reduces 
SARS-CoV-2 RNA levels

(Singh and 
Arkin 2022)

Table 1  Examples of MTPs and their use for biotechnological applications
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studied and they are ideal targets for fluorescence-based 
investigation (Islam et al. 2021). Among these ion chan-
nels, channelrhodopsins and halorhodopsins have been used 
in optogenetic applications, such as modulating neuronal 
activity and blocking different cell types in the intact ner-
vous system (Gradinaru et al. 2008).

Improving metabolic activities and producing 
industrially important products

It is reported that membrane transport proteins are under-
valued, and their manipulation actually can provide specific 
control on the flux through the cell in the name of increasing 
the efficiency of bioproduction (Kell et al. 2015). Although 
these transporters are seen as potential targets for medical 
and biotechnological applications, the high number of the 
reported membrane transporter families in the literature are 
poorly characterized (Radi et al. 2022). One of them is the 
membrane transport systems involved in the degradation 
process of petroleum hydrocarbons (Wu et al. 2023; Hua 
and Wang 2014). It is reported that the transport of these 
molecules is regulated by various gene families such as the 
FadL family, the OmpW family, ABC-type transporters, 
and TonB-dependent transporters (Wu et al. 2023). Many 
export pump systems for aromatic hydrocarbons have also 
been studied, especially for Pseudomonas putita, E coli, and 
Pseudomonas fluorescens (Mutanda et al. 2022) (Table 1). 
The discovery of novel transport proteins for pollutants 
and exploration of their characteristics will accelerate the 
research on the production of efficient recombinant micro-
organisms and allow more effective bioremediation applica-
tions in the future.

The biological production path offers a cost-effective 
and more sustainable production compared to the common 
method of petroleum-based chemical production. Identifi-
cation of the roles of specific membrane transporters has 
opened up a vast area of opportunities in engineering these 
gates for specific conditions or substrates such as organic 
acids (Van Dyk 2008; Kell et al. 2015). There is a quite high 
number of research on the genetic modification of transport 
proteins to obtain industrially valuable microbial strains. 
Microbial production of renewable fuels or chemicals can be 
increased by optimization of transport systems (Onyeabor et 

(TgFNT1, TfFNT2, and TgFNT3) are identified which can 
transport both lactate and formate bidirectionally (Erler et 
al. 2018). The use of 2-hydroxy chromanones is shown to 
inhibit the transport of these ions and is suggested as puta-
tive drug targets. However, Zeng et al. (2021) showed that 
these TgFNTs are not critical in the parasite’s rapid growth 
and therefore they may not have strong potential to be used 
as a drug target for Toxoplasma (Zeng et al. 2021). Helm-
stetter et al. (2019) identified EhFNT as the sole FNT in Ent-
amoeba histolytica, a parasite that causes intestinal illness 
known as amoebiasis. The identified EhFNT can be further 
studied to explore its potential to be used as a new drug tar-
get (Helmstetter et al. 2019).

Designing or selecting antimicrobial agents targeting 
specific MTPs of unwanted biofilm-forming bacteria may 
be another strategy for disease treatment. In a recent study, 
it was revealed that biofilm formation is related to the nitrite 
transporter since it regulates the NO amount which can 
cause both biofilm dispersal and formation. This property 
therefore can be used in producing antibiofilm agents pre-
venting the formation of biofilm which helps the pathogens’ 
antibiotic resistance (Park et al. 2020). Thus, this study 
identifies nitrite transporters as new antibiofilm targets for 
future practical and therapeutic agent development.

