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Mercury as a pollutant

Mercury (Hg) is one of the most toxic heavy metals. Pol-
lution by this element is a serious environmental problem, 
even at low concentrations, which affects all systems: soil, 
water and air (Munthe et al. 2019; Ballabio et al. 2021; 
Attwaters 2023).

Most of the environmental Hg is in the form of inorganic 
and organomercuric salts, except for atmospheric mercury. 
The most prevalent species in the environment are mercu-
ric salts, such as HgCl2, Hg(OH), and HgS. In addition, 
CH3HgCl, and CH3HgOH are the main organomercurial 
compounds that together with other organic compounds 
are found in small fractions (Al-Sulaiti et al. 2022). The 
organomercurial compounds mentioned are compounds 
derived from methylmercury (MeHg or [CH3 Hg]+), one 
of the most dangerous Hg species, due to its high capacity 
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Abstract
Mercury is a highly toxic heavy metal whose emission sources can be both natural and the result of anthropic activity. Its 
polluting action on soils, and its ability to spread through the atmosphere and aquatic environments, constitutes a threat 
to human and environmental health; both for its bioaccumulation capacity and for biomagnification through the trophic 
chain. For this reason, there is a growing scientific and social interest in the reduction of this heavy metal in ecosystems. 
Bioremediation based on the use of microorganisms and/or plants is postulated as a sustainable alternative to traditional 
physicochemical methods. The main strategies used for this purpose (individually or in combination) are the volatilization 
of the contaminant, biosorption, phytoextraction and phytoremediation. All these tools are based on taking advantage of 
the natural and evolutionary capacity that different organisms have developed to adapt to the presence of various pol-
lutants in the environment. Based on the consulted bibliography, these bioremediation methodologies focus on the use 
of microorganisms (freely or associated with plants) have been successfully applied in different ecosystems, postulating 
themselves as a respectful alternative for the future for the recovery of degraded environments. For these reasons there is 
a growing interest in the scientific community to design and use new techniques in a “One Health” context, which allow 
interpreting the positive impact of bioremediation. In this sense, the universalization of Omics techniques has allowed to 
abound in the knowledge of new bacterial taxa, and their biotechnological application. This study pretends to cover the 
present knowledge about mercury bioremediation techniques. In the same way, some new techniques and perspectives are 
presented in order to expand the frontiers of future research.
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to bioaccumulate in the tissues of organisms (Munthe et al. 
2019; Gallorini and Loizeau 2021; Li et al. 2022b).

The most relevant Hg emitting sources are those of 
natural, anthropogenic and re-emission origin (Panagos et 
al. 2021; Sonke et al. 2023). It is estimated that since the 
beginning of the industrial revolution (AMAP/UNEP 2013), 
the amount of global atmospheric Hg has increased 10-fold 
and that throughout the post-industrial era to the present, 
the amount of Hg accumulated in soils and sediments has 
increased 3–10 times (Munthe et al. 2019).

The most important anthropogenic sources of Hg pollu-
tion are urban and industrial discharges, agricultural materi-
als, mining, combustion, which emit from 2000 to 2200 tons 
annually, with the main source being the burning of fossil 
fuels and waste incineration (Munthe et al. 2019; Ballabio 
et al. 2021; Singh et al. 2023c; Zhang et al. 2023). These 
emissions come mainly from the metallurgical industry of 
non-ferrous materials, the main one being the Zn indus-
try, followed by the large-scale production of Au, Cu and 
Al (Munthe et al. 2019; Yuwono et al. 2023). Finally, as a 
polluting source, there are reemissions, which are defined 
as Hg emissions derived from natural and anthropogenic 
past deposits. Under the right conditions, Hg deposits at the 
Earth’s surface can be suspended back into the atmosphere 
by various transport mechanisms. Annual Hg re-emission is 
estimated to be between 4,000t and 6,300t per year (Munthe 
et al. 2019; Ballabio et al. 2021). Most of this re-emitted Hg 
accumulates back in the soil.

Mercury-contaminated environments

Numerous ecosystems and environments contaminated with 
Hg are known, especially in regions with a high level of 
industrial activity and cities with large population volumes 
(Munthe et al. 2019) (Fig. 1).

