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tellurides contain ~ 25% of the total gold endowment of this 
world-class system (Vielreicher et al. 2016). Tellurium is a 
metalloid element which, when alloyed, endows different 
properties to different metals. The microbiological response 
to tellurium was first described over a century ago, with the 
now-characteristic blackening brought about by the forma-
tion of tellurium nanoparticles observed by King and Davis 
(1914). Despite many suggestions of the potential utility of 
tellurium for (micro)biological applications, the role of tel-
lurium in microbiology and pharmacology remains poorly 
studied (Presentato et al. 2019; Hosseini et al. 2023).

The usage of tellurium may have also increased dra-
matically if tellurium compounds had been used to prevent 
engine-knocking of combustion engines – despite their effi-
cacy, their smell meant that insidious tetraethyl lead was 
used instead, to environmentally detrimental effect (Midg-
ley Jr 1937). Today, the usage of tellurium is primarily as 
tellurides in solar panels (cadmium telluride) (60%) and 
thermoelectric devices (bismuth telluride) (20%) (Nassar et 
al. 2022). Other uses include in alloys of a range of metals 
(with steel and copper to improve machinability, with lead 
to improve vibration resistance) (10%), in the processing 
of rubber, and as a pigment in glasses and ceramics (10%)
(Nuss 2019; Anderson 2022) (Fig. 1).

History and application of Tellurium

Discovery and usage

Tellurium (Te) was first discovered in 1783 from the tel-
lurium-bearing gold mining area of the Metaliferi Moun-
tains, in modern-day Romania (Emsley 2011). Its crustal 
abundance is low, averaging around 0.005 mg/kg (Wede-
pohl 1995). It had few early uses, though it was typically 
found in gold-bearing areas, most notably in the Kalgoorlie 
gold mining area in Western Australia where gold-bearing 
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Abstract
Tellurium is a super-trace metalloid on Earth. Owing to its excellent physical and chemical properties, it is used in indus-
tries such as metallurgy and manufacturing, particularly of semiconductors and – more recently – solar panels. As the 
global demand for tellurium rises, environmental issues surrounding tellurium have recently aroused concern due to its 
high toxicity. The amount of tellurium released to the environment is increasing, and microorganisms play an important 
role in the biogeochemical cycling of environmental tellurium. This review focuses on novel developments on tellurium 
transformations driven by microbes and includes the following sections: (1) history and applications of tellurium; (2) 
toxicity of tellurium; (3) microbial detoxification mechanisms against soluble tellurium anions including uptake, efflux 
and methods of reduction, and reduced ability to cope with oxidation stress or repair damaged DNA; and (4) the charac-
teristics and applications of tellurium nanoparticles (TeNPs) produced by microbes. This review raises the awareness of 
microorganisms in tellurium biogeochemical cycling and the growing applications for microbial tellurium nanoparticles.
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Growing demand and criticality

The importance of tellurium as a commodity is increasing, 
primarily by virtue of the growing demand for tellurium in 
cadmium telluride solar panels. Cadmium telluride solar 
panels make up 5–10% of the solar panel market share. 
Despite this growing global usage of tellurium (at least 
580 tonnes production in 2022, up from ~ 140 tonnes two 
decades ago) (Anderson 2022), only a handful of sites refine 
tellurium directly as a commodity, including Kankberg, 
Sweden (producing gold and tellurium) and more recently, 
the Kennecott Mine, Utah, USA (producing copper, gold, 
silver, molybdenum and now tellurium). Tellurium is most 
readily recovered from the anode slimes produced by the 
electrowinning of copper (Makuei and Senanayake 2018), 
but a move towards heap leaching for copper recovery may 
mean that tellurium is no longer produced from copper min-
ing. Tellurium is often classed as a Critical Metal, particu-
larly in the United States of America (McNulty and Jowitt 
2021), where it is produced from just two refineries. The 
fact that Te is listed on criticality lists at all is testament to 
the importance of having efficient refinement pathways for 
by-product metal(loid)s. More than 10 times the global tel-
lurium supply is mined every year, with the majority report-
ing to tailings dams and waste rock storage facilities. Mine 
waste storage has a high monetary cost to mine operators 
and potentially an environmental cost if deleterious ele-
ments leach from storage facilities (Kavlak et al. 2013; Mis-
sen et al. 2020).

Environmental issues

Despite its high toxicity to both microscopic and macro-
scopic life, tellurium’s rarity has meant that it has not left 

a negative environmental legacy in the manner of ele-
ments such as lead and arsenic. Tellurium is concentrated 
unequally in the environment, with high levels of Te in 
certain gold and copper deposits despite its overall low 
crustal abundance (Grundler et al. 2013), including extreme 
examples of enrichment above 0.1 wt% in ores (e.g. Börner 
et al. 2021) believed to be related to its mobility in (boil-
ing) hydrothermal fluids (Cooke and McPhail 2001). Tel-
lurium is usually present in aqueous environments in trace 
concentrations less than 1 µg/L (Llaver et al. 2021). Tel-
lurium is most often one of a suite of contaminant elements 
present in settings such as acid mine drainage of Te-bearing 
pyrites (Zhan et al. 2022). However, the few studies that 
do exist suggest that tens of thousands of tonnes of tellu-
rium have been released to the environment during indus-
trial activities which process Te-rich feedstocks, with 9500 
tonnes estimated to have been released to the atmosphere 
from copper smelters alone (Wiklund et al. 2018). Due to 
the extensive occurrence of tellurium and its oxyanions in 
various industrial and metal mining activities, tellurium has 
recently caused environmental pollution concerns (Alavi et 
al. 2020). After being released into the environment, waste-
water containing tellurium ions may accumulate in soil and 
aquatic systems (Qin et al. 2017; Curtin et al. 2020) (Fig. 2). 
Tellurium is found primarily in the form of oxyanions, tel-
lurite (TeO3

