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Abstract
The utilisation of water hyacinth for production of biogas is considered to be a solution to both its control and the global 
renewable energy challenge. In this instance, an investigation was conducted to evaluate the potential of water hyacinth 
inoculum to enhance methane production during anaerobic digestion (AD). Chopped whole water hyacinth (10% (w/v)) was 
digested to prepare an inoculum consisting mainly of water hyacinth indigenous microbes. The inoculum was incorporated 
in the AD of freshly chopped whole water hyacinth to set up different ratios of water hyacinth inoculum and water hyacinth 
mixture with appropriate controls. The results of batch tests with water hyacinth inoculum showed a maximal cumulative 
volume of 211.67 ml of methane after 29 days of AD as opposed to 88.6 ml of methane generated from the control treatment 
without inoculum. In addition to improving methane production, inclusion of water hyacinth inoculum reduced the electrical 
conductivity (EC) values of the resultant digestate, and, amplification of nifH and phoD genes in the digestate accentuates 
it as a potential soil ameliorant. This study provides an insight into the potential of water hyacinth inoculum to enhance 
methane production and contribute to the feasibility of the digestate as a soil fertility enhancer.
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Introduction

Recent studies have been conducted on the efficiency 
of lignocellulosic substrates in the production of biogas 
(Martínez-Gutiérrez 2018; Ferraro et al. 2020; Kumar et al. 
2020). Such substrates include bamboo wastes (Shen et al. 
2014), oil palm mesocarp (Saidu et al. 2014), olive wastes 
and citrus pulp (Panuccio et al. 2016), corn stover (Schroyen 

et al. 2014), napier grass (Lianhua et al. 2014) and water 
hyacinth (Lin et al. 2015; Nkuna et al. 2019), amongst oth-
ers. These substrates were selected for anaerobic digestion 
(AD) to produce biogas based on their chemical composi-
tion, wide availability and the challenges they pose on the 
environment (Shenoy et al. 2022). In addition to the afore-
mentioned qualities, low lignin content of water hyacinth and 
its possession of plants’ essential nutrients make it a suitable 
substrate for efficient production of biogas and soil amelio-
rant (Njogu et al. 2021; Barua and Kalamdhad 2019). The 
use of water hyacinth to generate biogas is an eco-friendly 
and innovative means of managing this intrusive aquatic 
weed (Roopnarain et al. 2019). Water hyacinth is a menace 
in the aquatic environments as its rapid proliferation hinders 
many biological and socioeconomic activities where they are 
resident (Honlah et al. 2019). These activities range from 
the reduction in the level of dissolved oxygen in the water, 
hindrance of photosynthetic activities of submerged plants to 
obstruction of recreational/economic activities in the aquatic 
environments (Njogu et al. 2021). Besides its wide availabil-
ity due to its high proliferation capability, water hyacinth’s 
elevated cellulose and hemicellulose content as well as low 
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lignin composition contributes to its prospect as a substrate 
for the production of biogas (Sindhu et al. 2017). However, 
the inaccessibility of the lignocellulosic portion of water 
hyacinth to microorganisms makes its biodegradation a 
challenge (Sarto et al. 2019). To enhance the bioavailability 
of the lignocellulosic portion of the hyacinth and improve 
enzymatic hydrolysis (microbial degradability), additional 
steps such as pretreatment and inoculum addition are often 
required during the AD process for increased biogas pro-
duction (Achinas et al. 2019). Nevertheless, the ecological 
sustainability of some pretreatment techniques on lignocel-
lulosic materials is still a challenge. Pretreatment methods 
that involve high pressure and heat application as well as the 
use of oxidizing agents lead to high energy consumption, 
and accumulation of salts in the digesters which could nega-
tively impact methanogenic activities (Yu et al. 2018; Chen 
et al. 2020). In addition to microbial community stability, 
incorporation of inoculum during the metabolic process of 
AD is an efficient technique as the inoculum enhances the 
degradation of substrate through improved enzyme activi-
ties (Dennis 2015). Several studies have been conducted on 
the relevance of water hyacinth for the production of biogas 
(Etta et al. 2017; Barua et al. 2019; Kunatsa et al. 2020; 
Unpaprom et al. 2021). However, the use of water hyacinth 
as a potential inoculum to enhance biogas production is yet 
to be investigated. A study that reported that biogas-produc-
ing microorganisms are innately linked to water hyacinth 
harvested from the Hartbeespoort dam in South Africa moti-
vated the investigation into the potential of these microor-
ganisms as an inoculum (Roopnarain et al. 2019).

