World Journal of Microbiology and Biotechnology (2023) 39:213
https://doi.org/10.1007/511274-023-03660-x

REVIEW q

Check for
updates

Recent advances in the biological activities of microbial
exopolysaccharides

Fatemeh Salimi’ - Parisa Farrokh'

Received: 19 March 2023 / Accepted: 22 May 2023 / Published online: 31 May 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract

Microbial exopolysaccharides (EPSs) are valuable extracellular macromolecules secreted as capsules or slime layers. Various
microorganisms, including bacteria, yeasts, fungi, and algae have been studied for their ability to produce EPSs. Microbial
EPSs exist as homopolysaccharides or heteropolysaccharides with various properties such as different monosaccharide com-
positions, structural conformation, molecular weight, and functional groups. They are cost-effective alternatives to plant and
animal-derived polysaccharides because the microbial cells produced them in large quantities by biotechnological processes
using low-cost substrates such as industrial wastes in a short time. Microbial EPSs are safe, biodegradable, and compatible
polymers. They have extensive bioactivities, including antibacterial, antifungal, antiviral, antioxidant, antitumor, antidia-
betic, antiulcer, anticoagulant, antiaging, immunomodulatory, wound healing, and cholesterol-lowering activities. Microbial
EPSs owing to biological activities, special biochemical structures, and attractive physicochemical properties find plenty
of potential applications in various industries. The enhancement of the production of EPSs and improving their properties
can be provided by genetic engineering methods. The current review aims to provide a comprehensive examination of the
therapeutic activities of microbial EPSs in infectious diseases and metabolic disorders, with a focus on the mechanisms
involved. Also, the effect of the physicochemical characteristics of EPSs on these bioactivities was discussed to reveal the
structure-activity relationship.
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Introduction

Microorganisms have considerable biosynthetic potentials to
produce various bioactive substances with unique chemical
scaffolds and functionalities. These compounds displayed
pharmaceutical potential. For example, they suppress the
growth of infectious bacteria and fungi, mitigate multipli-
cation of cancerous cells, scavenge free radicals, reduce
inflammation, and accelerate wound healing. These bioac-
tive metabolites can be peptides, lipopeptides, polypeptides,
lactones, fatty acids, polyketides, isocoumarins, terpenoids
or exopolysaccharides (Ramezanzadeh et al. 2021; Salimi
et al. 2022; Almasi et al. 2021; Salimi and Mohammadi-
panah 2021).
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Polysaccharides can be produced by various natural
sources like plants, animals and microorganisms (Li et al.
2022). Exopolysaccharides (EPS) are extracellular carbo-
hydrate polymers which are synthesized by different micro-
bial cells, including bacteria, yeasts, fungi, and microalgae
during their growth and metabolism. EPSs can be secreted
from microbial cells or attached to their cells (Arayes et al.
2023). EPSs are composed carbohydrates (main part) and
some non-carbohydrate substituents like acetate, pyruvate,
succinate, and phosphate. Various monosaccharides such
as fructose, glucose, arabinose, mannose, rhamnose, and
xylose can be present in EPS structure (Al-Nabulsi et al.
2022). EPSs provide microenvironments, which protect bac-
teria at extreme conditions, help bacterial colonization and
pathogenicity, and facilitate genes and metabolites exchange
within bacterial communities (Arayes et al. 2023). Microbial
EPSs can be produced in a short time in high quantity under
controlled conditions. Therefore, they can be cost-effective
substituents to the plant and algal derived polysaccharides.
Also, production cost can be reduced by using cheaper
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substrates, improving product yield through optimizing fer-
mentation conditions and downstream processing, or devel-
oping higher yielding strains (Freitas et al. 2011).
According to the literature, microbial-derived EPSs have
desirable biological functions and high-value applications
as well as they have no toxic and side effects on body tissue
cells. These biopolymers are biocompatible and biodegrad-
able (Li et al. 2023). EPSs with favorable thermal stability
and water retention ability have proper candidate for bio-
medical applications (Andrew and Jayaraman 2022). Due
to the toxicity of chemical therapies or emerging resistance
to current drugs(Al-Nabulsi et al. 2022), EPSs have the
potential of replacing chemical drugs and are considered
medically, pharmaceutically impotent carbohydrates (Ji et al.
2022; Zhou and Huang 2023). In addition to these, EPSs are
being used for drug delivery, and scaffold synthesis in tissue
engineering (Andrew and Jayaraman 2022). Also, the micro-
bial EPSs have potential applications in food, feed, packag-
ing, chemical, textile, agriculture, and cosmetic industries
(Ates 2015; Tang and Huang 2022; Zhou and Huang 2023).
Since great efforts have been made in recent years on charac-
terization and studying the bioactivities of microbial EPSs,
reviewing the recent articles helps better understanding
between their properties and biomedical activities. In this
review, we attempt to review research on bioactivities of
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microbial EPSs, including antibacterial, antifungal, antiviral,
antioxidant, antiulcer, immunostimulant, or immunosuppres-
sive activities. Furthermore, the impactful physicochemical
properties of EPSs on their various biological activities will
be reviewed.

Classification and properties of microbial
EPSs

EPSs produced by microbial cells have diverse chemical
composition, and they can be categorized into two groups
of homopolysaccharides (HoPS) and heteropolysaccharides
(HePS) (Fig. 1).