The natural environments in which higher concentrations 
of Hg are detected are those indicated below:

Atmosphere

Elemental Hg (Hg0) and divalent Hg (Hg2+) are the majority 
species found in the atmosphere. The latter species is com-
posed of gaseous divalent Hg (Hg2+) and divalent Hg parti-
cles (Hgρ) (Munthe et al. 2019; Dastoor et al. 2022; Yuan et 
al. 2023). Atmospheric Hg can be deposited in aquatic and 
terrestrial ecosystems through sedimentation and rainfall. 
The main specie of Hg that is deposited is the gaseous diva-
lent Hg, coming mainly from anthropogenic and reemission 
sources; being the atmosphere the main recipient that col-
lects and distributes them globally. In this way, atmospheric 
accumulation contributes significantly to the transport and 
discharge of Hg to multiple environments. Hg0 present in 
the atmosphere can be deposited in the medium after con-
version to Hg2+ after its reduction by ozone (Saiz-Lopez et 
al. 2022).

Fig. 1  Flow of Hg in the environ-
ment. Own elaboration
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Aquatic systems

Hg exhibits high bioavailability in aquatic systems, since 
under appropriate biochemical conditions, inorganic Hg 
is converted to MeHg by microorganisms (Gallorini and 
Loizeau 2021; Yue et al. 2023). It is known that the main 
source of biotransformation of Hg to MeHg in aquatic sys-
tems occurs in bed sediments as well as microorganisms 
along the water column (Gallorini and Loizeau 2021; Li et 
al. 2022b). This fact facilitates its accumulation in marine 
organisms, which can produce a high concentration of Hg 
in themselves (Liu et al. 2020; Scott and Black 2020; Li et 
al. 2022b). This problem is well described in some envi-
ronments, such as river mouths, large cities, and the South 
China Sea (Xiang et al. 2018; Bernalte et al. 2020). The dif-
ferent aquatic systems, and mainly the oceans, act as Hg 
sinks, with the consequent ease of Hg biotransformation.

Soil

More than 90% of the emitted Hg ends up back in terrestrial 
ecosystems, with soil being the largest deposit of this metal 
(Ballabio et al. 2021; Yuwono et al. 2023). About 1–3% of 
the Hg present in soils is MeHg and the remaining percent-
age corresponds to different complexes, maintaining a small 
part as Hg0 (O’Connor et al. 2019). The capacity of the soil 
to accumulate Hg arouses scientific interest due to the easy 
transmissibility contaminants to organisms that develop in 
it. In this way it can be incorporated into the trophic chain, 
through its bioaccumulation in plants for human consump-
tion or livestock. In turn, these compounds can move from 
soil deposits to the aquatic environment (Gębka et al. 2020; 
Yuwono et al. 2023), polluting the media, on a large scale. 
Likewise, the highest levels of Hg in soil have been found 
near urban centers with high industrial activity, as well as 
mining areas (Ballabio et al. 2021; Panagos et al. 2021). 
Hg forms, under natural conditions, primary complexes 
with Cl-, OH-, S2− and with organic compounds contain-
ing sulfur functional groups. Organic compounds have also 
been seen to be the dominant factor in Hg mobilization (Al-
Sulaiti et al. 2022).

Effects of mercury pollution on systems and 
organisms

Hg in soil microbial communities

Hg, as a heavy metal and pollutant, exerts a strong bio-
logical and environmental pressure that affects the struc-
ture of microbial communities and their diversity (Mariano 
et al. 2020; Hu et al. 2023). The mer operon is one of the 

best-known bacterial defense systems against Hg (Manoj et 
al. 2020; Yadav et al. 2023). merA is the central gene of this 
operon, which codes for a mercuroreductase enzyme whose 
function is to catalyze the reduction of volatile Hg2+ to Hg0 
(Harsonowati et al. 2023). These resistance genes are usu-
ally included in plasmids and other mobile gene elements, 
very ubiquitous in ecosystems. Two types of mer operon are 
known, capable of providing bacteria with Hg resistance 
(Naguib et al. 2019): (i) reduced spectrum operon which 
confers resistance only against inorganic Hg; (ii) broad-
spectrum operon that, in addition to inorganic Hg resistance 
genes, include additional mer genes that confer organormer-
curic species resistance.