Another significant part of AD of water hyacinth is the 
digestate. The digestate from anaerobic digesters is an envi-
ronmentally friendly semi-liquid by-product which contains 
some plant growth promoting macro and micronutrients sug-
gesting the prospective of the digestate to serve as a soil 
ameliorant (Sindhu et al. 2017). The digestate also contains 
live cells of different plant growth promoting microbial 
strains that could assist in improving plant health (Barua 
and Kalamdhad 2019; Risberg et al. 2017). Microorganisms 
resident in anaerobic digesters have been associated with the 
promotion of plant development and growth through sidero-
phores and phytohormone production, solubilization of 
insoluble phosphate, zinc and potassium as well as fixing of 
atmospheric nitrogen (Souza et al. 2015; Khan et al. 2016). 
These microbes known as plant growth promoting microor-
ganisms (PGPM) are capable of improving nutrient acquisi-
tion as well as metabolism and physiological processes in 
plants thus enhancing plant productivity (Liu et al. 2010; 
Adeleke et al. 2019). From the aforementioned reasons, soil 
ameliorants are promising alternatives to chemical ferti-
lizers, which are associated with environmental pollution 
(Mukhuba et al. 2018). Studies have also portrayed the ben-
eficial effect of the resultant effluent from the AD of water 

hyacinth as a soil ameliorant (Arutselvy et al. 2021; Ramirez 
et al. 2021; Unpaprom et al. 2021). However, digestate from 
the AD of water hyacinth that are potential soil ameliorants 
may contain trace amounts of heavy metals and other salts. 
This may occur as a result of water hyacinth being able to 
absorb and accumulate some other organic pollutants includ-
ing heavy metals from polluted aquatic environment where 
they thrive (Mudhoo and Kumar 2013; Jones et al. 2018). 
The Hartbeespoort Dam based in South Africa is an example 
of a polluted aquatic ecosystem where extensive prolifera-
tion of water hyacinth is a problem. The dam is hypertrophic 
due to the discharge of agricultural, domestic, and indus-
trial effluents (Atta et al. 2020). Water hyacinth, a known 
phytoremediation agent due to its high absorptive capacity, 
could contribute to the electrical conductivity (EC) values of 
digestate from AD of water hyacinth (Safauldeen et al. 2019; 
Peng et al. 2020). Decomposition of organic matter such 
as water hyacinth could potentially increase the salts and 
ions in the resultant effluent (Carmo et al. 2016). Applica-
tion of such digestate as soil ameliorant could result in high 
EC values of soil leading to low crop productivity as EC is 
an indicator of soil health (Husson et al. 2018). Neverthe-
less, plants require some of these heavy metals at acceptable 
levels/concentrations for growth and productivity (Romero-
Güiza et al. 2016). In addition, the presence of PGPM in 
the soil ameliorant has been known to alleviate the harmful 
effects of heavy metals on plants (Hassan et al. 2017). This 
study aims to ascertain the potential of inoculum derived 
from AD of water hyacinth to enhance methane production 
as well as the ideal mixing ratio of pre-treated water hyacinth 
and water hyacinth inoculum for optimal methane produc-
tion. The study also hypothesizes the potential of digestate 
from AD of water hyacinth from the Hartbeespoort dam as 
soil ameliorant.

