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it enables to employ a wide variety of products, useless 
for traditional industries, as feedstocks for the production 
value-added biomolecules. Probably, the most relevant raw 
material for bioprocesses are plant-derived agro-industrial 
and food wastes. These are rich in organic molecules such 
as carbohydrates, mono- and oligosaccharides, aromatic 
compounds or oils, which can be valorized, for example, 
as carbon sources for the culture of microorganism and 
the production of biomolecules such as key chemicals or 
enzymes (Panda et al. 2016; Lee et al. 2019).

Spent coffee grounds (SCG) are one of these prominent 
sources of agro-industrial wastes. These are generated as 
leftovers after the extraction of the raw coffee powder with 
hot water or steam. Around 10 million tons of coffee are 
produced annually according to the international coffee 
organization, and it is estimated that an average of 650 kg 
of SCG are produced per ton of green coffee beans (Murthy 
and Madhava Naidu 2012). Currently SCG have a low value 
and are normally disposed in landfill or incinerated (Kar-
mee 2018). However, given their composition and avail-
ability, they represent a potentially relevant raw material for 

Introduction

The progress of our society towards a circular economy 
is attracting an increasing social and scientific consensus. 
This is pushing manufacturers to use raw materials obtained 
from renewable sources and extend the permanence of these 
materials in the production cycle by reusing and recycling 
them. In this context, biotechnology plays a crucial role in 
the advance to a more sustainable industrial system, since 
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Spent coffee grounds (SCG) are wastes generated in high amounts worldwide. Their composition makes them a promising 
feedstock for biotechnological processes. Here we show that the production of the biosurfactant surfactin by submerged 
culture of a Bacillus subtilis strain growing on SCG is possible, reaching concentrations up to 8.8 mg/L when using SCG 
at 8.3 g/L in the medium. In addition, we report a synergy between the production of surfactin and the recovery of mela-
noidins, an added-value compound already present in SCG. More specifically, the concentration of melanoidins in the 
culture medium increased between 2.1 and 2.5 times thanks to the presence of the B. subtilis in the culture. Furthermore, 
we have observed a strong interaction between surfactin and melanoidin aggregates through dynamic light scattering mea-
surements, and that both of them can be co-purified with an acid precipitation. We have also characterized the interfacial 
and antioxidant properties of the cell-free supernatant and surfactin extract, as well as the distribution of the congeners of 
the biosurfactant. Altogether, this work describes a promising approach to obtain biosurfactants and antioxidant molecules 
in a single operation, which can be used to design several new formulations of interest for bioremediation, amendment 
of soils, food and cosmetics.
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biomanufacturing. SCG are a rich source of carbohydrates, 
in particular mannose, galactose and glucose, the main com-
ponents of its hemicellulose fraction (Karmee 2018). They 
also are rich in oil, proteins and bioactive compounds of 
interest such as polyphenols and melanoidins (Araújo et al. 
2019; Battista et al. 2020; Leal Vieira Cubas et al. 2020; 
Ramírez et al. 2021; Ribeiro et al. 2021). Significantly, mel-
anoidins from SCG have gained a considerable attention due 
to their antioxidant, antimicrobial and anticancer activity, as 
well as their capacity to chelate metal ions (Langner and 
Rzeski 2014). Furthermore, several recent studies have used 
SCG as raw material for the production of biochemicals, 
focusing on the production of enzymes, polyhydroxyalca-
noates, polyphenols, biofuels or bio-composites (Cervera-
Mata et al. 2020; Battista et al. 2020; Mendoza Martinez et 
al. 2021; Lee et al. 2021). In addition to these, biosurfac-
tants are a family of biomolecules that have an increasing 
relevance in biomanufacturing. Biosurfactants are surface 
active molecules produced by microorganisms that stand as 
a real alternative to petroleum-derived synthetic surfactants 
since they have better biocompatibility and wider structural 
diversity and applicability. More importantly, biosurfactants 
are compatible with sustainable production chains (Singh 
et al. 2019). Despite that, the production of biosurfactants 
from SCG has been barely explored, with a single study 
reported to date by Yañez-Ocampo et al. in 2017 (Yañez-
Ocampo et al. 2017).

Therefore, in this work we propose the production of 
biosurfactants as a valorization route for SCG. For that, we 
aim to analyze the feasibility of using SCG as the carbon 
source for the culture of the bacterium Bacillus subtilis 
DSM 3526, a strain producer of the biosurfactant surfactin. 
We have studied the time course of the B. subtilis cultures 
fed with different concentrations of SCG and character-
ized in detail the yield of surfactin and the distribution of 
its congeners by UPLC-MS. Remarkably, in addition to the 
production of biosurfactants, we report for the first time 
how the production of surfactin leads to an increase of the 
amount of melanoidins that can be recovered from the spent 
coffee grounds. We have also measured the interfacial and 
antioxidant properties of the cell-free supernatant and the 
melanoidins extracted from these cultures. Finally, we have 
analyzed the interaction between surfactin and melanoidins 
by dynamic light scattering, in order to understand the inter-
action between biomolecules, which are simultaneously 
produced and recovered in a single operation.