Homopolysaccharides

Homopolysaccharides (HoPSs) are contained of repeating
one kind of monosaccharide with the molecular mass of
~ 107 Da (Panchal et al. 2022). They can be further classified
into a-D-glucans, p-p-glucans, and fructans (Panchal et al.
2022; Bajpai et al. 2016; Nwodo et al. 2012). Examples of
bacterial HoPSs with the main characteristics of them are
summarized in Table 1.
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Fig. 1 Chemical structure of some heteropolysaccharides (left) homopolysaccharides (right)
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Dextran and mutan belong to a-p-glucans. In contrary to
dextran, mutan is a water-insoluble HoPS. Dextran (Fig. 1)
is produced by various genera such as Leuconostoc, Lac-
tobacillus, Limosilactobacillus, Weissella, Streptococcus,
Lentilactobacillus, and Latilactobacillus. Streptococcus
downei, Streptococcus mutans, Streptococcus salivarius, and
Limosilactobacillus reuteri are examples of bacteria produc-
ing mutan. Alternan and reuteran are two other a-pD-glucans,
which are soluble in water. Alternan can be produced by
Leuconostoc mesenteroides, L. citreum, and Streptococcus
salivarius. The generation of reuteran was also reported by
Limosilactobacillus reuteri (JuraSkova et al. 2022). Curdlan,
cellulose, and salecan are unbranched p-p-glucans, which
among them, salecan is water-soluble (Guo et al. 2017; Sun
and Zhang 2021). Curdlan (Fig. 1) is produced by Agrobac-
terium sp. ATCC 31,749 (Ruffing and Chen 2012), Cellulo-
monas flavigena KU (Kenyon and Buller 2002), Alcaligenes
faecalis, Rhizobium meliloti, and Agrobacterium radiobacter
(Prete et al. 2021). Acetobacter, Pseudomonas, Agrobacte-
rium, and Rhizobium genera have ability to generate cellu-
lose (Vu et al. 2009). Agrobacterium sp. ZX09 can produce
salecan as a HoPS (Sun and Zhang 2021). Levan, inulin,
and fructooligosaccharide are members of fructan that all
of them have solubility in water (JuraSkova et al. 2022).
Limosilactobacillus reuteri, L. mesenteroides, Streptococ-
cus mutans, Bacillus subtilis, and Streptococcus salivarius
are levan producer strains (JuraSkova et al. 2022; Prete et al.
2021). Streptococcus mutans, Limosilactobacillus reuteri,
Leuconostoc citreum, and Lactobacillus johnsonii have abil-
ity to generate inulin (Juraskova et al. 2022). Fructooligo-
saccharide is also detected in the culture of Lactobacillus
reuteri 121 (Sun and Zhang 2021).

Heteropolysaccharides

Heteropolysaccharides (HePSs) are complex because of
two or more kinds of monosaccharides in their structures.
Pentose, hexose, N-acetylated monosaccharide, and non-car-
bohydrate units can be present in branched or unbranched
HePSs (JuraSkova et al. 2022; Abarquero et al. 2022). The
molecular mass of HePSs is within 10* to 10° Da (Panchal
et al. 2022). The structure of some HePSs is presented in
Table 1. The backbone of gellan, wellan, and diutan are
the same, and it constructs from L-rhamnopyranose, D-glu-
copyranose, and p-glucopyranuronic acid subunits. Gellan
(Fig. 1) is linear, however, wellan, and diutan have different
branched structures (Sun and Zhang 2021). All of them are
water-soluble (Nadzir et al. 2021; Gonzalez et al. 2019; Li
et al. 2020), and their production reported by Sphingomonas
and Pseudomonas strains (Sun and Zhang 2021). Kefiran is
another branched HePS, which is made from p-glucopyra-
nose and D-galactopyranose units. Kefiran is a water-soluble
polysaccharide, and several species of Lactobacillus such as

@ Springer

L. kefir, L. parakefir, L. kefiranofaciens, L. kefirgranum, and
L. delbrueckii subsp. bulgaricus have the ability to generate
it (Moradi and Kalanpour 2019). The composition of the
xanthan backbone is similar to cellulose, while its branch
structure makes from p-mannopyranose and D-glucopyra-
nuronic acid. Xanthan (Fig. 1) is water-soluble EPS (Nadzir
et al. 2021), which can be produced by Xanthomonas
campestris and Sphingomonas paucimobilis (Juraskova
et al. 2022). Hyaluronic acid (Fig. 1) with the composition
of p-glucuronic acid and p-N-acetylglucosamine is linear
water-soluble HePS (Sun and Zhang 2021; Nadzir et al.
2021). Streptococcus equi, S. zooepidemicus, S. pyogenes,
Pasteurella multocida, and Cryptococcus neoformans are
natural bacteria that produce hyaluronic acid (Sze et al.
2016). Alginate is linear HePS with solubility in water (S
et al. 2020). Its subunits consist of b-manopyranuronic acid
and L-guluronic acid (Sun and Zhang 2021). Pseudomonas
aeruginosa and Azotobacter vinelandii are main producer of
alginate (Nadzir et al. 2021).

Antibacterial activities

Microbial EPSs showed considerable inhibiting effects on
adherence, colonization, or growth of various Gram-positive
(e.g. Listeria monocytogenes, Micrococcus luteus, Bacillus
subtilis, Bacillus cereus and Staphylococcus aureus, Staphy-
lococcus petrasii, Enterococcus faecalis) and Gram-negative
(e.g. Salmonella enteritidis, Escherichia coli, Heliobacter
pylori, Acinetobacter baumannii, Proteus mirabilis, Entero-
bacter cloacae, Pseudomonas aeruginosa, Shigella flexnert)
bacterial pathogens. These bacteriostatic or bactericidal
EPSs are produced by bacteria belonging to Lactobacil-
lus, Lactococcus, Streptococcus, Bifidobacterium, Bacil-
lus, Weissella, Leuconostoc, Limosilactobacillus genera
(Table 2). Some of these microbial EPSs showed broad-
spectrum activities while others act specifically (Angelin
and Kavitha 2020).