Materials and methods

Sampling

Permission to collect and utilize water hyacinth was granted 
by the Department of Environmental Affairs, South Africa 
(permit numbers 5086577918 and 5086577921). Water hya-
cinth (substrate) was wholly harvested from the Hartbee-
spoort dam that is situated in Madibeng district of the North 
West province of South Africa (25° 44ʹ 51ʺ S 27° 52ʹ 1ʺ E). 
The substrate which includes the leaves, stems and roots was 
transported in sterile storage containers to the Biogas labo-
ratory at the Agricultural Research Council—Soil, Climate 
and Water, Pretoria, South Africa where it was pre-treated 
by cutting into small sizes of 2 cm × 2 cm prior to analysis.
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Experimental set‑up

The substrate whole water hyacinth was characterized for 
physico-chemical properties which include dry matter, heavy 
metals, phosphorus, potassium, ammonium content, total 
solids (TS), volatile solids (VS), ash and pH using standard 
methods (APHA 2017). Concentrated acid digestion method 
(CADM) with Inductively Coupled Plasma Mass Spectrom-
etry (ICP-MS) was used to quantify heavy metals concentra-
tion (Mukhuba et al. 2018). Bray 1 method was employed 
in extracting available phosphorus which was further ana-
lysed using a spectrophotometer (Mukhongo et al. 2017). 
The total solids (TS) and volatile solids (VS) content of the 
plant evaluated by oven drying samples at 105 °C for 24 h 
and combustion of dried samples at 550 °C for 6 h in a muf-
fle furnace respectively (APHA 2017). Additional compo-
sitional analysis of the substrate include cellulose, hemicel-
lulose, and lignin analyses of the substrate which was based 
on the Neutral Detergent Fiber (NDF), Acid Detergent Fiber 
(ADF), and Acid Detergent Lignin (ADL) composition of 
freeze-dried substrates (Van Soest et al. 1991; Hindrichsen 
et al. 2006).

Water hyacinth inoculum (whinc) was generated by AD 
of 10% (w/v) of freshly chopped whole water hyacinth (Wh) 
under rotatory incubation at 30 °C and 120 revolutions per 
minute (rpm) for 2 weeks. Freshly chopped Wh was mixed 
with the whinc in various ratios in 500 ml Schott glass bot-
tles equipped with screw caps containing septa. All the mix-
ing ratios including the quantity of Wh and whinc as shown 
on Table 1 had the same TS (2%). The volume of each of the 
treatments was bulked to 250 ml with tap water.

Water hyacinth was also digested without added water or 
water hyacinth inoculum in a separate treatment. This treat-
ment was set up to evaluate the dry digestion of water hya-
cinth since the plant is constituted primarily of water. The 
nutrient and heavy metal composition of this treatment was 
not assessed due to significant reduction in the quantity of 
digestate. None of the treatments were purged with nitrogen 
gas prior to digestion. Treatments were set up in triplicate 

with appropriate controls. These treatments were digested 
as batch cultures until reduced CH4 and CO2 production was 
observed due to substrate depletion (29 days). The cultures 
were kept at 30 °C and 120 rpm (revolutions per minute) 
and biomethane production was monitored by means of Gas 
chromatography (GC) (SR1 8610C, CHROMPEC, Canada). 
The gas chromatograph was fitted with a thermal conductiv-
ity detector (TCD) and HayeSep D packed column for the 
analysis. With reference flow of 20 ml per minute and make 
up flow of Helium carrier gas at 10 ml/min, Temperature 
of the TCD was set at 155 °C. Initial oven temperature was 
set at 50 °C and held for 4 min, initial ramp temperature of 
20 °C and final temperature of 220 °C. Two milliliter ali-
quots of gas was sampled from the headspace of the batch 
culture bottles by means of a gas tight syringe with Luer lock 
valve (SGE 10MDR-VLLMA-GT). The aliquot was injected 
into the GC for analysis of biogas composition (CH4 and 
CO2) at 3 day intervals. After 29 days of AD, the digestate 
produced was analysed for heavy metals and pH using stand-
ard methods for the examination of Water and Wastewater 
(APHA 2017) and a pH meter (Adwa AD1030) respectively.

The feedstock and digestate from different mixing ratios 
were characterised for heavy metals, phosphorus, potassium 
and ammonium content using the previously mentioned 
methods above. All physico-chemical analyses were done 
by the analytical laboratory of the Agricultural Research 
Council-Soil, Climate and Water, Pretoria, and Agricultural 
Research Council—Animal Production, Irene, South Africa.