Experimental section

Materials

Culture media components and other reagents used were 
purchased form Merk (Darmstadt, Germany). Two surfactin 
standards were used in this work, one HPLC-grade surfactin 
(Merk, purity ≥ 98%) as reference for the UPLC-MS analy-
ses, and a sodium surfactin purchased from Kaneka (Osaka, 
Japan, purity > 90%) used for the DLS and CMC experi-
ments. Spent coffee grounds (SCG) were kindly supplied by 
a local coffee shop (Granada, Spain). Before their use, SCG 
were dried at 100ºC for 24 h, reducing its moisture content 
to less than 2%. The SCG where characterized as follows: 
(i) the total lipids were measured by a Soxhlet extraction 
with petroleum ether at 40–60 ºC after a hydrolysis with 
HCl 4 N. The free fatty acids profile was determined by a 
methylation of the extract followed by gas chromatography 
Agilent 7890 A chromatograph (Agilent, Ca., USA); (ii) 
the protein content was measured by a Kjeldahl digestion, 
using a 6.25 factor to convert the total Kjeldahl nitrogen 
to protein; (iii) an elemental analysis was performed with 
a Thermo Scientific™ FLASH 2000 CHNS/O Analyzer 
(Thermo Fisher Scientific, Ma., USA).

Bacterium strain and biosurfactant production and 
characterization

Bacillus subtilis DSM 3526 was acquired from the Ger-
man Collection of Microorganisms and Cell Cultures. The 
strain was stored at -80ºC in a nutrient medium comprised 
of 2.0 g/L of yeast extract, 1.0 g/L of beef extract, 5.0 g/L 
of peptone, 5.0 g/L of sodium chloride and 20% (v/v) of 
glycerol. The frozen stocks of B. subtilis DSM 3526 were 
streaked in a nutrient agar Petri dish and incubated for 24 h 
at 30 ºC. Next, one colony was used to inoculate a 250 mL 
Erlenmeyer flask containing 50 mL of medium comprised 
of 2.0 g/L of yeast extract, 1.0 g/L of beef extract, 5.0 g/L 
of peptone and 5.0 g/L of sodium chloride. This inoculum 
culture was incubated at 30ºC and 160 rpm for 24 h. Experi-
ments with B. subtilis DSM 3526 growing in SCG were 
performed in 500 mL Erlenmeyer flasks containing 190 mL 
of a culture medium based on the described by Vedaraman 
and Venkatesh (Vedaraman and Venkatesh 2011): 5.0 g/L of 
yeast extract, 1.0 g/L of KH2PO4, 0.5 g/L of MgSO4·7H2O, 
0.1 g/L of CaCl2, 0.1 g/L of NaCl, 0.7 g/L of peptone, and 
SCG ranging from 8.3 g/L to 24.9 g/L in dry base. The pH 
of the medium was adjusted to 7.2 with NaOH 1 M and 
autoclaved at 121 ºC for 15 min. The flasks were inocu-
lated with 10 mL of the inoculum culture adjusted to an 
OD600 of 0.8 with fresh medium and incubated at 30ºC on a 
rotary shaker at 160 rpm. Control cultures were performed 
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without the addition of SCG or B. subtilis inoculum. At the 
selected timepoints cultures were sampled and cells sepa-
rated by centrifugation at 104xg for 10 min at 4 ºC. The cell-
free supernatant samples were processed and analyzed as 
described below.

Surfactin recovery, purification and characterization

Surfactin was recovered from the cell-free supernatant 
(CFS) by acid precipitation. For that, the pH of the CFS was 
adjusted to 2.0 with 6 M HCl and kept at 4 ºC overnight. 
The precipitated biosurfactant was separated by centrifuga-
tion at 104 x g for 20 min at 4 ºC, resuspended in a small 
amount of distilled water and adjusted to pH 7.0 with 1 N 
NaOH. Finally, the recovered surfactin extract was lyophi-
lized, weighed, and stored at -18ºC. The powder obtained 
in this way is referred as crude surfactin (CrS). CrS pro-
duction experiments were performed at least as biological 
duplicates.

The concentration and congener distribution of surfac-
tin on the CFS and CrS was measured by ultra-high pres-
sure liquid chromatography coupled to mass spectrometry 
(UPLC-MS) in a UPLC Waters Acquity H-Class chromato-
graph (Waters Corporation, Milford-MA, USA) equipped 
with a Waters UPLC BEH C-18 column and coupled to a 
mass spectrometer (Waters Xevo-TG-S). The mobile phase 
was composed by a mixture of 20% of solvent A (water 
with 0.1% w/w of formic acid) and 80% of solvent B (ace-
tonitrile with 0.1% w/w of formic acid). Surfactin conge-
ners with a variable number of carbons on their β-hydroxy 
fatty acid chain were identified (C12 to C16), as shown 
in figure S1 (supporting information), whose identifica-
tion was validated with the HPLC-grade surfactin standard 
(purity ≥ 98%) as shown in figure S1-e. This standard was 
used also to build a calibration curve (Figure S2) in order to 
quantify the concentration of surfactin in the supernatants. 
CFS samples were directly injected into the chromatograph, 
and CrS samples were previously dissolved in a known vol-
ume of methanol.