2−) and tellurate (TeO4
2−), in natural waters and 

weathered surface environment geological samples (Wu et 
al. 2014; Grygoyc and Jablonska-Czapla 2021). Soluble tel-
lurite is more toxic than tellurate, and elemental tellurium 
(Te0) is less toxic than both (Yao et al. 2021). The distribu-
tion of soluble tellurium needs to be monitored in industrial 
settings such as copper-processing facilities.

Fig. 1 The applications of 
tellurium
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Toxicity of Tellurium

General toxicity

As well as impacting plant growth and poisoning microor-
ganisms, exposure to Te can also affect the health of humans 
and animals. Animal experiments have shown that exposure 
to tellurite accelerates liver toxicity and oxidative stress in 
rat liver tissues (Safhi et al. 2016). Cases of non-occupa-
tional tellurium exposure were rarely reported due to most 
natural settings and consumer products containing little sig-
nificant tellurium. However, some groups have reported that 
tellurium in the soil might lead to contamination of foods. 
Tellurium concentrations in foods are generally < 1 mg Te 
/ kg food and total human intake of Te per day is likely no 
more than 0.1 mg (Gerhardsson 2022), although it is worth 
noting that these concentrations nonetheless represent a Te 
enrichment 1–2 orders of magnitude compared to the aver-
age Te concentration in soil (average ~ 0.027 mg/kg; Ba et 
al. 2010), with typical values such as fresh fruits (0.185 mg/
kg), cereals (0.168 mg/kg), legumes (0.382 mg/kg), potatoes 
(0.189 mg/kg), meat (0.686 mg/kg), nuts (1.072 mg/kg), 
fishes (0.803 mg/kg) and some dairy products (0.937 mg/
kg) (Filippini et al. 2020; Gad and Pham 2014). As little 
2 mg/kg tellurium in drinking water can pose a threat to 
human health (Yao et al. 2022). The amount of Te in the 
human body is not well-studied, but it is likely to be less 
than 1 mg (Emsley 2011).

Once tellurium compounds enter cells, they could induce 
cellular reactions including (1) interference of thiols (redox 
enzymes); (2) replacement of Se and S in proteins; (3) dam-
age of cell membrane structure; and (4) increased oxida-
tive stress (Goff et al. 2021a; Tang et al. 2022; Reddy et al. 
2023). Among them, the production of reactive oxygen spe-
cies (ROS) induced by tellurium oxyanions is the main fac-
tor of tellurate toxicity (Peng et al. 2022). The metabolism 
of tellurium in the human body remains unclear, despite 
being first recognized as a potential industrial poison a 
century ago (Shie and Deeds 1920). Recently, Duan et al. 
(2023) indicated a significant correlation between tellurium 
exposure and an increased risk of developing hypertension 
(high blood pressure). Animal studies showed that up to 
25% of tellurium dioxide (TeO2) taken orally was absorbed 
by the gut; tellurium was primarily stored in the kidneys, 
but it accumulates in the liver, spleen, heart, lungs, brain, 
and bones (Hayes and Ramos 2019) (Fig. 2). Accidental 
ingestion of tellurium-containing metal-oxidising solutions 
by two children (independent of each other) led to symp-
toms including vomiting, difficulty swallowing, blackened 
tongue and lips and a garlic odour to the breath (Yarema 
and Curry 2005). To our knowledge, only two deaths have 
been recorded from tellurium ingestion due to accidental 
poisoning by sodium tellurite at a very high concentration of 
30 mg sodium tellurite per kilogram body weight (Keall et 
al. 1946; Gerhardsson 2022). Symptoms included vomiting, 
kidney pain, loss of consciousness and a strong garlic odour. 
Systemic effects of acute tellurium toxicity in rats include 

Fig. 2 The cycle of tellurium on the earth’s surface
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Microbial detoxification mechanisms for tellurium

Various tellurium oxyanion detoxification mechanisms have 
been identified in microorganisms. The main detoxification 
mechanisms is reduction by either precipitation or methyla-
tion, and others include decreased intake, efflux, and reduc-
ing oxidative stress (Fig. 3).

Transport of tellurate

Transport is the first step in tellurium oxyanion metabolism 
in cells. As there are no known specific tellurite or tellurate 
transferases, tellurium oxyanions must enter cells via other 
anionic transferases. Goff and Yee (2017) discovered that in 
E. coli K-12, deletion of the CysPUWA sulfate transporter 
permease or ATPase subunits prevents tellurate entry into 
the cytoplasm, thus conferring higher resistance to tellurate.