The biochemical process of inorganic Hg resistance is 
very similar between different bacterial species. In the case 
of bacteria with the reduced spectrum mer operon, there is a 
conversion of Hg2+ to Hg 0 mediated by a reductase enzyme 
produced by the merA gene, induced by Hg2+. This enzyme 
uses NADPH as an electron source. Organomercuric com-
pounds resistance biochemical process varies according to 
the bacterial species. After the transport process, the bond 
between Hg and carbon is digested by a lyase enzyme, 
encoded in the merB gene, releasing Hg2+. The Hg cation is 
subsequently transformed into Hg0 by a mercuroreductase 
encoded by merA (Kumari et al. 2020) (Fig. 2).

The appearance of the contaminant in the soil favors the 
selection of those strains that present a greater tolerance 
to acquire resistance genetic elements that may be present 
in the environment. (Hall et al. 2020; Li et al. 2022a). In 
turn, Hg affects the composition of bacterial communities, 
decreasing their diversity (Mariano et al. 2020; Zheng et 
al. 2022; Hu et al. 2023). Likewise, the natural selection 
of tolerance to heavy metals can be linked, by a phenom-
enon of co-selection, to resistance to other compounds such 
as antibiotics (Robas et al. 2021b; Karnachuk et al. 2023; 
Tran et al. 2023), as well as the horizontal transfer of these 
resistances (Robas et al. 2021b; Li et al. 2022a; Kothari et 
al. 2023).

Hg in crops

Inorganic Hg can be incorporated and sequestered from 
soils into plant tissues by both stomal and non-stomal 
absorption (Zhou et al. 2021; Hussain et al. 2023; Singh et 
al. 2023a). The association of this heavy metal with func-
tional groups of organic matter and various root exudates 
capable of retaining Hg in the soil (Eagles-Smith et al. 2018; 
Du et al. 2019; Hussain et al. 2023) favor the retention of 
Hg in ecosystems. The relationship between soils and plant 
activity is one of the most important environmental markers 
of soil inorganic Hg variation (Munthe et al. 2019; Ballabio 
et al. 2021).
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concentrations (Gil-Hernández et al. 2020; Marumoto et al. 
2020; Basu et al. 2023). The processes known as bioaccu-
mulation (accumulation of toxic substances in tissues) and 
biomagnification (increased accumulation of toxicants due 
to predation or consumption of other contaminated organ-
isms), ultimately affect human health (Basu et al. 2023; Han 
et al. 2023; Moslemi-Aqdam et al. 2023) (Fig. 3).

The levels of Hg can be found in terrestrial vertebrates 
intended for human consumption are very low (Emami et al. 
2023; Nava et al. 2023). However, numerous authors collect 
evidence of a high concentration of Hg in fish (Alemayehu 
et al. 2023; Frías-Espericueta et al. 2023). Despite the high 
concentration of Hg that can be found in the oceans, stud-
ies such as those conducted by Li et al. (2022b), show how 
water from rivers and lakes have a higher concentration of 
Hg than open waters and coasts. Hg and MeHg biomagnify 
along the food chain from phytoplankton to zooplankton to 
higher organisms (Frías-Espericueta et al. 2023; Han et al. 
2023; Yue et al. 2023).

To address this environmental and health problem, the 
United Nations Minamata Convention on the Reduction 
of Hg Emissions and Use (AMAP/UNEP 2013) has devel-
oped regulations for the control of emissions to air, water, 
or waste and products under Federal environmental statutes, 
with the acts of “clean air, clean water and the recovery and 
conservation of natural resources” (Aldy et al. 2020).

Chronic exposure to this pollutant, especially through 
the consumption of seafood, can cause various neurological 
alterations, reproductive and immunological conditions and 
premature death (Gil-Hernández et al. 2020; Marumoto et 
al. 2020; Basu et al. 2023; Mallongi et al. 2023), especially 
affecting embryos and people suffering sustained exposure 

Hg in the food chain

The presence of Hg in ecosystems allows its incorpora-
tion into the food chain (Li et al. 2022b; Basu et al. 2023; 
Han et al. 2023; Moslemi-Aqdam et al. 2023), negatively 
affecting, in the One health context, the health of ecosys-
tems, especially the species that are at the highest levels of 
the chain (Li et al. 2022b). Most of the forms that Hg can 
take in nature are highly toxic to all species, even at low 

Fig. 3  Flow of Hg in the food chain (chemical contamination) and 
potential source of antibiotic resistance (biological contamination). 
Own elaboration

 

Fig. 2  mer operon schematiza-
tion. merA: Hg reductase; merB: 
organomercuric lyase. merT: Hg 
transporter; merP: periplasmic 
Hg transport; merR: operon 
regulator; merD: involved in 
regulation. Own elaboration
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Fitoextractors: when the metal accumulates in the aerial 
part (Wang et al. 2019), and (ii) Phytostabilizers: when 
accumulation occurs in the root (Dary et al. 2010; Ke et 
al. 2021).