Interfacial properties of the crude surfactin

Surface tension (ST) of the CFS was measured at 25 ºC with 
a Wilhelmy plate in a KRUSS K11 Tensiometer (KRÜSS 
GmbH, Hamburg, Germany). For that, CrS solutions at 
different concentrations were prepared in milliQ-grade 
water adjusting their pH to 7.0 with 1 M NaOH. The criti-
cal micelle concentration (CMC) of CrS was determined at 
25ºC, based on the break point of the ST vs. CrS concentra-
tion plot. Interfacial tension (IT) between aqueous solutions 
of CrS and engine oil (Repsol, Spain) and contact angle 
(CA) between drops of CrS solutions and Parafilm®-coated 

glass sheets were determined at 25 ºC in a pendant drop 
tensiometer (KSV CAM 200, KSV Instruments Ltd., Fin-
land). In addition, the emulsification index (EI) was studied 
following the protocol described by Cooper & Goldenberg 
(Cooper and Goldenberg 1987). For that, 2 mL of a CrS 
solution (at concentrations ranging its CMC value) and 2 
mL of hexadecane were vortexed in test tubes for 2 min at 
the highest speed. The resulting emulsions were incubated 
at 25 ºC. To calculate de EI the height of emulsion after 1 
and 8 days was divided by the height at t = 0. All the experi-
ments were carried out by triplicate.

Analytical procedures

The following measurements were carried out in the SCG 
and the cell–free supernatant (CFS):

The concentration of soluble carbohydrates in the CFS 
was measured with the phenol-sulfuric acid method, as 
described by Nielsen (Nielsen 2010). The content of mela-
noidins in the CFS was determined through their absorbance 
at 420 nm (Yen et al. 2005). A calibration curve was pre-
pared with extracted melanoidins (Figure S3) as previously 
described by Rufián-Henares and de la Cueva (Rufián-
Henares and de La Cueva 2009), which have a molecular 
weight ranging between 21 and 28 kDa according to high-
performance gel permeation chromatography measurements 
(Figure S4). The interaction between surfactin micelles and 
melanoidin aggregates was studied by dynamic light scatter-
ing in a Zetasizer Ultra (Malvern Panalytical, UK) at 25 ºC. 
For that, 1 g/L solutions of sodium surfactin and melanoi-
dins extracted from SCG were prepared in 0.1 M phosphate 
buffer at pH 7.4, and filtered with 0.22 μm syringe filters. 
The concentration of the total of phenolic compounds (PC) 
in the CFS and CrS was analyzed by the Folin-Ciocalteu 
method (Anagnostopoulou et al. 2006). The PC content was 
expressed in terms of mg of gallic acid/mL of CFS or as mg 
gallic acid/gram of CrS.

Finally, the antioxidant capacities of CFS and CrS 
were evaluated by four different methods: (i) the DPPH 
(2,2-diphenyl-1-picrylhydrazyl) free radical scavenging 
activity, following the procedure described by Pastoriza 
et al.(Pastoriza and Rufián-Henares 2014) (ii) the inhibi-
tor potential of the lipid peroxidation (ILP) using as model 
β-carotene/linoleic acid, according to Mokbel and Hashi-
naga (Mokbel and Hashinaga 2006); (iii) the iron reducing 
power described by Moreno-Montoro et al.(Moreno-Mon-
toro et al. 2015) and, (iv) the chelating activity on fer-
rous ions (Fe2+), as described by Kilic (Kilic et al. 2014). 
As positive controls, gallic acid 1000 µg/mL was used for 
the DPPH method; 1000 µg/mL butylated hydroxytoluene 
(BHT) for the ILP method, and 100 µg/mL EDTA for Fe2+ 
chelating assay. The iron reduction potential was expressed 
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of the biosurfactant surfactin, a lipopeptide composed by 
a hydrophilic ring of 7 amino acids and a hydrophobic 
β-hydroxy fatty acid chain of variable length.

We tested three SCG concentrations, and for all of them 
the B. subtilis produced approximately 3 mg/L of surfactin 
during the first 24 h, as shown in Fig. 1. The main production 
of surfactin took place during the first 48 h of culture and 
reached the maximum concentration after 96 h for all the 
three SCG concentration tested. Considering the effect of 
the amount of SCG in the medium, cultures with 8.3 g/L of 
SCG yielded the highest surfactin concentration, 8.8 mg/L 
after 96 h, almost a 30% higher than the cultures with SCG 
at 16.6 g/L and 24.9 g/L, while no significant differences 
in the yield of surfactin were observed between these two 
highest SCG concentrations. Therefore, these results sug-
gest that there is no improvement in the titer of surfactin 
when the medium is supplemented with SCG above 8.3 g/L. 
On the contrary, it seems that the production of surfactin 
is hampered at higher SCG concentrations, which suggest 
some inhibitory effect, which could be attributed to the phe-
nolic substances present in SCG.

As shown in Fig. 1, surfactin is a secondary metabolite 
produced during the late-exponential and early-station-
ary growth phases. Similar trends have been previously 
reported for B. subtilis strains grown with glucose or other 
agricultural wastes as carbon sources (Sen 1997; Maass et 
al. 2016). Indeed, the total soluble carbohydrates concentra-
tion in the CFS at the beginning of the culture was 1.41 g/L, 
and their metabolization took place during the first 24 h of 
culture, decreasing to 0.73 g/L, which remained unaltered 

as mg of gallic acid/g of CrS (mg/g), or mg of gallic acid/
mL of CFS (mg/mL). All the measurements were performed 
in triplicate.