Reduction of tellurate

The primary tellurium detoxification mechanism for many 
microorganisms is the transformation of tellurite or tellu-
rate to elemental tellurium through biological reduction 
(Wu et al. 2019). In E. coli K-12, molybdopterin-containing 
enzymes were found to be capable of reducing tellurate to 
elemental tellurium (Theisen et al. 2013). A membrane-
associated tellurite reductase isolated from the Erythromo-
nas ursincola strain KR99 is also able to reduce tellurate 
to elemental tellurium (Maltman et al. 2017a). In addition, 
cysteine could also reduce tellurate to elemental tellurium in 
E. coli K-12 (Goff et al. 2021a).

Baesman et al. (2007) speculated that Sulfurospirillum 
barnesii cells might use a two-step reduction pathway to 
reduce tellurate, first reducing it to tellurite, and then fur-
ther reducing tellurite to elemental tellurium. Ramos-Ruiz 
et al. (2016a) found that the reduction rate of tellurite was 
seven times faster than that of tellurate in a methanogenic 
microbial consortium. Since the reduction of tellurate 
requires more electrons to convert them to elemental tel-
lurium compared to tellurite (6 per Te cation rather than 4), 
it takes longer to transfer the additional electrons (Maltman 
et al. 2017a). Therefore, tellurite accumulates relatively less 
during the reduction of tellurate in a community of mixed 
microorganisms in anaerobic, methane-producing granular 
sludge (Ramos-Ruiz et al. 2016a).

Transport of tellurite

Microorganisms can enhance their resistance to tellurite by 
reducing their tellurite intake. It is known that in the tellurite 
metabolism and transport system, the phosphate transport-
ers PitA and PitB are responsible for the uptake of tellurite 

lethargy, gastrointestinal disease, and fur changes, while 
chronic toxicity includes peripheral neuropathy, cerebral 
cortex changes, kidney and liver lesions, and reproductive 
effects (Gerhardsson 2022). The factors of toxicity, such as 
the generation of reactive oxygen species (ROS), disrup-
tion of cell membrane structure, and interference with redox 
enzymes, which occur in microbial cells, are also applicable 
in the toxicological assessment of animal cells (Safhi et al. 
2018). Currently, there is a lack of research on the toxico-
logical mechanisms of tellurium, particularly in humans and 
animals, compared to other group 16 counterpart, selenium, 
which has been more extensively studied (in part due to 
being a biologically essential element).

Microbial toxicity

Tellurite is toxic to both prokaryotes and eukaryotes. Tellu-
rium compounds may act as antibacterial agents, effectively 
inhibiting the growth of infectious microorganisms such 
as Escherichia coli, Salmonella typhi and Klebsiella pneu-
moniae, and could be used to treat diseases such as syphilis, 
tuberculosis and leprosy (Goff 2020; Vavrova et al. 2021). 
In addition, ammonium trichloro tellurate (an organotellu-
rium compound) also provided an option for the treatment 
of some symptoms caused by HIV infection (Peng and Li 
2019).

Tellurite anions are toxic to most microorganisms at con-
centrations as low as 1 µg/ml (Arenas-Salinas et al. 2016). 
These soluble tellurium anions are highly toxic to most 
bacteria and more toxic than metals such as mercury and 
lead (Harrison et al. 2004; Workentine et al. 2008). Tellu-
rite anions in high concentrations could alter balance in soil 
microbial communities. Kolesnikov (2019) found that the 
tellurium contaminated (even at 0.003 mg/kg) chernozem 
(black, humus-rich) soil showed a decrease in total bacterial 
count, reduced abundance of Azotobacter, and no significant 
recovery trend in the soil’s biological characteristics for 90 
days after contamination. Among the soil pollution caused 
by silver, bismuth, tellurium and thallium, tellurium and 
thallium were the most ecotoxic, based on their effects on 
soil enzyme (catalase and dehydrogenase) activity, soil bac-
terial count and wheat root length (Kolesnikov et al. 2022). 
These studies demonstrated the high toxicity of tellurium 
and its significant harm to soil ecology. As tellurite anions 
exhibit toxicity to bacteria at low aqueous concentrations 
(1 µg/ml), pore water in tellurium-rich tailings contains 
high concentrations of salts and potentially toxic elements 
that might affect ectopic microbial communities (Hayes and 
Ramos 2019), selecting for tellurium-resistant microorgan-
isms as a result. In addition, tellurite and tellurate extracted 
from semiconductor materials showed toxicity to the marine 
bacterium Aliivibrio fischeri (Ramos-Ruiz et al. 2016b).
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Reduction of tellurite

Reduction of tellurite to element tellurium

Microorganisms convert tellurite into elemental tellurium or 
volatile methylated forms of tellurium through reduction as a 
detoxification mechanism (Ollivier et al. 2011). Microbially 
mediated reduction by precipitation (from soluble tellurium 
oxyanions to insoluble elemental tellurium) can be divided 
into enzymatic or non-enzymatic reduction. In terms of non-
enzymatic reduction, some reducing thiols, such as glutathi-
one, can also directly reduce tellurite to elemental tellurium 
(Muñoz-Diaz et al. 2022). Various organic electron shuttles 
(such as lawsone, menadione, anthraquinone-2-sulfonate, 
and anthraquinone-2,6-disulfonate) were also reported to 
mediate tellurite reduction (Wang et al. 2011; Borghese et 
al. 2020). Additionally, Fe3+ could promote electron gen-
eration and electron transfer to accelerate tellurite reduction 
in Shewanella oneidensis MR-1 (Kim et al. 2013; He et al. 
2021).