Microbial analysis

Identification of plant growth promoting genes

One millilitre of homogenised sample of the digestate was 
centrifuged at 10,000×g for 5 min to concentrate the sam-
ple. Genomic DNA was isolated from the pellet using the 
DNeasy PowerSoil extraction kit according to manufactur-
er’s protocol (Adeleke et al. 2010). Quantification of isolated 
DNA was executed with Qubit 2.0 Fluorometer (Invitrogen, 
Life Technologies, South Africa) and DNA extracts were 
stored at a temperature of −20 °C for further downstream 
applications (Roopnarain et al. 2017). The ability of the 
digestate to promote plant growth was ascertained by target-
ing the nifH gene for nitrogen fixation and the phoD gene for 
phosphate solubilisation using Polymerase Chain Reaction 
(PCR). The nifH gene was targeted with specific primers 
PolF (5′-TGC GAY CCS AAR GCB GAC TC-3′) and PolR 
(5′-ATS GCC ATC ATY TCR CCG GA-3′) (Qin et al. 2014; 
Niu et al. 2018). The phoD gene was targeted with ALPS-
F730 (5′ CAG TGG GAC GAC CAC GAG GT-3′) and 
ALPS-R1101 (5′-GAG GCC GAT CGG CAT GTC G-3′) 
primers (Sakurai et al. 2008; Fraser et al. 2017). Amplifica-
tion reaction mix of 25 µl was prepared and it consisted of 

Table 1   Experimental design of the batch culture for biogas produc-
tion from bioaugmentated water hyacinth

Treatments 
nos.

Ratio of Wh:whinc Quantity of 
Wh (g)

Quantity of 
whinc (ml)

1 Wh:whinc 1:1 50 50
2 Wh:whinc 1:2 33.35 66.65
3 Wh:whinc 1:4 20 80
4 Wh:whinc 4:1 80 20
5 Wh:whinc 2:1 66.65 33.35
6 Wh:whinc 1:0 (control) – 100
7 Wh:whinc 0:1 (control) 100 –
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12.5 µl of One Taq 2 × Master Mix with standard buffer, 
0.5 µl (10 µM) of each of the primers, 3 µl of DNA template 
and 8.5 µl of sterile distilled water. The reaction mix was 
preheated to 94 °C for 30 s in a BIORAD T100™ Thermal 
Cycle. Thirty cycles were run at 94 °C, 30 s; 55 °C, 1 min; 
68 °C, 1 min and elongation followed at 68 °C for 5 min. The 
same amplification and cycling conditions were used for the 
amplification of the phoD genes but the annealing tempera-
ture was set at 57 °C for 1 min. Amplicon sizes and quality 
were verified by agarose gel electrophoresis and amplicons 
were preserved at −20 °C ( Obi et al. 2020).

Identification of bacterial isolates

Bacterial isolates obtained from the water hyacinth inoculum 
through cultivation on nutrient agar at 30 °C for 24 h were 
identified based on the partial sequence of 16S rRNA gene 
via colony polymerase chain reaction (colony PCR) with 
universal bacterial primer set, 27F and 1492R (annealing 
temperature = 53 °C for 1 min) (Obi et al. 2016). Ampli-
cons were purified and sequenced at Inqaba Biotechnical 
Industries (Pty) Ltd South Africa using the genetic ana-
lyzer. Sequence chromatograms were manually edited and 
analyzed using BioEdit and ClustalW software. Sequences 
were identified based on their closest species using the 
Basic Local Alignment Search Tool (BLAST) program of 
the National Centre for Biotechnology Information (NCBI).

The partial 16S rRNA gene sequences in this study 
are obtainable at the Genbank database under the Acces-
sion Numbers MK104459, MK104463, MK104466 and 
MK104469.

Kinetic study

The modified Gompertz model was used to evaluate the 
water hyacinth inoculum potential (Ware and Power 2017; 
Barua et al. 2019). Application of the model was due to 
its extensive range of applications in methane production. 
Measured cumulative methane production was used to evalu-
ate the Gompertz model equation:

where Y is the cumulative specific methane production (ml) 
at time t (days); M represents the maximum methane pro-
duction (mlCH4), Rm is the maximum specific rate of meth-
ane production (mlCH4d−1); e is a constant (2.71) while λ 
represents the lag phase in days. Predicted methane values 
were plotted against experimental methane values for the 
determination of a graphic fitting curve. Correlation of the 
predicted values to the experimental values was established 
by obtaining the R2 value.