Results

Spent coffee grounds as carbon source for microbial 
culture

We characterized the spent coffee grounds (SCG) used in 
this work by an elemental analysis together with analy-
ses of its lipids, free-fatty acids, proteins, ash, total phe-
nols and melanoidins content, as shown in Table 1. All of 
them were in good agreement with previous works on SCG 
(Kondamudi et al. 2008; Mussatto et al. 2011a, b; Pujol et 
al. 2013; Abdullah and Bulent Koc 2013). These data show 
that SCG is a complex mix of different substrates, with a 
high content of molecules susceptible to be metabolized by 
microorganism such as polysaccharides, which represent 
around a 12.4% for cellulose and 39.1% for hemicellulose 
(Ballesteros et al. 2014) or proteins and lipids, each of them 
representing aound a 15% in dry base a shown in Table 1.

Considering that, we tested whether SCG can be upgraded 
by their use as a substrate for the culture of microorganisms 
and the production of valuable biomolecules. For that, we 
grew B. subtilis DSM 3526 in submerged cultures at various 
concentration of SCG. B. subtilis is a well-known producer 

Table 1 Chemical composition of the spent coffee grounds used as 
carbon source for the culture of microorganism and biosurfactant pro-
duction
Parameter Value
Elemental analysis C (%): 51.44

 H (%): 7.75
 N (%): 2.29

Lipid content 15.0 ± 0.2% (db)
Protein content 14.7 ± 1.0% (db)
Total phenolic compounds 0.18 ± 0.02 mg/g**
Ash content (combustion at 550ºC) 1.08% (db)
Free fatty acids 
(%) CG-FID

Palmitic acid (C16:00) 32.1 ± 6.2
Stearic acid (C18:00) 6.3 ± 0.0
Oleic acid (C18:1n-9c) 9.6 ± 0.8
Linoleic acid (C18:2n-6c) 31.7 ± 8.7
γ-Linolenic acid (C18:3n-6c) 1.9 ± 0.5
Linolenic acid (C18:3n-3c) 0.8 ± 1.1
Henecosanoic acid (C21:00) 0.7 ± 0.4
Behenic acid C22:00) 3.5 ± 3.9
Erucic acid (C22:1n-9) 1.9 ± 2.0
Tricosanoic acid (C23:00) 3.4 ± 3.2
Lignoceric acid (C24:00) 1.2 ± 1.5
Nervonic acid (C24:1n-9) 7.0 ± 6.4

*db: dry basis. ** Results of total phenols are in mg gallic acid/g of 
SCG.

Fig. 1 Surfactin concentration in the cell free supernatant (CFS) of 
B. subtilis DSM 3526 cultures with different concentrations of spent 
coffee grounds (SCG) in the medium. Cultures were sampled at each 
time-point, the cells removed and the surfactin concentration in the 
CFS measured by UPLC-MS. The results show the average and stan-
dard deviation of at least a biological duplicate
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pathway is involved on the supply of surfactin precursors 
(Zhi et al. 2017; Wu et al. 2019). The distribution of the sur-
factin congeners is relevant, since the length of the hydro-
phobic chain affects the interfacial behavior of a surfactant 
(Liu et al. 2012, 2015). Thus, these results show that SCG 
can be used to tune the properties of the surfactin produced, 
as previously reported for other carbon sources (Raza et al. 
2009; Soares da Silva et al. 2017).

Properties of the culture medium and the surfactin 
extract obtained from SCG

Crude surfactin (CrS) was extracted from the CFS by acid 
precipitation. The concentration CrS was in the range of 
1.55 g/L and 3.35 g/L after 48 h of culture with 8.3 g/L and 
16.6 g/L of SCG respectively, considerably higher than the 
surfactin concentration measured by UPLC-MS. This means 
that the purity of surfactin extracted with acid precipitation 
is low, representing a 0.48% and 0.14% of the crude extract 
respectively. Considering that the yields of surfactin were 
similar for both concentrations of SCG, the sources of the 
impurities co-purified with the surfactin would be compo-
nents of SCG that remain in the medium during the micro-
bial culture. Therefore, further purification steps would be 
required if SCG are to be used as carbon source for the pro-
duction of pure surfactin.

afterwards (Table 2). The carbohydrates present in in con-
trol cultures where no SCG were added, probably present in 
the yeast extract used in the medium, showed the same con-
sumption trend. Interestingly, despite the control medium 
supported the growth of the B. subtilis, the dynamic in the 
production of surfactin was different and the yield consider-
ably lower compared to the media with SCG. In this case, 
1.3 mg/L of surfactin were produced after 96 h, 6.8 times 
lower than with 8.3 g/L of SCG in the culture medium. This 
confirms that the bioavailable molecules in the SCG are 
metabolized by the bacteria and contribute to the biosynthe-
sis of surfactin.

Distribution of the surfactin congeners

Four different surfactin congeners were detected by UPLC-
MS, differing from each other in the number of carbon atoms 
of their β-hydroxy fatty acid chain (Fig. 2 and S1). For all 
the condition tested, C15 surfactin was the more abundant 
congener, representing between a 69% and 85% of the total 
biosurfactant produced, followed by the C14 and C13 spe-
cies and a marginal amount of C16. This profile remained 
mostly unaltered between the 24 and 96 h of culture, even so 
a slight decrease on C15 and an increase on C14 and C13 was 
observed for all the cultures with SCG in the medium. On 
the other hand, for the control experiment (without SCG) 
the congeners distribution was different, showing higher 
amounts of C13 surfactin.