Numerous tellurite reductases have now been identified 
in microbes (Table 1). The first confirmed tellurite reduc-
tase was discovered in Mycobacterium avium (Castro et al. 
2008). Subsequently, the tellurite reduction ability of nitrate 
reductase in E. coli, Ralstonia eutropha, Paracoccus denit-
rificans, and Paracoccus pantotrophus has been confirmed 
by both in vivo and in vitro experiments in many bacteria 
(Borghese et al. 2017). Calderon et al. (2006) found that the 
enzyme catalase in animals and Staphylococcus epidermidis 

(Montenegro et al. 2021). Similarly, acetate transport pro-
teins could take up tellurite in some bacteria, and the resis-
tance of these bacteria to tellurite could increase when the 
competitor acetate was present (Borghese et al. 2010). In 
a Micromonospora strain isolated from a metal-rich envi-
ronment, increasing the saturation and branched chain fatty 
acids may stiffen the cell membrane, resist excessive tel-
lurium oxyanions entering the cell membrane, and avoid 
oxidative bursts associated with tellurite in order to cope 
with high concentrations (5 mM) of tellurite (Piacenza et 
al. 2022). Additionally, surface adsorption of tellurite could 
also control tellurite uptake (Goff et al. 2021b). These find-
ings suggested that the reduced intake may contribute to tel-
lurium oxyanion detoxification.

Efflux of tellurite out of cells is also a detoxification 
mechanism used by some microorganisms. In these bacte-
ria, the tellurite resistant operon TehA encodes an intimal 
protein and TehB encodes a methyltransferase (Choudhury 
et al. 2011). E. coli TehA (EcTehA) is a typical efflux protein 
that could eliminate tellurite out of cells (Choudhury et al. 
2011). In Aeromonas hydrophila, cytoplasmic protein TehB 
may accelerate the rate of reduction of tellurite to elemen-
tal tellurium (Castro et al. 2020). Additionally, the arsenite 
efflux system ArsABC had been reported to export tellurite 
(Turner et al. 1992).

Fig. 3 The microbial detoxification mechanism to tellurite and tellu-
rate. (A) reduce uptake of tellurite, (B) efflux of tellurite, (C) reduction 
of tellurite and tellurate to insoluble elemental tellurium [Te(0)], (D) 

reduction of tellurite and tellurate to methylated tellurium [Te(-II)], 
(E) reducing oxidative stress and DNA damage repair
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Paenibacillus pabuli ALJ109b (Farias et al. 2021) were also 
proven to be acting as microbial tellurite reductases.

Interestingly, Arenas-Salinas et al. (2016) found that 
most reported reductases for tellurite were flavin adenine 
dinucleotide (FAD) based flavin reducing proteins accord-
ing to bioinformatics analysis. Therefore, they expressed 
and purified flavoproteins including thioredoxin reductase 
(TrxB), alkylhydroperoxide reductase (AhpF), glutathione 
reductase (GorA), mercuric reductase (MerA), NADH: fla-
vorubredoxin reductase (NorW), dihydrolipoamide dehy-
drogenase (E3), and inferred oxidoreductase YkgC from 
E. coli and other environmental strains (Arenas-Salinas et 
al. 2016). The in vitro enzyme activity tests showed that 

could also act as a tellurite reductase. Castro et al. (2008) 
and Miguel et al. (2010) found that the dihydrolipoamide 
dehydrogenase in Aeromonas caviae ST, E. coli, Zymomo-
nas mobilis, Streptococcus pneumoniae, and Geobacillus 
stearothermophilus exhibited good tellurite reduction activ-
ity. This indicated that dihydrolipoamide dehydrogenase 
may also be a common tellurite reductase. Glutathione 
reductase in Pseudomonas sp. BNF22 (Pugin et al. 2014), 
and 6-phosphogluconate dehydrogenase in E. coli (Sando-
val et al. 2015) also showed good tellurite reduction activity. 
Additionally, a 117 kDa membrane protein in E. ursincola 
KR99 (Maltman et al. 2017a), TrxR in Bacillus sp. Y3 
(Yasir et al. 2020), Mycothione reductase in Rhodococcus 
erythropolis PR4 (Butz et al. 2020) and Flagellin (FlaA) in 

Table 1 Microbial Te (IV) reductase
Reductase Cell localization Measure-

ment 
condition

Michaelis 
constant Km 
(mM)

Maximum 
reaction 
rate Vmax 
(U/mg)

Source Ref.