(1)Y = M ⋅ exp
{

−exp
[

Rm ⋅ e

M
(λ − t) + 1

]}

Statistical analysis

Data generated in this study was compared using one-way 
analysis of variance (ANOVA) to determine significance 
level at P ≤ 0.05. This was to estimate significant differences 
among the experimental treatments in terms of methane pro-
duction. A post-hoc test was conducted with Tukey HSD 
(Honestly significant difference) to identify treatment pairs 
that differ significantly. Statistical software, SAS version 
9.4 statistical software (SAS 1999) was used to conduct the 
statistical analysis.

Results

The compositional analysis of water hyacinth (Table 2) 
shows its elevated moisture and carbohydrate content. 
The substrate is rich in cellulose and hemicellulose but 
low in lignin. The existence of macroelements, N, P and K 
(Table 2) further confirms its potential utilization as a soil 
ameliorant for plant growth promotion. Analysis of water 
hyacinth inoculum displayed the reduction of the majority 
of the outlined properties (Table 2) when compared with 
fresh water hyacinth.

Most treatments with different mixing ratios of Wh and 
whinc began producing significant methane on the 7th 
day of AD and methane production increased with time 
(Fig. 1). All treatments excluding Wh:whinc 2:1 and Wh 
without water recorded no additional methane after day 
23. Treatment without whinc produced the least amount 

Table 2   Compositional analysis of water hyacinth and water hyacinth 
inoculum

a Not available

Properties Water hyacinth 
(Quantity)

Water hyacinth 
inoculum  
(Quantity)

Dry matter (%) 5.97 ± 0.32 0.31 ± 0.3
Ash (%) 0.96 ± 0.28 0.02 ± 0.11
Protein (%) 1.14 ± 0.45 0.05 ± 0.24
Fat (ether extraction) (%) 0.18 ± 0.29 0.01 ± 0.59
Carbohydrates (%) 3.69 ± 1.13 0.23 ± 1.05
NDF (%) 3.34 ± 0.7 0.22 ± 0.34
ADF (%) 0.68 ± 1.3 0.11 ± 0.87
ADL (%) 0.21 ± 0.7 0.01 ± 0.36
Cellulose (%) 0.47 ± 0.82 a

Nitrogen (g/kg) 2.49 ± 1.10 0.348 ± 0.94
Potassium (g/kg) 4.44 ± 0.43 0.491 ± 1.10
Phosphorus (g/kg) 5.02 ± 0.35 0.049 ± 0.2
Carbon/nitrogen (C/N) 14.5 1.6
pH 8.11 ± 0.34 5.14 ± 0.07
Electrical conductivity (mS/m) 1087 ± 1.2 271 ± 0.4
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of methane all through the AD period. The ANOVA test 
for methane production suggested significant variations 
(P < 0.05) among some of the treatments and the post hoc 
test (Tukeys) revealed that differences existed between treat-
ments Wh:whinc 4:1 and Wh:whinc 1:0; Wh:whinc 1:2 and 
Wh:whinc 1:0; Wh:whinc 2:1 and Wh:whinc 1:0. However, 
no significant difference was spotted between treatment 
Wh:whinc 4:1 and other treatments. Significant differences 
existed between treatments Wh:whinc 1:0 and other treat-
ments excluding Wh:whinc 0:1 and treatment without water. 
Treatment Wh:whinc 4:1 portrayed the maximal cumula-
tive methane (0.21 L), next were treatments Wh:whinc 1:2, 
Wh:whinc 2:1 and Wh:whinc 1:4 with 0.20 L, 0.19 L and 
0.19 L of cumulative methane respectively. However, no sig-
nificant difference existed among the aforementioned treat-
ments with regards to methane production during the batch 
tests. Biogas composition (CH4 and CO2) of the different 
mixing ratios after digestion are reported in the supporting 
information (Table 6).