Considering these observations and previous work of 
our group with the same B. subtilis strain, we conclude that 
there is a direct influence of the carbon source over the dis-
tribution of surfactin congeners. In particular, we observed 
that the use of SCG increased the fraction of C15 surfactin 
and reduced the C16 one, compared to when waste frying 
oil is used as carbon source (Valenzuela Ávila et al. 2019). 
Similarly, the high lipid content of the SCG compared to the 
control cultures with no SCG could be responsible of the 
shift observed here, given that the fatty acid biosynthesis 

Table 2 Total soluble carbohydrates content in the cell free supernatant 
of B. subtilis cultures at different times and SCG concentrations
Culture medium Time (h) Soluble car-

bohydrates 
content 
(g/L)

SCG = 8.3 g/L 0 1.41 ± 0.03
SCG = 8.3 g/L 24 0.73 ± 0.03
SCG = 8.3 g/L 48 0.73 ± 0.03
SCG = 0 g/L 0 0.54 ± 0.01
SCG = 0 g/L 48 0.27 ± 0.01

Fig. 2 Percentages of each of the 
surfactin congeners in the CFS 
after 24 and 96 h of culture at 
different concentrations of SCG 
in the culture media measured 
by UPLC-MS. The length of the 
β-hydroxy fatty acid chain of the 
congeners detected varied from 
13 to 16 carbon atoms (congeners 
named as C13 to C16). Standard 
deviations correspond to at least 
a biological duplicate of the 
experiment
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surfactin (Kaneka, purity > 90%) in the presence of a fixed 
concentration of melanoidins at 2.75 g/L and in the absence 
of it. As can be observed in Figure S5, the presence of mela-
noidins in the solution did not modify the CMC of the sur-
factin, which was around 10 mg/L for and 28 mN/m both 
cases. Thus, the presence of melanoidins in the CrS seem 
not to be responsible its high CMC, and neither originate 
the possible second CMC found. Further experimentation 
would be necessary to explore the effect of other impurities 
on the CrS, such as extracellular proteins or peptides, which 
could modify the interfacial behavior of the biosurfactant.

Next, we evaluated the contact angle (CA), interfacial 
tension (IT) and emulsification index (EI) of dilutions of 
CrS at concentrations around its CMC. As expected, all of 
these parameters describing the interfacial properties of CrS 
were strongly affected by its concentration (Fig. 3.b). The 
contact angle of the solutions of CrS varied from 87.4 ± 2.7° 
at 0.5 times of its CMC to 59.4 ± 5.3° at 3 times its CMC. 
This decrease in the contact angle indicates the excellent 
ability of the CrS to wet a hydrophobic surface. The wet-
tability of these solutions was higher than for example those 
found for surfactin produced from olive oil mill wastes, 
which had a CA of 76.74° at 3xCMC (Maass et al. 2016). 
The interfacial tension between CrS solutions and engine 
oil ranged between 12 and 24 mN/m in the range of con-
centrations tested, values similar to those found for other 
crude surfactin extracts (Deleu et al. 1999; Al-Wahaibi et al. 
2014; de Oliveira et al. 2016; Maass et al. 2016). Lastly, CrS 
showed a limited emulsifying power at the concentration 
tested, reaching values of emulsion index after 1 day (EI1) 
of 14.5 at 3xCMC. Again, this could be explained consider-
ing the low percentage of active emulsifier, i.e., surfactin, 
in the CrS. However, despite these low EI1 values, most of 
the emulsified hexadecane remained in this condition eight 
days after its preparation, in particular for the x3 CMC con-
centration. Therefore, it could be possible to obtain stable 

However, these co-purified substances might have an 
additional added- value to the surfactin produced from 
SCG. In particular, the melanoidins and phenolic substances 
are susceptible to form part of these impurities in the CrS, 
and can confer CrS antioxidant properties. Therefore, it is 
relevant to study the interaction of melanoidins with sur-
factin and the antioxidant capacity of CrS obtained from 
SCG, particularly considering that these have been barely 
analyzed for surfactin produced from plant-derived agro-
industrial and food wastes so far.

Interfacial properties of CrS

In order to describe the interfacial properties of the CrS, we 
have initially determined its critical micelle concentration 
(CMC). According to the ST vs. CrS concentration plots 
(Fig. 3.a), the CMC of the CrS is 83.4 mg/L, which cor-
responds to a ST of 36.1 mN/m. This value is in the same 
order of magnitude of other CMCs found for surfactin 
extracts previously, although it is higher compared to most 
of them (Zeraik and Nitschke 2010; Vaz et al. 2012). It is 
also higher than the CMC values reported for pure surfactin, 
which is around 10 mg/L (Ishigami et al. 1995; Qin et al. 
2023). It is important to consider that the CMC of the CrS is 
highly influenced by its purity and the nature of the impuri-
ties on it. Thus, since the fraction of surfactin in the CrS pro-
duced is low, high CMC values are expected. Even more, a 
second CMC seems to occur around a CrS concentration 
of 723.4 mg/L and a ST of 29.9 mN/m. This support the 
hypothesis that impurities with interfacial properties (such 
as protein/peptides or phenolic compounds) are present in 
the CrS and can interact with the surfactin and its interfacial 
arrangement.