Nitrate reductase Cell membrane /periplasmic Purified 
protein

0.6 0.97 E. coli,
R. eutropha,
P. denitrificans,
P. pantotrophus

(Sabaty et al. 
2001)

Catalase Unknown Cell extract 
/Partially 
purified 
proteins

0.9 Unknown S. epidermidis (Calderon et 
al. 2006)

Dihydrolipoamide dehy-
drogenase (E3)

Unknown Purified 
protein

0.04794 84.5  A. caviae ST, E. 
coli, Z. mobilis, 
S. pneumonia, G. 
stearothermophilus

(Castro et al. 
2008; Arenas-
Salinas et al. 
2016)

Glutathione reductase 
(GorA)

Cytoplasm Purified 
protein

0.08947 6314 Pseudomonas sp. 
BNF22, E. coli

(Pugin et al. 
2014; Arenas-
Salinas et al. 
2016)

6-phosphogluconate 
dehydrogenase (6PGD)

Unknown Purified 
protein

Unknown Unknown E. coli (Sandoval et 
al. 2015)

Thioredoxin reductase 
(TrxB)

Unknown Purified 
protein

0.1145 9586 Staphylococcus 
haemolyticus BNF01, 
E. coli

(Arenas-
Salinas et al. 
2016)Alkyl hydroperoxide 

reductase (AhpF)
0.8196 77,875

NADH: flavorubredoxin 
reductase (NorW)

0.6949 5347

Putative oxidoreductase 
(YkgC)

0.5171 2696

Mercuric reductase 
(MerA)

Unknown Unknown

Membrane reductase Cell membrane Purified 
protein

3.36 5.15 E. ursincola KR99 (Maltman et 
al. 2017a)

Periplasmic reductase Periplasmic Purified 
protein

3.9 5.6 Shewanella frigidima-
rina ER-Te-48

(Maltman et 
al. 2017b)

Thioredoxin-disulfide 
reductase (TrxR)

Unknown Purified 
protein

16.31 12.23 Bacillus sp. Y3 (Yasir et al. 
2020)

Mycothione reductase 
(Mtr)

Unknown Purified 
protein

0.779 ± 0.050 Unknown R. erythropolis PR4 (Butz et al. 
2020)

Flagellin (FlaA) Flagellum Purified 
protein

Unknown Unknown P. pabuli ALJ109b (Farias et al. 
2021)
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Reduced oxidative stress and DNA damage repair

Tellurite or tellurate react with reduced thiols or reductases 
after entering the cell, leading to production of reactive 
oxygen species (ROS) (Calderon et al. 2006; Diaz-Vasquez 
et al. 2014). The production of ROS might further lead to 
DNA damage and affect the normal growth and reproduc-
tion of microorganisms. ROS production is the main reason 
why Te oxyanions are so toxic to many microbes.

Microbes can upregulate some genes including genes 
which promote (1) reduction of ROS or (2) repair DNA 
damage caused by ROS to cope with the increasing ROS. 
For instance, the production of ROS led to the up-regulation 
of global regulatory factors such as OxyR and SoxRX in E. 
coli; OxyR further regulated proteins such as catalase-per-
oxidase (KatG), alkyl hydroperoxide reductase (AhpCF), 
glutathione reductase (GorA), glutaredoxin A (GrxA), and 
thioredoxin C (TrxC) to cope with oxidative stress (Chas-
teen et al. 2009; Pérez et al. 2007; Zannoni et al. 2008). 
SoxRS, on the other hand, up-regulated proteins such as 
superoxide dismutase (SodA) and endonuclease IV to deal 
with the toxicity of ROS produced by tellurite (Chasteen 
et al. 2009; Choudhury 2013). KatG, AhpCF, GorA, TrxC 
and SodA could reduce ROS content in intracellular envi-
ronments, meanwhile endonuclease IV could repair DNA 
damage.

Characterization and application of tellurium 
nanoparticles synthesized by microorganisms

Biological tellurium nanoparticles (Bio-TeNPs) based on 
microbes

Numerous studies reported that soluble and highly toxic 
tellurium oxyanions could be converted into low toxic-
ity elemental tellurium nanoparticles through the action of 
bacteria, fungi or archaea (Ao et al. 2022; Srivastava et al. 
2015), which is not just a laboratory phenomenon, but also 
detectable in nature (Missen et al. 2022). Bio-TeNPs were 
produced from tellurite by microorganisms in most studies, 
and only a few bacteria have been reported to produce Bio-
TeNPs from tellurate, such as S. barnesii and Bacillus sel-
enitireducens (Baesman et al. 2007). This might be because 
reduction of tellurite to elemental tellurium occurs more 
readily than reduction of tellurate to elemental tellurium in 
microorganisms (Maltman et al. 2017a). This phenomenon 
was similar to the trends observed for selenium oxyanion 
metabolism in microorganisms (Wang et al. 2022).

Literature reports of tellurium oxyanion bioreduction 
are dominated by bacteria (Table 2), followed by fungi and 
archaea (Table 3). However, fungi and archaea are more 
resistant to high concentrations of tellurite than bacteria 

these proteins could reduce tellurite to generate tellurium 
nanoparticles (Arenas-Salinas et al. 2016).

Currently, studies on tellurite reductases are mainly 
focused on aerobic conditions. The reduction mechanism 
of tellurite under anaerobic conditions is not very clear. A 
diverse community of metal(loid) oxide respiring bacteria 
around black smokers is known to remove tellurium (and 
other metalloid) oxyanions as terminal electron acceptors 
through anaerobic respiration (Maltman et al. 2016). How-
ever, this electron transport pathway needs further study.