Incorporation of water hyacinth inoculum as a co-sub-
strate did not display significant effects on the pH of dif-
ferent mixing ratios both before and after AD (Table 3). 
The metabolic process of AD was stabilized based on the 
increased pH of the system and elevated pH values were 
observed in all the treatments after AD (Table 3). The pH of 
all mixing ratios ranged between 5.09 and 5.53 before AD 
and increased up to 8 after AD. The electrical conductivity 
(EC) values of the resulting digestate as described in Table 4 
showed decreased EC values in treatments with more whinc.

The result presented on Figs. 2, 3 and 4 all suggested the 
effect of AD on the macroelements of the anaerobic digest-
ers. Anaerobic digestion improved the nitrogen content of 
treatments in the form of ammonium as shown in Fig. 2 

as significant increase in ammonium concentrations was 
observed after AD across treatments. Treatments Wh:whinc 
1:1, Wh:whinc 4:1, Wh:whinc 2:1 and Wh:whinc 1:0 

Fig. 1   Cumulative methane 
produced from AD of various 
ratios of water hyacinth and 
water hyacinth inoculum. Error 
bars represent standard devia-
tion (n = 3)
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Table 3   pH values of the treatments before and after digestion

pH values (before digestion and after digestion) with the same letters 
are not significantly different (P > 0.05)

Treatments Before digestion After digestion

Wh:whinc 1:1 5.09 ± 0.04a 6.16 ± 0.03a

Wh:whinc 1:2 5.11 ± 0.03a 7.52 ± 0.01ef

Wh:whinc 1:4 5.21 ± 0.01a 7.15 ± 0.04b

Wh:whinc 1:0 5.15 ± 0.04a 7.48 ± 0.00eg

Wh:whinc 0:1 5.14 ± 0.00a 7.76 ± 0.01c

Wh:whinc 4:1 5.19 ± 0.03a 7.59 ± 0.06 fg

Wh:whinc 2:1 5.53 ± 0.04b 8.52 ± 0.01d

Table 4   Electrical conductivity (EC) of digestates from wh:whinc 
treatments

EC values with the same letters are not significantly different (P > 
0.05)

Treatments Electrical 
conductivity 
(mS/m)

Wh:whinc 1:1 1750 ± 0.24a

Wh:whinc 1:2 232 ± 0.3b

Wh:whinc 1:4 243 ± 1.7b

Wh:whinc 1:0 1268 ± 0.4a

Wh:whinc 0:1 278 ± 0.54b

Wh:whinc 4:1 1379 ± 2.7a

Wh:whinc 2:1 1832 ± 0.55a
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doubled their ammonium content after AD (Fig. 2). How-
ever, the reverse was the case for phosphorus and potassium 
as their concentrations were reduced after AD (Figs. 3, 4). 
The phosphorus content of treatment Wh:whinc 1:0 signifi-
cantly decreased after AD by 85%. Significant differences 
existed across treatments (P < 0.05) before and after AD 
indicating the effects of AD and ratio variations. Compar-
ison of the mixing ratios with regards to P concentration 
revealed high levels of P in undigested water hyacinth sug-
gesting the effects of AD on the P content of water hyacinth. 
A decreasing trend in K content of the treatments after AD 
was observed (Fig. 3). Higher percentage reduction of K 
concentration was detected in treatments Wh:whinc 1:4 and 

Wh:whinc 0:1. Treatments Wh:whinc 1:0 and Wh:whinc 0:1 
suggested high content of K in undigested water hyacinth 
and the impact of AD on K content of water hyacinth.

The concentrations of heavy metals identified in all mix-
ing ratios of the digestate were low as depicted in Fig. 5. The 
presence of these metals reflects the heavy metal contamina-
tion of the aquatic environment (freshwater ecosystem of the 
Hartbeespoort dam) where the water hyacinth was harvested. 
The concentration of heavy metals identified in the digestate 
met the required standard for fertilizers according to the Fer-
tiliser regulations in South Africa (DAFF 2012; Mukhuba 
et al. 2018). Detection of distinct bands after PCR agarose 

Fig. 2   Ammonium content of 
the treatments before and after 
digestion. Error bars represent 
standard deviation (n = 3)

0

0.5

1

1.5

2

2.5

3

3.5

Wh:whinc
1:1

Wh:whinc
1:2

Wh:whinc
1:4

Wh:whinc
4:1

Wh:whinc
2:1

Wh:whinc
1:0

Wh:whinc
0:1

NH4+ (Before AD) NH4+ (After AD)