Considering that, we tested whether melanoidins could 
interact with surfactin and modify the CMC of the biosur-
factant. For that, we measured the CMC of a commercial 

Fig. 3 Interfacial properties of the crude surfactin (CrS) recovered 
after 48 h from cultures with 8.3 g/L of SCG. (a) The surface tension 
of succesive dilutions of CrS (ploted as the log10 of its concentraion in 
mg/L) was used to determine its critical micelle concentrations (CMC) 
by the intersection of the linear fiting of the points belonging to three 

regions of the plot; (b) Contact angle (CA), interfacial tension (IT) and 
hexadecane emulsion index after 1 and 8 days after the preparation 
(EI1 and EI8). Average values and standard deviation of experimental 
triplicates are shown
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bacterium was not inoculated. These controls had a constant 
melanoidin concentration during the period of time ana-
lyzed. More specifically, the concentration of melanoidins 
in CFS increased 2.5 and 2.1 times compared to their nega-
tive controls where the bacterium was not inoculated, for 
the experiments carried with 8.3 g/L and 16.6 g/L of SCG 
respectively. In addition to that, the concentration of mela-
noidins was proportional to the amount of SCG in the media 
for both, cultures and controls. Hence, these results show for 
first time that the extraction of melanoidins from the SCG 
can be improved simply by a bacterial culture. This effect 
could be promoted by the action of surfactin as interfacial 
agent, which would contribute to their extraction from the 
solid SCG to the liquid medium. Besides, we estimate that 
the acid precipitation used to recover the surfactin from the 
CFS extracted the 66.7% and 74.0% of the melanoidins ini-
tially present on the CFS after 24 and 48 h of culture respec-
tively. Therefore, it is possible to produce and recover both 
added-value bioproducts with a single microbial culture and 
purification step.

Next, we considered the possibility of an interaction 
between melanoidins aggregates and surfactin, since sur-
factants are molecules that tend to adsorb at interfaces. 
Melanoidins are macromolecules of variable size. In the 
particular case of coffee, high molecular weight melanoidins 
(> 12–14 kDa) are the more abundant fraction, representing 
a 59% of the total amount (Figure S4) (Wang et al. 2011b). 
In addition, melanoidins are known to self-aggregate form-
ing particles of larger size (Pagán et al. 2012; Jiang et al. 
2019). We used dynamic light scattering (DLS) to study 
the interaction between surfactin and melanoidins, testing 
the effect on the size of the detected micelles of surfactin 
and melanoidins aggregates. According to our results, the 
melanoidins extracted from SCG form aggregates between 
50 and 200 nm (Fig. 5.a), sizes that are in agreement other 
works (Pagán et al. 2012; Lin et al. 2019). These sizes are 
only estimative though, given the poor fitting of the correlo-
grams and the large fluctuation in the scattered light, which 
may indicate that these aggregates do not adopt a spherical 
form, that their configuration is dynamic or even some of 
them are precipitating, as previously reported (Pagán et al. 
2012). Next, we analyzed the size of the micelles of sur-
factin at varying concentrations of melanoidins (Fig. 5.b). 
A monodisperse population of surfactin micelles of a size 
between 2 and 10 nm was detected when melanoidins were 
not added to the sample. However, when melanoidins were 
present, we observed the same particle distribution than 
the one found for the measurements without surfactin. In 
addition, no signal for the surfactin micelles in the range 
from 2 to 10 nm was detected in this case. This suggests that 
surfactin and melanoidins aggregates have a strong interac-
tion, particularly taking into account that no free micelles 

emulsions during extended periods of time using the CrS 
produced by the method described here, which would need 
however an optimization to increase their EI by, for exam-
ple, increasing the concentration of CrS or adding adjuvants.

Melanoidins content in the CFS and their interaction with 
surfactin

Melanoidins are anionic macromolecules formed by the 
reaction of reducing sugars and amino acids during the 
Maillard reaction (Rufián-Henares et al. 2006; Delgado-
Andrade et al. 2007), and thus present in thermally pro-
cessed foods such as roasted coffee (Rufián-Henares and de 
La Cueva 2009; Pastoriza and Rufián-Henares 2014), giv-
ing it its characteristic intense brown color (Rufian-Henares 
et al. 2002). They are of interest as food supplement given 
their antimicrobial, anticancer and antioxidant properties 
(Langner and Rzeski 2014). This last feature is of particular 
relevance, and it is attributed to two different mechanisms: 
(i) the metal chelating ability (Ćosović et al. 2010; Wang et 
al. 2011a), and (ii) the radical-scavenging activity (Sacchetti 
et al. 2009; Pastoriza and Rufián-Henares 2014).