Bacterial MTPs bring advantages over mammalian 
MTPs because of their small size and easy manipulation. 
Also, drugs targeting mammalian MTPs have the risk of 
harming the eukaryotic cells of the host. For example, gene-
based therapies involving voltage-gated sodium channels 
are largely hampered by the large size of the mammalian 
channels. Fortunately, voltage-gated ion channels (Bac-
NavC) harboring many of the core features of eukaryotic 
ones (responsible for high ion flux) are also discovered in 
bacteria (Payandeh and Minor 2015). They are regarded as 
a target for pharmaceutical drugs (McCusker et al. 2012). 
It was found that prokaryotic sodium channels (BacNav) 
cloned under muscle-specific promoters significantly 
enhanced excitability and conduction in rat and human car-
diomyocytes in vitro (Nguyen et al. 2022). Another example 
of a possible gene therapy application is the use of rhodop-
sins for the treatment of neurological disorders (Ji et al. 
2013). Because of their ability to interact with light, rhodop-
sin and rhodopsin-like ion channels have been extensively 

Protein type Transmembrane protein/PDB ID Source 
microorganism

Selectivity Biotechnological application 
area

Referance

Artificial 
channels

peptide-appended hybrid [4] 
arene (PAH [4])
-

- artificial water 
channels (AWCs)

alternative to natural water 
channels

(Song et al. 
2019)

T-channel
-

- mimicking 
the natural 
Gramicidin-A

proton/water conduction, cat-
ion/anion selectivity and large 
open channel-conductance

(Barboiu et al. 
2014)

Table 1  (continued) 
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future (Yılmaz et al. 2023). Although there are many known 
transporters, their mechanism and energetics have not been 
revealed yet. More research is needed to understand thor-
oughly the ion transport mechanism of those channels and 
carriers in different environments in order to improve bio-
sensors based on MTPs.

Promising research on the use of MTPs for biosensor 
development was performed for the recognition of protein 
biomarkers in a mixed environment. Mycobacterium smeg-
matis porin A (MspA) nanopore was used to form an elec-
troosmotic flow (EOF) trap which can distinguish different 
proteins concerning their differently charges such as lyso-
zyme and apo/holo-myoglobin. Besides the trap, an auto-
mated event classification was made by extracting multiple 
event features, and a machine-learning model with a 99.9% 
accuracy was built by Liu et al. (2022b).

Bacterial aquaporins have been widely used especially in 
water treatment technologies however there are also chal-
lenging developments in biotechnological applications of 
aquaporins from other organisms. The studies on the use 
of human aquaporin, Aquaporin 1 (AQP1), for Magnetic 
Resonance Imaging (MRI), have opened new doors for the 
use of aquaporins in different areas. Diffusion-weighed MRI 
encompasses the motility of water molecules by tissues with 
different structural moieties. In recent years, AQP1 has been 
employed as a reporter gene for diffusion-weighed MRI to 
monitor live gene expression in optically opaque animals. 
In contrast to the reliance of metal-binding proteins on the 
presence of metal ions and the relatively low resolution of 
chemical exchange probes, AQP1 showed promising results 
without hampering the viability of the cells (Mukherjee et 
al. 2016).

Biomimetic desalination membranes

Distillation has been the conventional method for seawater 
desalination since prehistoric times (Angelakis et al. 2021). 
Being an extremely energy intense and fouling-prone pro-
cess, distillation has been largely replaced by membrane 
filtration technology (Van der Bruggen and Vandecasteele 
2002). Despite up to 2 to 3 times lower energy requirements 
compared to distillation (Toth 2020), utilization of energy-
efficient pumps, and improved membrane design, reverse 
osmosis still has a high energy requirement compared to 
the theoretical minimum accounting for nearly 60% of all 
operational costs (Elimelech and Phillip 2011; Kumar et al. 
2011; Kaufman et al. 2011).

Extremely high water transport rates of aquaporins while 
rejecting most solutes attracted a great deal of attention from 
desalination membrane communities within the last decade. 
Biomimetic membranes, incorporating aquaporins (ABM) 

al. 2020). For example, overexpression of glycerol uptake 
system Gup1 enhanced glycerol utilization for ethanol in 
S. cerevisiae (Yu et al. 2010). Different efflux pumps were 
expressed to increase the tolerance of E. coli to biofuels and 
enhance biofuel production (Dunlop et al. 2011).