Antibacterial mechanisms of microbial EPSs may be
related to disrupting the structure of bacterial cell mem-
brane, cell wall, or respiratory chain, affecting cell division
machinery (Hu et al. 2019; Hasheminya and Dehghannya
2020; Wu et al. 2010). Microbial EPSs cannot permeate to
the other cells so probably impose their antibacterial activity
by combining with oligopeptides or acyl-homoserine lactone
in Gram-positive and Gram-negative bacteria, respectively.
These compounds are biofilm-related signal molecules.
EPSs via this mechanism disrupt cell communication and
suppress formation of biofilm (Spand et al. 2016). Therefore,
microbial EPSs could be effective therapeutic molecules in
ameliorating biofilm-related chronic and recurrent infections
(Fig. 2).

Also, microbial EPSs via protecting their producing cells
from a strong immunological response of the host (Paynich
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Fig.2 Antibacterial mechanisms of microbial EPSs

et al. 2017) or through acting as prebiotics enhance adher-
ence and subsequent the colonization of microflora on host
cells. So, they can competitively inhibit colonization of bac-
terial pathogens. Also, microbial EPSs can reduce the auto-
aggregation of bacterial pathogens and make bacterial path-
ogens more susceptible to immunological response inside
the host (Dertli et al., 2015). EPS-producing probiotics can
attach to microbial pathogens through their EPS. This coag-
gregation accelerates their antimicrobial functions through

Fig. 3 Impactful physicochemi-
cal properties of microbial EPSs
on their bioactivities
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Molecular Weight
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Electric Charge

Functional Groups

Microstructure

Monosaccharide
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Oligopeptides

blocking the receptors or channels on the outer membrane of
the Gram-negative pathogenic bacteria (Abdalla et al. 2021).

Microbial EPSs have various functional groups, includ-
ing hydroxyl, phosphate, and carbonyl groups. It has been
suggested that these functional groups are involved in the
interaction of microbial EPSs with the cell membranes or
cell walls of bacterial pathogens. So, they play a critical

role in exerting antimicrobial activities (Fig. 3) (Riaz Rajoka
et al. 2020).

Biological activities
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Fig.4 Anticancer mode actions of microbial EPSs

Antifungal activities

Some microbial EPSs, especially negatively charged ones,
show antifungal activity. The negative charge provides bet-
ter electrostatic interactions with fungi. L. rhamnosus GG
produces EPS, which inhibited the hyphal formation of Can-
dida in in vitro cell culture. Furthermore, this EPS in a gut
model, decreases the hyphal elongation of C. albicans. The
dextran of Weissella confuse has the ability to significantly
inhibit the biofilm formation of C. albicans SC5314. Moreo-
ver, EPS produced by Lactobacillus strains shows antifungal
activity (Abdalla et al. 2021). The EPS of Gloeocapsa sp.
and Nostoc entophytum prevents the growth of C. albicans
(Najdenski et al. 2013). According to the report of Abinaya
et al. (2018), Bacillus licheniformis Dahbl EPS showed anti-
biofilm activity toward C. albicans.

Antiviral effects

Microbial EPSs can exert their antiviral effects locally or
systemically. In local mode action, the EPSs directly inter-
act with either the viruses or the receptors on the host cell.
So, block viral adsorption while in systemic mode actions
microbial EPSs stimulate the innate and adaptive immunity
or suppress viral replication enzymes (Saadat et al. 2019).
Some microbial EPSs, mainly sulfated polysaccharides
like dextran exhibited both inhibitory mode actions (Bell
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and Lu, 2010; Lin and Huang 2022). L. sakei MN1-derived
dextran inhibited infectious pancreatic necrosis virus and
infectious hematopoietic necrosis virus. The in vivo treat-
ment of trout with the EPS, decreased their mortality rate of
these viruses and considerably enhanced the expression of
interferon (IFN)-1 (Vazquez et al., 2017). In the following,
the antiviral activities of some microbial exopolysaccharides
are represented.

Treated cells with EPS 26a-derived Lactobacillus spp.
completely suppressed viral adsorption and the formation of
infectious human adenovirus C serotype 5 particles as well
as their release (Biliavska et al. 2019).

Kim et al. (2018), demonstrated that L. plantarum
LRCC5310 EPS hindered the attachment of the rotavirus and
subsequently reduced diarrhea duration, epithelial lesions,
rotavirus replication in the intestine, and the recovery time
of young mice. Also, L. delbrueckii TUA4408L-derived
HePS reduced viral replication and regulated inflammatory
response consequently enhanced the resistance of porcine
intestinal epitheliocytes to rotavirus infection. This EPS con-
siderably increased the expression of the antiviral (IFN)-p,
MxA, and RNase L (Kanmani et al. 2018a; Mizuno et al.
2020), also reported that the EPS of S. thermophilus ST538
activated TLR3 in porcine intestinal epitheliocytes subse-
quently modulated the innate antiviral immune response.

Microbial EPS also can suppress respiratory
viruses. Kanmani et al. (2018b), demonstrated that oral
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administration of L. delbrueckii OLL1073R-1 HePS con-
siderably reduced influenza virus titer and increased IgA
and IgG1. Furthermore, it activated natural killer cells. Also,
Lactobacillus plantarum SN35N-derived EPS suppressed
the influenza A virus and Vesivirus Feline calicivirus
(Noda et al. 2021). Also, EPSs from Haloarcula hispanica
ATCC33960 suppressed binding spike protein of SARS-
CoV-2 to Vero E6 and bronchial epithelial BEAS-2B cells
(Xu et al. 2022b).