Reduction of tellurite to methylated tellurium

Methylation is another method by which microbes detox-
ify tellurium by reduction. Primarily, tellurite methylation 
proceeds by conversion to dimethyl telluride [(CH3)2Te, 
DMTe], which is less toxic than tellurite, highly volatile and 
has a characteristic garlic odour (Prigent-Combaret et al. 
2012). Other methylated tellurium species produced include 
dimethyl ditelluride [(CH3)2Te2, DMDTe] and the mixed 
species dimethyltellurenyl sulfide [(CH3)2TeS, DMTeS] 
(Ollivier et al. 2008). The most commonly identified meth-
ylation pathway was S-adenosylmethionine-dependent 
methylation (Choudhury 2013). DMTe has been identified 
as a product of tellurium bioreduction in many bacterial 
strains, such as Scopulariopsis brevicaulis and Pseudomo-
nas fluorescens (Choudhury 2013). In a Penicillium strain, 
DMTe was not produced when only tellurium was present, 
but DMTe could be detected when selenium and tellurium 
were added together (Choudhury 2013). This suggested that 
the presence of selenium might induce tellurium methyla-
tion pathways.

Tellurite methylation is usually catalyzed by methyltrans-
ferase. Overexpression of the bacterial thiopurine methyl-
transferase (bTPMT) in E. coli can enhance its resistance to 
tellurite (Choudhury et al. 2011). Currently, the most well-
studied tellurium methyltransferase is TehB in E. coli, which 
is typically arranged together with TehA (Choudhury et al. 
2011). TehB could convert tellurite to TeCH3O3

2−, which 
further reacts to form DMTe (Chasteen et al. 2009; Choud-
hury 2013), in a process which does not produce elemen-
tal tellurium. Furthermore, Ollivier et al. (2011) found that 
aeration plays an important role in controlling the volatile 
and precipitation equilibrium of tellurite oxyanions, where 
elemental tellurium may be an intermediate in volatilization 
pathways in tellurite resistant Rhodotorula mucilaginosa. In 
some bacteria tellurite can be first reduced to elemental tel-
lurium, which is then methylated by the UbiE methyltrans-
ferase to generate DMTe (Araya et al. 2004). Similarly, in 
the tellurite-reducing bacterium Sporosarcina sp. Te-1, the 
formed elemental tellurium can further be transformed into 
methylated organotellurium compounds (Wang et al. 2021).
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archaea, (2) the fermentation technology is currently more 
mature, and (3) produced Bio-TeNPs are easier to extract 
from cultures. On the other hand, fungi and archaea suitable 
for large-scale fermentation and rapid reduction to form 
Bio-TeNPs remain to be further discovered.

Microbial Bio-TeNPs were usually located in the cyto-
plasm, periplasmic space or outside the cell. Additionally, 
Bio-TeNPs could accumulate and be excreted from cells 
after forming inside the cells, which could then exist both 
inside and outside the cell, such as occurs in the Raoultella 
genus and Escherichia genus (Nguyen et al. 2019). The 
production of Bio-TeNPs involves two steps, reduction and 
precipitation, occurring either intracellularly or extracel-
lularly, which might be related to the reductase or reduc-
ing substances at different sites (Borghese et al. 2017). So 
far, most microbially sourced Bio-TeNPs are derived from 

(Pearion and Jablonski 1999; Hosseini et al. 2023; Wu et al. 
2019; Ao et al. 2022). Higher maximum tellurite resistance 
might be owing to the higher metal absorption capacity, bio-
accumulation ability, effective extracellular enzyme secre-
tion and/or the filamentous structure of fungi (Barabadi et 
al. 2018; Kashyap et al. 2018), and archaea exhibited high 
levels of resistance in extreme environments with high 
salinity, and had the ability to resist and reduce the toxic 
tellurite (Srivastava et al. 2015). However, most bacteria are 
sensitive to tellurite at significantly lower concentrations, 
with even 1 µM tellurite enough to cause a toxic response. 
Although bacteria are tolerant to lower concentrations of 
tellurite than fungi and archaea, they might be a good cell 
factory for the production of Bio-TeNPs for further applica-
tions. This is mainly due to the fact that bacteria possess 
some advantages such as (1) faster growth than fungi and 

Table 2 Bio-TeNPs produced by bacteria
Biological source Location Percursor Shape Size (nm) References
Acinetobacter pittii D120 Unknown Te(IV) Rod-shaped 60–130 (Tang et al. 2022)
Aromatoleum sp. CIB Intracellular Te(IV) Rod-shaped 200 (Alonso-Fernandes et 

al. 2023)
B. selenitireducens Intracellular Te(VI), 

Te(IV)
Rod-shaped, rosettes 200, 1000 (Baesman et al. 2007)

Bacillus sp. BZ Cell debris Te(IV) Rod-shaped 20 × 180 (Zare et al. 2012)
B. Selenitireducens Cell surfaces Te(IV) Rod-shaped, Rosettes Unknown (Wang et al. 2019)
Escherichia Intracellular and 

extracellular
Te(IV) Ellipse-shaped 0.9 × 10− 3-1.8 × 10− 3 (Nguyen et al. 2019)