The FNT family might be utilized in the transportation 
of organic acids through the plasma membrane of the cells 
(Soares-Silva et al. 2020). FocA from E. coli is for exam-
ple experimentally identified FNT as a microbial organic 
acid transporter protein which is known to export acetate, 
lactate, and pyruvate, uptake/export formate (Wang et al. 
2009; Lü et al. 2012). PfFNT from Plasmodium falciparum 
is also another FNT family symporter for Lactate: H+ (Wu 
et al. 2015; Marchetti et al. 2015). Probably the list will 
be expanded and the manipulation of FNTs for increasing 
organic acid production in real scales can be seen in the near 
future.

Another possible use of FNTs seems to be in bio-energy 
production. Seeking more sustainable methods led to the 
emergence of hydrogen energy from organic waste mate-
rials by using microorganisms. It was shown that cheap 
glycerol-containing waste can be used as the carbon source 
to produce H2by E. coli at a large pH range. Biological 
energy production such as H2, FocA, and FocB functions 
were studied. It was shown that by designing a membrane 
by manipulating the original gate control, they force the for-
mate not to exit the cell so that it will be forced to produce 
H2 to be able to reduce its formate concentration inside the 
cell (Trchounian and Trchounian 2014). The absence of 
both formate channels may lead to enhanced H2 production. 
Therefore, the growth of E. coli on glycerol with the sub-
sequent addition of formate to produce H2 is an effective 
means of producing bio-hydrogen.

Improving sensor technologies with MTPs

The substrate specificity of porins is inspiring for the inven-
tion of novel biosensors. Developing enzyme-based elec-
trode surfaces specifically tailored to transport a single type 
of ion will help the biosensor to be operated in real samples 
by largely blocking the entrance of other ions which can 
cause interference. Electrode stability will also be improved 
since enzyme inhibition from existing possible inhibitors 
may also be reduced in this way. Channels can also be pre-
ferred for easy transfer of substrates for the development of 
liposome-based biosensors. Outer membrane protein of E. 
coli (OmpF) was used for such aim for the development of 
pesticide biosensors in which enzyme acetylcholinesterase 
was entrapped in liposomes harboring porins allowing entry 
of organophosphate into the liposome (Yan et al. 2013). 
NirC coding for nitrite channels of E. coli will be used for 
the development of nitrite-specific biosensors in the near 
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environment (Shiref et al. 2021). Predicting functions of 
transport proteins with the deep learning approach detecting 
transport protein genes in large-scale genomes is very use-
ful for the discovery of novel transport proteins (Wang et al. 
2023). Over 200 prokaryotic microorganisms’ genome was 
analyzed for transport proteins by Ren and Paulsen (2007). 
Up to a thousand membrane transport proteins can be found 
in the genome of a prokaryotic microorganism, which cor-
responds to 10 to 13% of the genome.

Computational analysis makes it possible to investigate 
the effect of environmental conditions on microbial trans-
port protein genes. Microbial metagenomic and meta-tran-
scriptomic data analysis for the high number of prokaryotes 
in the marine environment shows that the presence of spe-
cific transporter traits guides the succession of these micro-
organisms (Hagström et al. 2021). Generally, environmental 
organisms such as Bacillus spp. and Pseudomonas spp. were 
shown to present the highest number of sodium-dependent 
pumps as compared to the organisms with autotrophic life-
styles (Ren and Paulsen 2007).

Mapping and gene alignment software tools are widely 
used for noticing minor differences among gene sequences. 
Studies show that subtle amino acid substitutions can modu-
late critical properties of mass transport of the two highly 
homologous porins. The differences in the protein composi-
tion of OmpF/OmpC of E. coli were mapped to the respec-
tive environmental conditions they are expressed. Results 
from molecular simulations align well with experimental 
single-channel measurements (Milenkovic et al. 2023). In 
addition, knowledge from structural and functional analy-
sis of membrane transport proteins makes de novo design 
of new ion channels possible (Zhou and Lu 2022). By 
changing amino acid sequences or by combining functional 
helical barrels, new channels with novel functions can be 
created (Scott et al. 2021).