	● Phytoremediation (or phytorhizoremediation): Tech-
nique that uses plant-microorganism interaction for the 
extraction and/or removal of soil contaminants (Rak-
lami et al. 2022; Ruley et al. 2022; Sitarska et al. 2023; 
Rojas-Solis et al. 2023). This technique has a much 
more powerful and efficient effect by taking advantage 
of the synergistic action between the plant and micro-
organisms (Quiñones et al. 2021; Robas et al. 2021a; 
Senabio et al. 2023) (Fig. 4).

New opportunities for old Problems: plant-
microorganism interaction

Plants and microorganisms show parallel patterns of het-
erogeneity because plants release a wide range of organic 
products (via exudate), which are consumed by soil micro-
organisms. In this way, it has been postulated that the taxo-
nomic heterogeneity of plants improves plant productivity 
by making more efficient use of available resources. But this 
factor has to go hand in hand with microbial activity in the 
soil and the bioavailability of organic resources.

In the plant-microorganism interaction, two fundamental 
factors should be considered: (i) to know the way in which 
the plant selects the rhizospheric microbiota and the way of 
relating to the microorganism; (ii) understanding microbial 
functional diversity will help reveal underlying ecological 
processes. In plant-microorganism collaboration, the benefit 
of this synergy in soil recovery is diminished in the presence 
of contaminants (Irfan et al. 2023). In this way, it is shown 
how the impact of heavy metals alters and reduces the diver-
sity of the soil microbial ecosystem (Mariano et al. 2020; 
Robas et al. 2021a, c; González et al. 2022).

Some microorganisms have the ability to protect plants 
against biotic or abiotic agents that compromise their nor-
mal development (Robas et al. 2022; Nagrale et al. 2023; 
El-Sayed et al. 2023), mainly by volatilization and bioad-
sorption mechanisms (Robas Mora et al. 2022; Yadav et al. 
2023; Zhao et al. 2023). Phytoprotection is a very interesting 
quality with potential agronomic use in contaminated soils 
that would otherwise take long periods of time to recover.

Some pollutants, such as Hg, induce physiological and 
metabolic alterations in plants, such as the appearance of 
ROS (reactive oxygen species) and decreased plant growth 
(Çavuşoğlu et al. 2022). Likewise, it is known that the use 
of PGPB minimizes these effects (Pirzadah et al. 2018). One 

over time (Lee et al. 2023). Likewise, the case of Hg disease 
in humans that occurred in Minamata (Japan) between 1932 
and 1968 is also well analyzed. During this period, an acetic 
acid factory dumped waste liquids with a high concentra-
tion of MeHg into Minamata Bay, where a large population 
subsisted on fishing for self-consumption. Even today, it has 
been observed that in populations engaged in subsistence 
fishing, between 1.5 and 17 out of every thousand children 
have cognitive disorders (mild mental retardation) due to 
the consumption of contaminated fish (Malagon-Rojas and 
Sonia 2018; Lin et al. 2023).

Bioremediation

The potential capacity of microbial communities and their 
use for the improvement of plant production (Valle-Romero 
et al. 2023; Vlajkov et al. 2023; Nagrale et al. 2023), as well 
as the use of soil plant processing capacity to reduce the 
presence of a certain pollutant (Chandel et al. 2023; Sitar-
ska et al. 2023; Nnaji et al. 2023) are issues that have been 
addressed from different perspectives. Bioremediation or 
biotechnological remediation of a contaminated environ-
ment is presented as an economical alternative with a lower 
negative impact on the environment (Daniel et al. 2022). 
The use of mercurotolerant microorganisms (Mathema et 
al. 2011) represents a great opportunity for the design and 
application of effective bioremediation processes (Yadav et 
al. 2023; Rojas-Solis et al. 2023; Gupta et al. 2023).