Lactobacillus plantarum 
PTCC1058

Intracellular Te(IV) Spheres 45.7 (Mirjani et al. 2015)

Lysinibacillus sp. ZYM-1 Cell membrane Te(IV) Rod-shaped, hexagonal Te 
nanoplates, nanoflowers, 
and nanobranches

300–500 (Wang et al. 2018)

Lysinibacillus sp. EBL303 Intracellular Te(IV) Spheres 22–148 (Hosseini et al. 2023)
Ochrobactrum sp. MPV1 Intracellular Te(IV) Short needle-like Unknown (Zonaro et al. 2017)
Ochrobactrum sp. MPV1 Unknown Te(IV) Spherical 76.2 (Zonaro et al. 2015)
Pseudomonas sp. strain 
BNF22

Cytoplasm Te(IV) Round, porous 60 (Pugin et al. 2014)

P. pseudoalcaligenes Cell debris Te(IV) Rod-shaped 185 (Forootanfar et al. 
2015)

P. pabuli ALJ109b Unknown Te(IV) Spheres <100 (Mirjani et al. 2015)
P. pseudoalcaligenes Unknown Te(IV) Individual, rod-shaped, 

rosettes
50–200 (Shakibaie et al. 2017)

R. aetherivorans BCP1 Intracellular Te(IV) Rod-shaped 148 ± 104, 223 ± 116 (Presentato et al. 2016)
Rhodobacter capsulatus Extracellular Te(IV) Acicular 200–700 (Borghese et al. 2017)
R. aetherivorans BCP1 Cytoplasm Te(IV) Spherical, rod-shaped > 700 (Presentato et al. 2018)
Raoultella Intracellular and 

extracellular
Te(IV) Rod-shaped 1.7 × 10− 3-2.6 × 10− 3 (Nguyen et al. 2019)

R. capsulatus Extracellular Te(IV) Elongated needle-like 10 ± 5 (Borghese et al. 2020)
S. barnesii Intracellular and 

extracellular
Te(VI), 
Te(IV)

Irregularly shaped spheres < 50 (Baesman et al. 2007)

Shewanella baltica Intracellular Te(IV) Rod-shaped 8–75 (Vaigankar et al. 2018)
Shewanella sp. NT-1 Intracellular Te(IV) Spheres Unknown (Sakaguchi et al. 2019)
Shinella sp. WSJ-2 Intracellular Te(IV) Rod-shaped 50–120 (Wu et al. 2019)
Streptomyces cyaneus Extracellular Te(IV) Spherical TeO2 Nps 35–89 (El-Sayyad et al. 2020)
Streptomyces graminisoli Unknown Te(IV) Rods, rosette 21.4 (Abed et al. 2023)
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and dispersion of nanoparticles (Barabadi et al. 2018). The 
optimal metal ion concentration, pH and reaction temper-
ature are also regarded as important factors in the forma-
tion of nanoparticles (Marooufpour et al. 2019). The links 
between reduction kinetics and protein structure may also 
lead to morphological differences in biological tellurium 
nanoparticles, according to the study of Lysinibacillus sp. 
ZYM-1 cells (Wang et al. 2018). The type of tellurate reduc-
tase presented on the cell membrane may determine the mor-
phology of Bio-TeNPs, including the simultaneous presence 
of nanorods, nanoflowers, nanobranches, and nanoplates 
(Wang et al. 2018). The mechanism underlying the different 

intracellular pathways. In terms of shape, Bio-TeNPs are 
formed mainly in the shape of rods, needles and spheres, 
but also nanoflowers, nanoplates, and even nanobranches 
in a few microbes (Fig. 4). Interestingly, Rhodococcus 
aetherivorans BCP1 converted tellurite to produce spheri-
cal tellurium nanoparticles that could further transform 
into nanorods with increasing exposure time (Presentato et 
al. 2018). Owing to electrostatic interactions, Bio-TeNPs 
adhered to each other and formed large rose-shaped knots 
in Pseudomonas pseudoalcaligenes (Shakibaie et al. 2017).

The variety of microorganism species, growth medium 
and synthesis conditions all have an effect on the size, shape 

Table 3 Bio-TeNPs produced by fungi and archaea
Biological source Source Percursor Shape Size (nm) Ref.

Fungi Aspergillus welwitschiae Fungal isolate Te(IV) Elliptic to spherical 60.8 (Abo Elsoud et al. 2018)
Aureobasidium pullulans Supernatants Te(IV) Granular 40–70 (Liang et al. 2019)
A. pullulans Supernatants Te(IV) Spherical 5–65 (Nwoko et al. 2021)
A. niger Hyphae Te(IV) Rod-shaped, spheres 200–300, 

20–100
(Sinharoy and Lens 
2022)

Mortierella humilis Supernatants Te(IV) Granular 40–70 (Liang et al. 2019)
Mortierella sp. AB1 Intracellular Te(IV) Rod-shaped 100–500 (Ao et al. 2022)
Phanero chaetechrysosporium Hyphae Te(IV) Needle-like 20–465 (Espinosa-Ortiz et al. 