We have therefore analyzed in depth the concentration 
of melanoidins and the antioxidant properties of the cell-
free supernatant and crude surfactin extract. We found that 
the concentration of melanoidins in the CFS of B. subtilis 
cultures growing on SCG increased during the first 48–72 h 
of culture (Fig. 4). Interestingly, the concentration of mela-
noidins in the CFS from bacterial cultures was notably 
higher compared to negative control experiments where the 

Fig. 4 Evolution of the concentration of melanoidins in the cell-free 
supernatant of B. subtilis cultures growing in media with SCG at 8.3 
and 16.6 g/L. Control experiments with the same SCG concentrations 
but where the B. subtilis was not inoculated where also performed, 
together with a blank culture where no SCG was added to the medium. 
Average values and standard deviation of experimental triplicates are 
shown
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and crude surfactin extract retained this antioxidant power, 
by measuring their antioxidant activities with four differ-
ent methods. Table 3 summarizes the concentration of the 
total phenolic compounds and the antioxidant capacities of 
CFS and CrS samples during the course of the culture. The 
evolution of the total phenol concentration resembled to 
that found for melanoidins, and the contribution of the SCG 
was clear if comparing these results with those for the blank 
experiments without SCG in the medium. In addition, the 
moderate increase in the concentration of phenols suggests 
that the microbial culture might improve their release from 
the SCG, as observed for melanoidins. Attending to the 
antioxidant capacity, CFS samples at 24 h showed higher 
antioxidant capacity compared to that of the culture media 
itself (t = 0 h) for all the four methods tested, in agreement 
with the concentration of phenols and melanoidins reported 
above. After these initial 24 h of culture, the DPPH activity 

of the biosurfactant were detected when melanoidins were 
present even at the high surfactin concentrations used for 
this experiment. This interaction can explain the high recov-
ery rate of melanoidins with the acid precipitation used to 
purify surfactin, and more importantly, opens the possibility 
to develop of a co-purification process of both biomolecules 
that had not been previously reported.

Antioxidant capacity of CrS and CFS

SCG are rich in molecules with a potent antioxidant activ-
ity such as phenolic compounds or melanoidins. Accord-
ingly, we have found that the SCG used in this work are 
antioxidant, in particular according to their DPPH activ-
ity (97.94 ± 1.89%), which is even higher than the activ-
ity found with the BHT solution used as a positive control 
(60.49 ± 1.89%). Next, we tested if the culture supernatant 

Total phenols 
(mg/L) a

DPPH (%) a ILP (%) a Fe2+chelating 
activity (%) a

IRP b

CFS
24 h 508.69 ± 16.07 58.19 ± 2.14 88.30 ± 0.22 83.24 ± 0.91 2.58 ± 0.16
48 h 602.97 ± 9.81 49.04 ± 2.45 87.69 ± 0.68 91.93 ± 4.32 2.80 ± 0.06
72 h 531.94 ± 15.70 7.63 ± 0.59 80.80 ± 1.81 88.85 ± 6.05 2.97 ± 0.18
96 h 549.37 ± 16.30 18.80 ± 0.91 78.20 ± 2.66 87.47 ± 9.56 3.33 ± 0.07
120 h 533.71 ± 11.80 17.47 ± 3.86 76.95 ± 1.06 95.65 ± 0.06 3.47 ± 0.10
Blank 48 h 195.22 ± 0.76 31.34 ± 2.48 60.68 ± 6.63 92.39 ± 3.27 1.50 ± 0.12
Blank 0 h 156.26 ± 13.61 53.08 ± 4.18 76.93 ± 6.99 29.07 ± 7.47 0.90 ± 0.10

CrS
24 h 21.36 ± 3.55 80.40 ± 0.79 67.47 ± 0.94 40.76 ± 4.20 0.14 ± 0.05
48 h 25.57 ± 6.64 80.79 ± 1.44 69.53 ± 0.65 37.14 ± 11.08 0.33 ± 0.04
72 h - 60.94 ± 3.04 54.64 ± 6.28 38.34 ± 5.05 0.04 ± 0.06
96 h 15.66 ± 1.19 85.00 ± 0.95 75.02 ± 0.86 59.38 ± 0.21 0.02 ± 0.02
120 h 5.61 ± 0.28 64.19 ± 1.27 70.23 ± 0.62 70.25 ± 7.46 0.04 ± 0.05
Blank 48 h 25.37 ± 0.93 28.52 ± 0.96 58.24 ± 2.59 18.89 ± 1.60 0.18 ± 0.07

Spent coffe grounds
0.18 ± 0.02 97.94 ± 0.10 84.23 ± 0.63 39.42 ± 1.03 144.6 ± 9.3

Positive controlc

--- 60.49 ± 1.89 90.55 ± 1.05 77.26 ± 4.85 ---

Table 3 Total phenolic com-
pounds (in mg/L) and antioxidant 
CFS and CrS.

a. Results for CFS are referred 
to one mL of sample, and for the 
solid samples (CrS, SCG) are 
expressed per mL of solutions of 
the solid analyzed at a concen-
tration of 1 mg/mL
b. Results for CFS are referred 
to one mL of sample and for 
solid samples (CrS, SCG) are 
expressed per g of sample
c. Positive controls. For DPPH: 
BHT 1 mg/mL; for ILP: BHT 
1 mg/mL; for Fe2+ chelating 
power: EDTA 100 µg/mL

 

Fig. 5 Size distribution (by their 
abundance in number) of the 
particles detected by dynamic 
light scattering in: (a) melanoi-
dins solutions at concentrations 
ranging from 0.5 to 3 g/L, and 
(b) 1 g/L surfactin solutions 
containing between 0 and 3 g/L 
of melanoidins solutions
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improvement of the process by developing strains with a 
wider spectrum of metabolizable sugars (Dvořák and de 
Lorenzo 2018).