Microbial EPSs also can be considered promising anti-
herpes virus polymers. Since, Bacillus licheniformis-derived
EPS-1 impaired Herpes Simplex Virus type 2 (HSV-2)
replication in human peripheral blood mononuclear cells
(PBMC) through induction of IL-12, IFN-g, IFN-a, TNF-
a, and IL-18 (Arena et al. 2006). Also, EPS-2 produced by
Geobacillus thermodenitrificans hindered HSV-2 replica-
tion in PBMC through the induction of cytokine production
(Arena et al. 2009; El Awady et al. 2019), reported anti-
viral activities of Strepromyces hirsutus NRC2018-derived
EPS on HSV1, Hepatitis A virus, and Coxsackie B-4. Also,
Reichert et al. (2017), demonstrated that EPS of A. platensis
hindered koi herpesvirus replication in common carp brain
cells. Finally, Arthrospira platensis-derived EPS exhibited
inhibitory activities on vaccinia and ectromelia viruses
(Radoni¢ et al. 2011), and EPS from Weissella paramesen-
teroides MN2C2 exhibited antiviral activity against Cox-
sackie virus (Amer et al. 2021).

Anticancer activities

Microbial EPSs have displayed antiproliferative properties
against various cancers, including colon, breast, pancreatic,
leukemia, and cervical cancers (Jura§kova et al. 2022). The
chemical characteristics of microbial EPSs like molecular
composition, molecular weight, the presence of uronic acid
and sulfate groups as well as p-type glycosidic bonds are
influential factors in their anticancer activities (Ismail and
Nampoothiri 2013; (Wang et al. 2014a; Hou et al. 2021).
Microbial EPSs probably through the following mechanisms
exert their anticancer activities: act as antioxidants, bind
to genotoxic carcinogens, induce apoptosis, and improve
immunity (Fig. 4) (Koller et al. 2008).

L. plantarum and L. rhamnosus-derived EPSs can bind to
various mutagens, like 2-nitrofluorene, heterocyclic amines,
and 4-nitroquinoline-N-oxide reduce their mutagenic poten-
tial (Tsuda et al. 2008; Thapa and Zhang 20009).

Studies have shown that microbial EPSs can be effective
against various colon cancer cell lines, including HT-29,
Caco-2, and CT26. Antiproliferative effects of EPSs pro-
duced by L. casei 01 (Liu et al. 2011a) and L. plantarum
70,810 (Wang et al. 2014a), L. rhamnosus ATCC 9595 (Kim
et al. 2006), L. brevis and L. delbrueckii subsp. bulgaricus
on the HT-29 malignant cell line was reported.

EPSs with antioxidant activity may suppress cancers. It
has been shown that the anti-HT-29 activity of L. plantarum
70,810 EPS can be related to its antioxidant activity and
it was increased after acetylation modification (Wang et al.
2014a). Also, L. rhamnosus SHA111 EPS with ability to
scavenge hydroxyl and superoxide radicals displayed antitu-
mor activity against the Caco-2 cell line (Rajoka et al. 2018).

Also, microbial EPSs through apoptosis induction can
exert their anticancer activities. Apoptosis can occur through
caspase-dependent intrinsic and extrinsic pathways. In the
intrinsic pathway caspase-3, caspase-9, BCl-2, and BAX
are expressed and expression of caspase-8 and caspase-10
are done in the extrinsic pathway. Caspase-3 activation is
indicating that cell shrinkage, nuclear fragmentation, and
chromatin condensation have been occurred in cancerous
cells without affecting surrounding healthy cells or tissues
(Angelin and Kavitha 2020).

For example, Lactobacillus kefiri EPS the upregulated the
expression of Cytochrome-c, Bax, Bad, Caspase-3, -8, and
-9 in HT-29 cancerous cells (Rajoka et al. 2019). Also, Lac-
tobacillus strain SB27-derived EPS increased activation of
caspase-3 and subsequently induced apoptosis and arrested
cell cycle. Moreover, Lactobacillus casei SB27 EPSs (LW1
and LW2) significantly inhibited the proliferation of HT-29
colorectal cancer cells through upregulation of Bad, Bax,
Caspase-3, and -8 gene expressions (Di et al. 2017).

Kim et al. (2010), reported the Lactobacillus acidophilus
606 EPS exert its antitumourigenic activity against HT-29
colon cancer cells by activating autophagic cell death which
was promoted through inducing of Beclin-1, Grp78, Bcl-2,
and Bak.

Tukenmez et al. (2019), showed that EPSs of four Lacto-
bacillus spp. were capable to induce apoptosis in HT-29 via
increasing the expression of Bax, Caspase-3 and -9 while
decreasing Bcl-2 and Survivin. Among these EPSs, EPS of
L. delbrueckii ssp. bulgaricus B3 which contained the high-
est amount of mannose and the lowest amount of glucose
showed the highest apoptosis induction.

Anticancer activity of microbial EPSs on other colon can-
cer cell lines like Caco-2 and CT26 have also been reported.
For example, Lactobacillus fermentum YL-11 EPS sup-
pressed the proliferation of HT-29 and Caco-2 colon cancer
cells (Wei et al. 2019). El-Debb et al. (2018), reported that
the HePS produced by L. acidophilus 20,079 displayed anti-
Caco-2 activity via apoptotic and NF-kB inflammatory path-
ways. Also, The Lactobacillus acidophilus 20,079-derived
EPS suppressed cell proliferation of the CaCo-2 cell line
(El-Deeb et al. 2018).