In the literature, a large number of works can be found 
regarding the biological methods used to remediate Hg with 
bacteria:

	● Volatilization of the contaminant: Bacteria possessing 
the mer operon are able to reduce Hg from Hg2+ to vola-
tile Hg0 (Tanwer et al. 2022; Yadav et al. 2023; Yao et 
al. 2023). The mer operon codes for a mercuroreductase 
(merA), an organomercuric lyase (merB), a periplas-
mic protein for environmental Hg uptake (merP), inner 
membrane proteins related to Hg2+ transport (merT, 
merC, merE, merF and merG) and operon system regu-
latory proteins and expression (merR and merD) (Gion-
friddo et al. 2020).

	● Biosorption of Hg: Defined as the ability of microorgan-
isms to capture heavy metals by increasing their biomass 
(Vijayaraghavan and Yun 2008; Beveridge and Murray 
1980). The heavy metal is retained in the bacterial cell 
wall, without the need for intracellular bioaccumulation 
(Jing et al. 2022; Baran et al. 2022; Yao et al. 2023; Zhao 
et al. 2023).

	● Phytoextraction (Yu et al. 2022; Sitarska et al. 2023; 
Nnaji et al. 2023):. A process by which it is intended 
to remove heavy metals through the use of plants: (i) 
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An indirect effect of phytoprotection is the ability of 
these bacteria to prevent or reduce damage to the plant by 
the action of certain pathogens (Nagrale et al. 2023; El-
Sayed et al. 2023). To do this, the accompanying bacteria 
can induce resistance mechanisms of the plant itself. PGPBs 
can perform other beneficial functions against abiotic stress 
for plants, such as protecting against salinity, drought, or 
toxic environmental compounds, such as heavy metals 
(Rajendran and Sundaram 2020; Zerrouk et al. 2020; Dan-
ish et al. 2020; Wróbel et al. 2023).

The main activities that allow characterizing a strain as 
PGPB have been the production of different phytohormones 
(like 3-indolacetic acid; IAA) and growth promoting activi-
ties (Basu et al. 2021; Hsu et al. 2021; Valle-Romero et al. 
2023; Nagrale et al. 2023; Gupta et al. 2023). Likewise, it 
is necessary to know the Hg minimal bactericidal concen-
tration (MBC) as a measure of its mercurotolerant capacity 
(Mathema et al. 2011). To assess these factors in an inte-
grated wayRobas et al. (2021a); González et al. (2021) pro-
pose the use of the BMRSI (Biomercuroremedial Suitability 
Index):

BMRSI= [IAA (mg.mL− 1) + ACCd (1/0) + SID 
(cm) + PO4

3− (1/0)] + [MBC Hg (mg.mL− 1)]
Where 1 = Presence; 0 = Absence; IAA: Indole-3-acetic 

acid production; ACCd: ACC deaminase activity; SID: 
Siderophores production; PO4

3−: Phosphates solubilization 
capacity; MBC: Hg minimal bactericidal concentration.

The development of genetics and whole genome sequenc-
ing (through Next Generation Sequencing (NGS) and 
Whole Genome Sequencing (WGS) are fundamental tools 
for the description of new bacterial strains, their taxonomic 
reassignment (Mora et al. 2022; Shu and Huang 2022) or the 

of the main effects that numerous environmental pollutants 
have on a plant is the increase in oxidative stress and the pro-
duction of ROS (Çavuşoğlu et al. 2022; Carrasco-Gil et al. 
2023; Flores-Cáceres et al. 2023; Magnuson and Sandhein-
rich 2023). The production of the enzymes superoxide dis-
mutase (SOD), glutathione reductase (GR), catalase (CAT) 
and ascorbate peroxidase (APX) catalyze the degradation of 
ROS such as H202, HO-, 1O2 and the superoxide anion O− 2. 
This effect has also been observed in the cellular production 
of APX and GR enzymes when confronting different plant 
species with heavy metals (Liu et al. 2018; Azimychetabi 
et al. 2021). Therefore, enzyme activity is interpreted as a 
protective response against ROS, whose function is induced 
by the intracellular presence of Hg (González-Reguero et 
al. 2022).

Microorganisms and new tools for 
bioremediation

Tools for the characterization and description 
of new strains. Massive Sequencing (NGS) and 
Biomercuroremediator Suitability Index (BMRSI)

During the last four decades, the use of microbiological 
agents (fungi and bacteria) as an alternative to conventional 
chemicals has prevailed. The commonly used plant growth 
promoting bacteria (PGPB) species are those belonging to 
Bacillus (Etesami et al. 2023; Liu et al. 2023; Wróbel et 
al. 2023) and Pseudomonas genera (de Andrade et al. 2023; 
Singh et al. 2023b).