The crude surfactin obtained showed good interfacial 
and emulsifying properties. Besides, we found that the 
presence of SCG in the medium exerted an effect on the 
surfactin congener distribution. Interestingly, we report for 
first time that a microbial culture actively contributes to the 
recovery of melanoidins from SCG, and that these can be 
co-extracted with surfactin to a high extent. This could be 
due to the interaction between the biosurfactant and mela-
noidins, as we have observed by DLS. Moreover, we have 
analyzed in depth the concentration of melanoidins and the 
antioxidant properties of the cell-free supernatant and crude 
surfactin extract. The correlation between the concentration 
of phenols and DPPH, the inhibition of lipid peroxidation 
and chelating activity tests was poor, implying that mol-
ecules on CrS other than phenols could be responsible of 
part of its antioxidant capacity. Among them, melanoidins 
are likely contributing to that since, as mentioned above, 
they are known to have antioxidant properties. In addition, 
the surfactin itself could also be partially responsible since it 
was found to have antioxidant power (Kiran et al. 2017). It 
is important to consider that the microbial growth substan-
tially modifies the composition of the culture media, and 
consequently, the variety and concentration of the compo-
nents in the CFS and CrS that can have an influence on their 
antioxidant activities. Our results suggest that the concentra-
tion of phenolic compounds, melanoidins and biosurfactant 
contribute to the antioxidant activities in a complex man-
ner. We can conclude nonetheless that: (i) in a general way, 
the culture time affected negatively the antioxidant capacity 
values determined by DPPH; (ii) no important changes in 
the antioxidant activity were detected with ILP method in 
the samples taken at different times.

Altogether, we consider that these results can pave the 
way for an effective and novel valorization route of SCG. 
This route would combine the production of high added 
value biomolecules such as surfactin from the carbon frac-
tion accessible with the improved recovery of other valu-
able molecules already present in SCG such as melanoidins 
or phenolic compounds. Indeed, melanoidins represent an 
important potential revenue and as such there is a grow-
ing industrial interest in their commercialization (Iriondo-
DeHond et al. 2021). More specifically, we estimate that 
pure melanoidin sales revenue could reach 600 $/Kg, with 
production costs being around 23 $/ (Peters et al. 2014; Man-
uel and Agudo 2017). However, melanoidins isolated from 
SCG are not yet commercially available as food additive or 
for their use as ingredient in other formulations. Therefore, 
more legislations and deeper studies on the effects of their 
consumption would be needed. On the other hand, surfactin 

and the inhibitor potential of the lipid peroxidation (ILP) 
decreased during the rest of the culture (albeit at different 
rates), while the Fe2+ chelating activity and iron reducing 
power (IRP) showed a slight increase.

On the other hand, the concentration of total phenolic 
compounds in the CrS remained constant during the first 
48 h of culture, and showed a decreasing trend after that 
time. Furthermore, in this case, there was not a significant 
difference in the amount of phenols recovered compared 
to the blank experiment without SCG. This indicates that, 
despite being present at high concentration in the culture 
supernatant, the acid precipitation used to recover the sur-
factin from the CFS is not an efficient approach to recover 
the phenolic compounds. Nevertheless, other methods such 
as tangential flow filtration could be a suitable option to co-
purify both, melanoidins and phenols (Rufián-Henares and 
de La Cueva 2009; Pastoriza and Rufián-Henares 2014).

Interestingly, despite the reduced concentration of phe-
nols in the CrS, their antioxidant capacity was considerably 
higher than that of the control. Again, the antioxidant capac-
ity remained almost constant during the first 48 h of culture 
according to the four methods tested. After that time, the 
Fe2+ chelating capacity of CrS showed an increasing trend. 
In contrast, a reduction of 15% in the DPPH activity was 
detected between samples taken at 24 and 120 h of culture, 
while no significant differences were found in the ILP anti-
oxidant capacity values over time. Finally, the antioxidant 
capacity values of CrS obtained by the IRP method were 
low, ranging from 0.14 to 0.04 mg gallic acid/g CrS for 24 
and 120 h of culture respectively.

Discussion

In this work we show that spent coffee grounds (SCG) can 
be valorized by using them as the carbon source in cultures 
of B. subtilis. The immediate benefit of that was the produc-
tion of the high added value biosurfactant surfactin, which 
reached concentrations up to 8.8 mg/L in the supernatant 
after 96 h of culture. Despite being low, this surfactin yield 
is higher than previous results of our group using other agro-
industrial wastes such as olive oil mill waste or frying oils 
as carbon sources (Moya Ramírez et al. 2015; Maass et al. 
2016; Valenzuela Ávila et al. 2019). Therefore, SCG seems 
to be a good candidate as raw material for the production of 
surfactin, particularly if considering that the yields reported 
here could be considerably improved by a pretreatment of 
the waste to increase the bioavailability of the polymeric 
carbohydrates (Moya Ramírez et al. 2016; Pérez-Burillo 
et al. 2019). It is also important to note that almost 50% 
of the soluble carbohydrates in the SCG medium remained 
unconsumed. This represents an opportunity for further 
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