2017)
Penicillium chrysogenum 
PTCC5031

Extracellular Te(IV) Spherical 33.8 (Barabadi et al. 2018)

Phoma glomerata Supernatants Te(IV) Pillar and needle shapes 40–70 (Liang et al. 2019)
P. glomerata Supernatants Te(IV) Needle-shaped 10–80 (Liang et al. 2020)
Trichoderma harzianum Supernatants Te(IV) Pillar and needle shapes 40–70 (Liang et al. 2019)

Archaea Halococcus salifodinae BK3 Intracellular Te(IV) Hexagonal 
needle-shaped

10 × 44 (Srivastava et al. 2015)

Haloferaxalexandrinus GUSF-1 Cell lysate Te(IV) Rod-shaped 40 × 7 (Alvares and Furtado 
2021)

Fig. 4 TEM images of different shapes of Bio-TeNPs. (A) Rod-like TeNPs (Shakibaie et al. 2017), (B) needle-like TeNPs (Borghese et al. 2020), 
(C) spherical TeNPs (Nwoko et al. 2021), and (D) nanoflower, (E) nanoplate and (F) nanobranch (Wang et al. 2018), respectively
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(Zonaro et al. 2015; Vaigankar et al. 2018; Vahidi et al. 
2021). Microbial Bio-TeNPs are typically generated under 
mild reaction conditions. They provide a safe, economi-
cal and environmentally friendly means to reduce the use 
of organic solvents and more toxic reactants in a variety of 
applications, reducing the production of toxic residues with 
great prospects for further industrial development (Bor-
ghese et al. 2020).

Microbial Bio-TeNPs show great potential for applica-
tions in antibacterial, adsorptive, photocatalytic and con-
ductive electronic materials (Fig. 5). (1) Bio-TeNPs have 
been found to have excellent antibacterial activity (Table 4). 
Toxicity of Bio-TeNPs, while less than that of soluble Te 
oxyanions, is still significant and the Bio-TeNPs are able 
to destroy biofilms, produce reactive oxygen species, dam-
age DNA and release toxic ions in specific contexts (Ghosh 
et al. 2021). Thus, Bio-TeNPs were found to inhibit the 
growth of E. coli (Pugin et al. 2014), Staphylococcus aureus 
(Abed et al. 2023), K. pneumoniae, Pseudomonas aerugi-
nosa (Zare et al. 2012), Candida albicans (Zare et al. 2014), 
Aspergillus flavus and Aspergillus niger (El-Sayyad et al. 
2020). Najimi et al. (2017) conducted a subacute evalua-
tion of Bio-TeNPs using mice prepared by P. pseudoalcalig-
enes. They found that the toxicity of Bio-TeNPs was lower 
than that of tellurite, and in a 14-day subtoxicity study in 
mice, doses below 1.2 mg/kg did not cause adverse reac-
tions. Furthermore, Abed et al. (2023) tested Bio-TeNPs 
in a rat intravenous infection model, which demonstrated 
their effectiveness against methicillin-resistant S. aureus 
(MRSA) and improved the survival rate of infected ani-
mals, while also showing a reasonable level of safety in 
terms of liver and kidney function. Bio-TeNPs are expected 
to be an alternative to traditional antibiotics and chemical 
fungicides used in antibacterial coatings of medical devices 
(Zonaro et al. 2017), alleviating the pressure of microbial 

positions and shapes of Bio-TeNPs produced by different 
microorganisms, as well as the variations of position and 
shape for Bio-TeNPs produced by the same microorgan-
isms, are still unclear and need further investigation.

Application of microbial Bio-TeNPs

Nanomaterials have the advantages of larger surface area, 
higher cytocompatibility and fewer defects than other mate-
rials, and they are used in almost all fields, such as bio-
medicine, optoelectronics and environmental remediation 

Table 4 Antibacterial activity of Bio-TeNPs
Bio-TeNPs source Pathogens Ref.
A. pittii E. coli. (Tang et 

al. 2022)
Bacillus sp. BZ S. aureus, S.typhi, K. pneumo-

nia and P. aeruginosa
(Zare et 
al. 2012)

Bacillus sp. BZ C. albicans ATCC14053 (Zare et 
al. 2014)

H. salifodinae BK3 E. coli NCIM2345, P. aerugi-
nosa MTCC2581, S. aureus 
MTCC737 and Micrococcus 
luteus

(Srivas-
tava et al. 
2015)

Ochrobactrum sp. 
MPV1

E.coli JM109, P. aerugi-
nosa PAO1 and S. aureus 
ATCC25923

(Zonaro et 
al. 2015)

Pseudomonas sp. 
strain BNF22

E. coli. (Pugin et 
al. 2014)

P. pseudoalcaligenes E. coli, P. aeruginosa, S. 
typhi, S. aureus (MRSA), 
C. albicans, and Candida 
dubliniensis

(Shakibaie 
et al. 
2017)

S. cyaneus A. flavus, A. niger, Aspergillus 
fumigatus, P. aeruginosa, S. 
aureus and K. pneumoniae

(El-
Sayyad et 
al. 2020)

S. graminisoli Methicillin-resistant S. aureus 
(MRSA)

(Abed et 
al. 2023)

Fig. 5 The application of 
Bio-TeNPs
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