Zhou et al. (2017), demonstrated the inhibitory activity
of Lactobacillus plantarum NCU116-derived EPS on the
proliferation and survival of CT26 cell line (a murine colo-
rectal carcinoma cell line) through induction of apoptosis.
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Inhibitory activity of microbial EPSs on other cancer-
ous cells is also reported. For example, L. plantarum and L.
helveticus EPSs suppressed breast cancer and gastric cancer
cell lines, respectively (Ismail and Nampoothiri 2013; Li
et al. 2014). Pediococcus pentosaceus M41 EPS displayed
inhibitory activity against Caco-2 and MCF-7 cells (Ayyash
et al. 2020c). Lactococcus lactis subsp. lactis EPS was found
to affect the production of inflammatory cytokines and con-
siderably increased TNF-a and inducible nitric oxide (NO)
synthase release in MCF-7 cells in comparison with control
cells (Wu et al. 2016).

Microbial EPS also can exert their anticancer activity
through stimulating cell-mediated immune responses, like
tumoricidal activity of natural killer cells, the proliferation
of T-lymphocyte, and phagocytic capacity of mononuclear
cells. In this regard, it has been reported that L. lactis subsp.
lactis EPS induced the apoptosis of MCF17 cells along
with nuclear condensation and cell shrinkage, enhancing
intracellular calcium levels and production of inflammatory
cytokine (Wu et al. 2016).

Lactobacillus plantarum RJF4 EPS showed inhibitory
activity against the MiaPaCa2-pancreatic cancer cell line. Its
antiproliferative activity can be due to its antioxidant activi-
ties (Dilna et al. 2015; Chen et al. 2015), demonstrated that
Pseudoaltermonas sp. S-5 EPS suppressed the proliferation
of human leukemia K562 cells.

Sungur et al., reported the inhibitory effect of L. gasseri
strains-derived EPSs on proliferation of cervical cancerous
cells. These EPSs induced apoptosis, upregulated expression
of Bax and Caspase-3 in Hela cells (Sungur et al. 2017).

EPS of Bacillus mycoides BS4 displayed antitumor activ-
ity on human hepatocellular carcinoma and colorectal ade-
nocarcinoma cells. This microbial EPS demonstrated low
cytotoxicity against the normal cell baby hamster kidneys
(Farag et al. 2020). Therefore, microbial EPSs can be con-
sidered promising natural polymers to develop antitumor
drugs with lower side effects than current chemical drugs.

Antioxidant activities

Microbial exopolysaccharides have displayed significant
antioxidative activities (Table 3). Their subunits, mono-
saccharides, are considered reducing sugars because they
possess aldoses and ketoses or they can interconvert into
either form. The antioxidant potential of microbial EPS
can be related to their various functional groups, includ-
ing hydroxyl, carboxyl, sulfate, sulfhydryl, acetyl, carbonyl,
sulfhydryl, thioether and amide groups. These functional
groups donate electron pairs, lose a proton, or facilitate the
metal binding process (Fig. 3). Subsequently, convert free
radicals to stable substances. For instance, the phenom-
enal scavenging ability of chitosan is due to its hydroxyl
and amino groups. Also, it has been stated that negatively
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charged functional groups by generating an acidic envi-
ronment could facilitate EPS hydrolysis. Therefore, more
exposed hemiacetal hydroxyl groups enhance antioxidant
activity (Andrew and Jayaraman 2020; Lin and Huang 2022;
Li and Huang 2022; Zhou et al. 2022).

In this regard, chemical modification of the naturally
occurring EPSs can be a promising and easy approach to
make them more potent antioxidants. Phosphorylation, sele-
nylation, carboxymethylation, sulfation, and acetylation are
some of the possible and influential chemical modifications
on microbial EPSs. In addition to functional groups, the
monosaccharide constituent also affects antioxidant activi-
ties of EPSs. It has been observed that EPSs containing
neutral monosaccharides like p-galactose, fucose, arabinose,
mannose, glucose, and glucuronic acid showed more the
antioxidant activities (Andrew and Jayaraman 2020).

Immunomodulatory activities

Microbial EPSs can regulate the actions of innate and adap-
tive immunity, though acting as immunomodulatory agents
(Tables 4 and 5). They interact with dendritic cells and mac-
rophages, stimulate the proliferation of T/B lymphocytes and
natural killer cells, improve antibody production, enhance
cell tumoricidal activity, and mononuclear cell phagocytic
capacity, increase the function of chemokines as well as
affect the production of pro-inflammatory (IL-6, IL-12,
TNF-a, and NO) and anti-inflammatory cytokines (IL-4
and IL-10) (Fig. 5) (Li and Shah 2016; Rajoka et al. 2020).

It has been reported that acidic HePSs containing phos-
phate in their composition exert a pro-inflammatory effect
and induce the immune response. According to the stud-
ies, the presence of the phosphate group and its subse-
quent chemical de-phosphorylation actives immune system
through eliciting different immune cells like macrophages
and lymphocytes (Saadat et al. 2019). The phosphate-con-
taining dextran from Lactobacillus mesenteroides improve
host immunity more compared to native dextran (Sato et al.
2004).

Immunomodulator activities of microbial EPSs may be
interconnected to gut microbiota. Most EPSs can enhance
the diversity and balance of microorganisms in the gut by
promoting the growth of the intestinal microbiota. Several
EPSs-derived from lactic acid bacteria (LAB), such as Lac-
tobacillus plantarum, Pediococcus pentosaceus, Weissella
cibaria, and Weissella confusa showed prebiotic character-
istics and could encourage the growth of a probiotic strain,
Bifidobacterium bifidum DSM 20,456, in vitro. Moreover,
LAB derived EPSs can attach to intestinal epithelial cells,
thereby hinder pathogen adhesion or stimulate immune cells
(Chaisuwan et al. 2020).
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Table 3 Antioxidant activities of microbial EPSs