Designing synthetic nanopores mimicking MTPs

Biosensing, drug targeting, and energy production are some 
of the areas where artificially produced controlled gates with 
increased efficiency, selectivity, accuracy, etc. are needed. 
However, it should be noted that the production of such sys-
tems is not an easy task due to the fact that proteins are not 
very robust structures, the channels are narrow for cargo and 
typically open in response to certain stimuli. An understand-
ing of the mechanism and energetic of natural channels will 
lead to the inspired designing of synthetic channels which 
will be game-changers in many fields. Recently, for exam-
ple, Dey et al. (2022) designed a large and gated channel 
made via DNA nanotechnology design principles and fea-
tures. This synthetic channel is expected to allow precisely 
timed, stimulus-controlled transport of functional proteins 

have been extensively studied for forward and reverse 
osmosis filtration systems (Wang et al. 2011a; Zhao et al. 
2012). Aquaporins of bacterial origin, such as AqpZ from E. 
coli, can be produced at relatively high expression levels to 
be incorporated in lipid (Li et al. 2012) or lipid-like biomi-
metic block copolymers (Kumar et al. 2007) for reduction 
of energy requirements, enhancing water transport rates and 
solute rejection. While E. coli AqpZ is by far the most com-
monly used aquaporin in desalination membranes, other 
microbial aquaporins such as H. elongata Aqp (Çalıcıoğlu 
et al. 2018) and Photobacterium profundum SS9 Aqp (Wei 
et al. 2017) have been evaluated for desalination membrane 
systems yielding a similar water filtration and solute rejec-
tion performance.

Interfacial polymerization is the most commonly used 
technique for the fabrication of ABM, in which aquapo-
rins are incorporated in liposomes or block copolymers and 
mixed with m-phenylene-diamine in an aqueous solution 
(Zhao et al. 2012). While water permeability was increased 
by over 50%, solute rejection remained 17% less of the 
control membrane void of aquaporin (Qi et al. 2016). Pat-
ents granted (Chuyang et al. 2014) and commercialization 
for ABM indicate the utility of this technology for reverse 
osmosis (RO) membranes. A commercial FO membrane 
based on aquaporin is produced by Aquaporin A/S, Lynby, 
Denmark (Xia et al. 2017) and widely adopted in ABM 
research (Nikbakht Fini et al. 2020; Zhao et al. 2022b; Chen 
et al. 2023). ABMs further strengthen the permeate flux, sol-
ute selectivity, and anti-fouling capability of FO membranes 
(Grzelakowski et al. 2015; Camilleri-Rumbau et al. 2019; 
Chen et al. 2023). Studies on the modification of mem-
branes with biological molecules have increased during the 
last two decades and new usage areas have been discovered 
including desalination, dewatering, greywater treatment, or 
micropollutant removal (Tang et al. 2013; Valverde-Pérez 
et al. 2020; Yılmaz and Özkan 2022; Chen et al. 2023b). In 
recent years, coupling FO-ABMs with membrane bioreac-
tors for activated sludge process for wastewater treatment 
(Luo et al. 2018) or microbial fuel cells (Zhao et al. 2022a, 
b) for energy generation gained popularity due to excellent 
pollutant rejection performance and the low fouling propen-
sity of ABMs.

Use of computational applications for exploring 
MTPs

Development of computational resources and efficient algo-
rithms, and the availability of online large genome databases 
have resulted in the enhancement of molecular dynamics 
simulations such as predicting the structure and function 
of proteins, docking of channel/transporter-ligand interac-
tion, and immersion of docked complex into a membrane 
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containing a wide variety of channels and carrier proteins 
embedded in cellular membranes. New members or new 
functions of MTPs are being discovered every day, and these 
discoveries make remarkable contributions to the knowl-
edge about cell machines and the development of technolo-
gies that will be inspired by them. Commercialization of 
the biomimetic desalination membranes, one of the earliest 
and the most important technologies inspired by microbial 
channel proteins, increases the hope of the applicability 
of MTPs for developing novel technologies. This review 
lists the biotechnological applications of microbial MTPs 
including designing drugs for disease treatment, improving 
sensor technologies, increasing the production of fermen-
tation products, etc. Although studying microbial MTPs is 
easier as compared to the other counterparts in higher-level 
organisms, extraction of these proteins from membranes 
still requires costly processes. Therefore, the most exciting 
future challenge may be the synthesis of artificial molecules 
mimicking the function of MTPs.