Fig. 4  Main mercury bioremedia-
tion strategies. Own elaboration
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Future prospects

Bioremediation and the use of biotechnological methods for 
the removal of environmental pollutants, such as Hg, is pro-
posed as an economical and environmentally friendly alter-
native. Therefore, the development of new technologies that 
allow effective environmental remediation is, at present, a 
field of research of great scientific interest. To this end, it is 
necessary to develop procedures and techniques that allow 
the correct taxonomic ascription or classification of new 
PGPB with potential biotechnological use. In order to suc-
cessfully employ new microbial species in bioremediation 
processes, a deeper understanding of the mechanisms that 
promote microbial activity (such as communication mecha-
nisms mediated by quorum sensing) and the metabolism of 
pollutants under various ecological conditions (through the 
aforementioned processes of mobilization/immobilization, 
translocation, transformation, biosorption or bioaccumula-
tion) is needed. “Omics” tools will continue to be key to the 
discovery of new microbial species, genetic mechanisms of 
transformation (metagenomics); gene expression in differ-
ent biological contexts (metatranscriptomics); the synthesis 
and participation of proteins in new metabolic pathways 
(metaproteomics) as well as the identification of metabolites 
not yet described with therapeutic, industrial, or remedial 
potential (metabolomics).

It is necessary to expand the knowledge of the mecha-
nisms that allow the exosimbiont association or mutualistic 
interaction between organisms, especially those established 
between plants and microorganism, which allow an optimi-
zation of the use of organisms for the recovery of degraded 
environments. Finally, obtaining genetically modified 
microorganisms will allow the development of more effec-
tive methods and techniques for the restoration of the bal-
anced conditions of deteriorated ecosystems.
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molecular study of uncultivable species (Cycil et al. 2020) 
introducing a new paradigm in the study of microorganisms. 
Likewise,the use of new bioinformatics tools has allowed 
the discovery of new genes and molecular mechanisms of 
residence to metals such as Hg (Douglas et al. 2020; Moon 
et al. 2020).

Community study tools. Cenoantibiogram and 
Omics-

The presence of antibiotics in soils is an inherent fact 
because soil systems are the habitat of numerous microbial 
species that naturally produce them. Antibiotics may, at sub-
inhibitory concentrations, have different functions such as 
the activation/deactivation of virulence factors or the regu-
lation of microbial communication systems (Li et al. 2021; 
Chow et al. 2021; Moori Bakhtiari et al. 2023). The effect 
of antibiotic resistance in different populations may be due 
to various factors, including the effect of microbial com-
munication processes and/or ecological competition, such 
as quorum-sensing/ quorum-quenching (Li et al. 2021; 
Wang et al. 2023), as well as the response to abiotic fac-
tors and genetic co-selection with resistance mechanisms to 
the presence of heavy metals. One of these tools that allows 
the study of antibiotic resistance of a complex microbial 
community is the so-called cenoantibiogram (Mora et 
al. 2017). The interpretation of the cenoantibiogram does 
not seek to characterize all the different mechanisms that 
explain each of the antibiotic resistances detected but the 
overall behavior of the soil microbial community compared 
to the most commonly used antibiotics. This technique is 
suggested as a possible bioindicator of both the evolution of 
the edaphic community and the comparison between differ-
ent communities.

Likewise, there is no doubt that there is a growing inter-
est in the use of techniques such as metagenomics, tran-
scriptomics, proteomics and metabolomics for the study of 
soil samples and the use of microorganisms in bioremedia-
tion processes (Chakdar et al. 2022; Jhariya and Pal 2022; 
Sharma et al. 2022; López and dos Santos Silva 2023; Sevak 
et al. 2023). Methods based on the functional analysis of 
DNA libraries can be a great source for the discovery of new 
genes for resistance to different pollutants, such as heavy 
metals (Sharma et al. 2021; Chen et al. 2022). Similarly, 
transcriptomic and proteomic analysis offers an opportunity 
for understanding the expression of these genes and the dif-
ferent mechanisms of resistance, their expression and their 
regulation (Jhariya and Pal 2022; Lata et al. 2023; López 
and dos Santos Silva 2023; Shyam et al. 2023).
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