EPS producing strain Monosaccharide constituent/ MW Concentration References
Functional groups
Bacillus coagulans RK-02 Glc, Man, Gal, glucosamine, 30KDa 50-500 pg/ml Kodali et al. (2011; Kodali and
and Fruc Sen (2008)
CH, OH, CO
Weissella cibaria GA44 Glc and Rha 280KDa 0.5-4 mg/ml Adesulu-Dahunsi et al. (2018)
OH, CH, CO, COOH
Lactobacillus plantarum C88 Gal and Glc 1150KDa 0.5-4 mg/ml Zhang et al. (2013)
OH, CH, RCOOR’, C-OH,
C-0-C
Lactobacillusplantarum NR/NR NR 5-40 mg/ml Seo et al. (2015)
YMLO009
Lactobacillus gasseri FR4 Man, Gal, Rha Fruc 186 KDa 4 mg/ml Rani et al. (2018)
OH, CH2, NH, COO™, C-0,
C-0-C
Weissella cibaria SJ14 Man, Glc, Gal, Ara, Xyl, and 7.12X% 10°Da3.01x10*Da 0.1-8 mg/ml Zhu et al. (2018)
[EPS-1 and EPS-3] Rha.
Gal, Man, Glc, and Ara
OH, CH, COOH, CO
Lactobacillus plantarum Glc and Man 2380 kDa 2-10 mg/mL Sasikumar et al. (2017)
BR2 OH, CH,CO
Lactobacillus paracasei ssp.  Ara, Glc, Man, Fruc, Mal NR 10 mg/ml Liu et al. (2011b)
paracasei NTU 101 and Lp NR
Lactobacillus plantarum
102
Lactobacillus helveticus Gal, Glc and Man 2% 10° Da 0.125—4 mg/mL Lietal. (2014)
MB2-1 OH, CH,CO, NH
EPS-1, EPS-2 and EPS-3
Lactobacillus plantarum Glc and Gal 1.1x10° Da a high dose of EPS Wang et al. (2015a)
YWI11 OH, CH, CO, NH, C-0-C (50 mg/kg per
day)
Lactobacillus plantarum Glc and Man NR 2-10 mg/mL Dilna et al. (2015)
RIF4 OH, CH, CO
Lactobacillus plantarum NR/NR NR 5 mg/ml Wang et al. (2018a)
SKT109
Pediococcus acidilactici Glc 89.1 KDa 0.1-2 mg/mL Kumar et al. (2020)
NCDC 252 OH, CO, CH, COOH
Lactobacillus sanfrancis- Glc NR 0.1-1 mg/ml Zhang et al. (2019)
censis OH, CH, CO, R-CH,-CH;4
Lactobacillus plantarum Man, Fruc, Gal and Glc 1.03x10° Da 5 mg/ml Wang et al. (2015b)
YW32 OH, CH,, NH, COO™, CO,
C-0-C,
Bifidobacterium animalis RH Rha, Ara, Gal, Glc, and Man 21.3 kDa NR Shang et al. (2013); Xu et al.
OH, CH, COOH, (2011)
Lactobacillusplantarum Gal NR 100-500 pg/mL Imran et al. (2016)
NTMIOS5 and NTMI20 OH, C-C, CO
strains
Leuconostoc pseudomesen-  Glc NR 0.2-5 mg/mL Farinazzo et al. (2020)
teroides JF17 OH, CH, C-0-C, CO
Bacillus anthracis Gle 1103 Da 0.2-5 mg/mL Banerjee et al. (2018)
NH, CH, C-C, C-N, CO,
C-0-C
Lactobacillus fermentum S1 ~ Glc, Gal, Man and Ara 4.45%10°Da 2.82x10°Da 0—4 mg/ml Wang et al. (2020b)

[EPS2 and EPS3]
Pseudomonas sp. RD2SR3

OH, CH, CO, S=0,

Glc, Man, Gal and glucou-
ronic acid

OH, CH, CO, S=0, C-0-S,
C-O-C,C-N

3.75% 10* g/mole

25-200 pg/mL

Mahmoud et al. (2016)
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Table 3 (continued)

EPS producing strain Monosaccharide constituent/ MW Concentration References
Functional groups

Lactococcus pseudomesen-  Glc 6.23x10° Da 0-7 mg/ml Duet al. (2018)

teroides DRP-5 OH, CO, C-0-C

Lactobacillus kimchi SR8 NR/NR NR 1-8 mg/ml Zhang et al. (2021b)

L. plantarum 70,810 Man, Glc, and Gal 204.6 and 202.8 kDa 0.125—4 mg/ml Wang et al. (2014b)

r-EPS1 and r-EPS2 OH, CH, CO,

Halolactibacillus miurensis ~ Gal and Glc NR 0.2-3 mg/ml Arun et al. (2017)
PH, COOH, C-N, NH

Lactobacillus plantarum Ara, Man, Glc and Gal 38.67 KDa 0.2-5.6 mg/ml Wang et al. (2017)

KX041 OH, CH, C-0,C=0, COOH,

NH

NR Not reported

The structures and the physicochemical characteristics of
microbial EPSs play a pivotal role in their immunomodu-
latory potential. These properties include monosaccharide
composition, molecular weight, electric charges, functional
groups, linkage patterns, water solubility, and microstruc-
tures It has been reported that negatively charged EPS and/
or small-size molecules have stimulating activities, while
neutral and large EPS act as a suppressor (Fig. 3) (Werning
et al. 2022; Ji et al. 2021).

Antiulcer activities

Helicobacter pylori infection and the usage of non-steroi-
dal anti-inflammatory drugs are the major causes of peptic
ulcers. The beneficial effect of some bacterial EPSs has been
described in this context (Saadat et al. 2019; Nagaoka et al.
1994), reported that the oral feeding of isolated EPSs from
Bifidobacterium breve YIT4014 and 4043, and B. bifidum
YIT4007 exhibited antiulcer activity in rat models. The
intragastric administration of purified EPS obtained from
Streptococcus thermophiles CRL 1190 dissolved in recon-
stituted skim milk had an antiulcer effect in gastritis-induced
mice. Whereas the suspension of the EPS in water did not
show a protective effect, it assumes that the interaction of
EPS and milk protein provides this gastroprotective effect
(Rodriguez et al. 2009).