The technological advances provide tools for exploring 
huge amounts of sequence data and identification of spe-
cific sequences that fold into unique 3D protein structures. 
With the help of computer-assisted 3D simulations and wet-
lab studies, de novo design of novel channels or pores is 
now possible. It is not hard to see the future application of 
specialized channels or transporters with high specificity 
and selectivity, which will increase the effectiveness of bio-
technological processes. In addition, the treatment of infec-
tious diseases by drugs targeting microbial MTPs seems to 
be ready for acceleration. Developments in the design and 
production of novel drugs targeting channels and pores are 
parallel to the advances in technologies for studying the 
structure and functions of MTPs. The boost in knowledge 
accumulation due to the development of tools and tech-
niques overcoming the challenges of studying membrane 
proteins will ease the revealing of the nature and mechanism 
of MTPs, which will result in a much greater increase in the 
quantity and variety of future applications.
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across bilayer membranes, which may be used in highly 
sensitive biosensing, drug delivery of proteins, and the cre-
ation of artificial cell networks (Dey et al. 2022).

One of the major limitations of aquaporin desalination 
membranes is their lability to harsh manufacturing condi-
tions such as high temperatures and the presence of organic 
solvents (Shen et al. 2015). Therefore, materials mimicking 
the selectivity and water transport capability of aquaporins 
are in high demand. Aquaporin-inspired materials include 
artificial water channels (AWCs), which can be incorpo-
rated in lipid or block copolymers similarly to aquaporins 
while allowing a wider selection of design possibilities. 
The energetic favourability of artificial water channels co-
assembled with peptoid oligomers investigated by using 
MD simulations suggests that it is possible to improve and 
use these artificial membranes for desalination purposes 
(Zhang et al. 2023). Dutta et al. (2023) designed and synthe-
sized artificial oligourea foldamers harboring helical struc-
tures that are water-selective. The results are promising that 
these structures are resistant to proteases and microorgan-
isms and can be used as artificial water channels for water 
purification purposes (Dutta et al. 2023). Song et al. (2020) 
designed a cluster-forming organic nanoarchitecture, pep-
tide-appended hybrid [4] arene (PAH[4]), this architecture 
was shown to enable a highly efficient and selective water 
permeation through mechanisms distinct from traditional 
water channels.

Carbon nanofibers have long been suggested as an alter-
native to aquaporin biomimetic membranes for desalination 
(Jirage et al. 1997). Recently, Güvensoy-Morkoyun et al. 
(2022), demonstrated the modification of carbon nanotubes 
with arginine residues as in the selectivity filter of aquapo-
rins achieving salt rejection and satisfactory water transport 
rates. A similar approach was used towards a ceramic mate-
rial, anodic aluminium oxide (Jeon et al. 2023), to obtain a 
shelf-stable ABM.

Besides, inspiring selective biosensor and biomimetic 
material design or being a target for a novel drug, nanopores 
are regarded to have the potential for characterizing proteins 
and nucleic acids and be used for sequencing of DNA and 
proteins (Jeong et al. 2022; Milenkovic et al. 2023). The 
design of membranes harboring specific nanopores can even 
be used for energy generation. It is suggested that the huge 
osmotic pressure generated by the salinity gradient at the 
interface between fresh and salt waters can be converted 
into blue energy with nanopore-based filtration membranes 
(Siria et al. 2017).

Future perspectives

Membrane transport proteins, most of which are specialized 
for the transport of specific substances, are a large family 
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