Other biomedical activities

In addition to the mentioned bioactivities of microbial EPSs,
some other applications have been described for them.
Antidiabetic property is one of the microbial EPS activi-
ties, which is measured by the inhibition of a-amylase and
a-glucosidase. This inhibitory activity by the prevention of
carbohydrate hydrolysis is helpful to diabetics. The extracted
EPS from Enterococcus faecium MS79 showed 91 and 92%
inhibitory activities against a-amylase and a-glucosidase,
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respectively (Ayyash et al. 2020d). EPS produced by sev-
eral marine cyanobacteria with the potential to inhibit
a-glucosidase showed antidiabetic activity. The isolated
EPS from Pseudanabaena sp. and Chroococcus sp. inhibited
a-glucosidase activity by 14.02 and 13.00%, respectively
(Priatni et al. 2016). The a-amylase/a-glucosidase inhibi-
tory mechanism of EPS is not clear. It seems that EPS by
attaching to the active site of enzymes or substrates blocks
hydrolysis (Ayyash et al. 2020d). The oral administration
of purified EPS from Sorangium cellulosum NUSTO6 sig-
nificantly reduced blood glucose levels in healthy and dia-
betic mice. Although the mechanism of action of EPS is not
obvious, it is assumed that EPS by the activation of insulin
receptors and enhancement of glucose utilization takes part
in lowering glucose levels (Ding et al. 2004). Similarly, the
administration of levan isolated from Bacillus licheniformis
decreased plasma glucose levels by 52% in diabetic rats. The
hypoglycaemic role of levan can be related to the stimulation
of Langerhans islets, the increase of peripheral sensitivity to
remnant insulin, and its antioxidant activity (Dahech et al.
2011; Ghoneim et al. 2016), in an in vivo study found that
Bacillus subtilis sp. suppress produced EPS, and had the
ability to decrease total cholesterol, low-density lipoprotein,
very low-density lipoprotein, and triglycerides. Therefore,
this EPS can be reduced the risk of hyperglycemia, dyslipi-
demia, and cardiovascular disease in diabetic rats. Jin et al.
(2012), described that the oral feeding of diabetic mice with
selenium-enriched EPS isolated from Enterobacter cloacae
70206 caused a significant decrease in blood glucose lev-
els, total cholesterol, and triglycerides. EPSs produced by
Lactobacillus plantarum GA06 and GA11 had also 36.7%
and 28.6% in vitro cholesterol removal efficiency, respec-
tively. It seems that these EPSs had a binding ability to
cholesterol (Avci et al. 2020). The EPS of Limosilactoba-
cillus fermentum NCDC400 (EPS400) also showed high
cholesterol-lowering activity in in vitro study (90.32%)
(Gawande et al. 2021). One of the important properties of
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Table 4 (continued)
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Makino et al. (2006)
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INF-y, and augmenting natural killer cell

activity.

mice

OLL1073R1
(Acidic EPS with high molecular weight )

Lactobacillus fermentum L£2

Vitlic et al. (2019)

Enhanced cell proliferation and TNF-a

1.23x10° Da/HoPS  Peripheral blood mononuclear cells

production.

Matsuzaki et al. (2017)
Sims et al. (2011)

Enhanced mucosal IgA production

Ovalbumin-treated Wistar male mice

NR/HoPS

Leuconostoc mesenteroides strain NTM048

Enhanced proportions of regulatory T-cells

Lactobacillus-free mice

NR/HoPS

Lactobacillus reuteri strain 100—23

marked by expression of the transcription

factor Foxp3, and mitigated proinflamma-

tory T-cell responses in the spleen

NR Not reported

EPS produced by Leuconostoc mesenteroides LM187 was its
cholesterol-lowering capability with the rate of 53% (Zhang
et al. 2021a). The Feeding of mice with EPS-producing Lac-
tobacillus paracasei NFBC 338 and L. mucosae DPC 6426
reduced cholesterol levels in serum and liver (London et al.
2014). Several Lactobacillus species (Uyen et al. 2021)d
delbrueckii subsp. bulgaricus B3 (Tok and Aslim 2010) also
had cholesterol removal activity.

Sulfated EPS released from Synechocystis aquatilis
Sauvageau B90.79 showed anticoagulant and complement-
modulating activities (Volk et al. 2006). The EPS produced
by Alteromonas infernus after chemical modification of
sulfation and depolymerization found anticoagulant activ-
ity (Jouault et al. 2001). Lactobacillus plantarum HY7714
produces an EPS with skin anti-aging activity. This EPS by
the improvement of cytotoxicity induced by UVB and cel-
lular hydration capacity can repair skin damage (Lee et al.
2021; Shirzad et al. 2018), reported the anti-elastase, anti-
collagenase, antioxidant, and wound healing activities of
EPSs generated by some Lactobacilli, which are converted
into appropriate agents for skin anti-aging.

According to the conducted research, EPSs produced by
some marine bacteria through the induction of proliferation
and migration in fibroblasts and keratinocytes have wound-
healing activity. EPS produced by Alteromonas sp. PRIM-
28 (Sahana and Rekha 2019), Polaribacter sp. SM1127
(Sun et al. 2020), Pantoea sp. YU16-S3 (Sahana and Rekha
2020), and Lactiplantibacillus plantarum EI6 (Zaghloul and
Ibrahim 2022) are examples of bioactive molecules, which
can be used in wound-care products.

Improving the production and properties
of microbial EPS by genetic engineering

Bacterial species generally produce EPS through four well-
known mechanisms: the Wzx/Wzy- dependent pathway, the
ATP-binding cassette (ABC) transporter-dependent pathway,
the synthase-dependent pathway, and the extracellular syn-
thesis by use of a single sucrase protein (Rana and Upadhyay
2020; Schmid et al. 2015). In each of these pathways, several
enzyme-encoding genes take part in EPS biosynthesis. These
genes usually cluster within bacterial genomes or plasmids
(Schmid et al. 2015; Sun and Zhang 2021). Moreover, some
housekeeping genes, which have a role in the formation of
sugar nucleotides are important for EPS biosynthesis (Baj-
pai et al. 2016). By improving our knowledge about these
genes and their regulations, the yield and properties of EPS
can be altered through genetic engineering methods. Trans-
poson engineering, degenerate PCR, gene knockout, gene
overexpression, and gene editing by the CRISPR system can
be used for generating modified EPS with new biological
activities (Sun and Zhang 2021). Some successful research
in which EPS production or its properties improved is briefly
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Fig.5 Immunomodulatory activities of microbial EPSs

describes as follows. The yield of EPS in Streptococcus
thermophiles enhanced from 0.17 to 0.31 g/mol when galU
(UDP-glucose pyrophosphorylase) and pgmA (phosphoglu-
comutase) overexpressed simultaneously (Levander et al.
2002). By the overexpression of the nox gene in recombi-
nant Lactobacillus casei LC-nox, the yield of EPS by 75%
rising reached 263.7 mg/L in aerobic culture condition. nox
encodes NADH oxidase which is related to energy metabo-
lism and redox status (Li et al. 2015; Song et al. 2018), found
that by the overexpression of LC2W_2179, LC2W_2188,
and LC2W_2189 in L. casei LC2W the EPS production
increased 16, 10, and 18% compared to the wild-type strain.
The first gene encodes Glucose-1-phosphate thymidyltrans-
ferase and two other ones produce EPS synthesis proteins.
Diaz-Barrera et al. (2012), reported the relation between
alg8 (encoding the catalytic subunit of alginate polymerase)
expression and alginate polymerization in Azotobacter vine-
landii. Higher alg8 expression generates higher molecular
weight alginate. The mutant strain of A. vinelandii (ATCN4)
with inactive ngrE gene produced alginate with higher yield
and improved rheological properties. The product of ngrE is
a subunit of Na*-translocating NADH:ubiquinone oxidore-
ductase complex (Gayta'n et al. 2012). In another study, by
the coexpression of gumB and gumC (genes involved in xan-
than biosynthesis) in Xanthomonas campestris the viscosity
of xanthan was increased. It seems that GumB and GumC
control xanthan chain length (Galvén et al. 2013). Hassler
et al. (1990), also found that mutant strains of X. campestris
produced xanthan with various viscosity due to the variable
acetylation and pyruvylation levels, and the presence of dif-
ferent sugar residues at terminal side chains.

@ Springer

T cytotoxic '
cells Increasing antibody production and secretion

. J

Enhancement of tumoricidal activity

" & 8
/

Induction of \

proliferation

|
\ !
“=2

Conclusion

Microbial EPSs display great diversity. They are multi-
functional carbohydrates with considerable health-improv-
ing potential. Recent investigations have revealed the great
health improving properties of microbial EPS in industries
that may be related to their novel and distinct properties
compared to polysaccharides obtained from other natural
sources. Now, a large proportion of commercially-avail-
able EPSs are derived from microorganisms. The main
benefit of microbial EPSs is the adjustable chemical com-
position and structure, which demonstrates their specific
usage in pharmaceutical and medical fields. This review
points that microbial EPSs can be considered promising
alternatives to chemicals likes chemical antibiotics, anti-
oxidants, anticancer, antiviral and antifungal drugs. Micro-
bial EPSs are nontoxic, biocompatible, thermally stable
and biodegradable molecules. By applying antibacterial or
antifungal EPSs, the antagonistic activity of normal flora
against pathogens which is likely to be lost in antibiotic
treatment is maintained. Also, microbial EPSs owning to
reduced adverse effects, and immune-stimulating activities
may be considered safe alternatives to synthetic anticancer
drugs. Moreover, EPSs are considered promising green
substitutes for synthetic antioxidants because they partici-
pate in the removal of oxidative stress through scavenging
various free radicals, suppression of lipid peroxidation,
reducing metal ion chelating activity, and promoting enzy-
matic and nonenzymatic antioxidant activities. As it was
presented physicochemical characteristics of EPSs, includ-
ing molecular weight, branching degree, monosaccharide
composition, glycosidic bonds, electric charge, and func-
tional groups influence on their functional behavior.
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The study of structure-function relationship could result
in smart chemical modification of discovered EPSs to have
improved bioactivities or targeted screening and isolation
of the microbial EPSs with desired bioactivity in the near
future.

Therefore, finding microbial EPSs with suitable chemi-
cal architecture through screening studies from unexplored
ecosystems, imposing chemical modifications or genetic
and metabolic engineering could facilitate obtaining a bio-
active polymer to be applied in cosmetics, medical, food
products, textiles, pharmaceutical, agricultural and other
types of industrial sectors. This study reviewed the studies
conducted on microbial EPSs along with their microbial
sources, physicochemical properties with particular atten-
tion to bioactivities, and their mode actions to provide
a platform for researchers to identify the relationship of
structure properties to bioactivities.

However, there are contradictions about the effects of
these properties on various EPS’s bioactivities. This could
be related to different in vivo and in vitro models used to
evaluate biological activities as well as the lack of com-
prehensive knowledge on all microbial EPS structures.
Therefore, more studies should be performed to explore
the mechanism behind EPS’s bioactivities.
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