Treatments

N
H

4+
(g
/k
g)

Fig. 3   Potassium content of 
the treatments before and after 
digestion. Error bars represent 
standard deviation (n = 3)
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Fig. 4   Phosphorus content of 
the treatments before and after 
digestion. Error bars represent 
standard deviation (n = 3)
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Fig. 5   Heavy metals present in 
the digestate. Error bars repre-
sent standard deviation (n = 3)
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gel electrophoresis (see Figs. 6, 7 in supporting information) 
confirmed the amplification of the nifH and phoD genes with 
amplicon sizes of 360 bp and 370 bp respectively. Analysis 
of the 16S rRNA gene sequences identified the organisms 
as Pseudomonas stutzeri, Bacillus subtilis, Bacillus pumilus, 
and Bacillus cereus.

Kinetic study

Table 5 sums up the outcome of the kinetic study and the 
Gompertz model fitted the experimental data (Fig. 6). The 
value of R2 measured above 0.95, which showed the poten-
tial modelling of methane production. However, R2 value has 
been reported to not essentially specify exact suitability of 
the experimental data (Ware and Power 2017).

Discussions

Water hyacinth’s suitability as a substrate for biogas pro-
duction stems from its chemical composition of high mois-
ture and carbohydrate content as well as association of the 
substrate with microbial entities that are capable of meth-
anogenic activities (Sindhu et al. 2017; Roopnarain et al. 
2019). However, some factors could limit methane produc-
tion during AD of water hyacinth. These factors range from 
unavailability of essential microorganisms to facilitate the 
different phases of AD and the lignocellulosic nature of the 
substrate, to physico-chemical factors which include oxy-
gen content, ammonia content, temperature, pH as well as 
C/N ratio of the substrate (Rezania et al. 2017; Yang et al. 
2019). Efficient AD process has been reported to be in the 
optimal C/N ratio of 20 – 35 (Bhatt and Tao 2020) and the 
physico-chemical characterization of water hyacinth used 
in this study, as depicted in Table 1, shows low C/N ratio, 
which possibly did not favor methane production. The low 
bioavailability of the insoluble organic polymeric portions 
(cellulose and lignin) of the substrate affected hydrolysis as 
the rate-limiting step of AD of such substrates (Tsapekos 
et al. 2017). These organic polymers require the actions of 
extracellular enzymes to be split into simpler components for 
subsequent metabolism. Secretion of these enzymes is car-
ried out by microorganisms which are mostly obligate anaer-
obes that are possibly resident in the digesters (Campanaro 
et al. 2016). The aforementioned suboptimal conditions 

of the physico-chemical factors possibly affected micro-
bial activities during AD and could have affected methane 
production. Indigenous microorganisms of water hyacinth 
inoculum were employed in the metabolic process of meth-
ane and soil ameliorant production to minimize the risk of 
introducing pathogenic microorganisms that could come 
from various sources of conventional inoculums.

Delayed methane production was observed in some treat-
ments during the course of this study, which could be attrib-
uted to prolonged acclimatization, or low concentration of 
microorganisms such as methanogens, which are essential 
for methane production. Although the initial concentration 
of methane was low due to not purging the treatments with 
nitrogen gas to create anaerobic environment as elevated 
levels of oxygen may impede the proliferation of methano-
gens. This challenge only lasted for a short period when the 
microbes were acclimatizing to the environment, especially 
the methanogens. Production of methane from the treatments 
suggests the reduction of the solid fractions, possibly the 
cellulosic fractions of the substrates. This specifies the meta-
bolic potential of the indigenous microbial entities and their 
ability to utilize available nutrients/organic matter to gener-
ate methane (Hassan et al. 2017). The significant reduction 
in methane produced from the control treatment (without 
water hyacinth inoculum) portrays the beneficial effects of 
water hyacinth inoculum in enhancing methane production 
as inoculum has been known to host various microorganisms 
that are favourable to biomethane production (Strang et al. 
2017; Rajput and Sheikh 2019). Increased methane produc-
tion with time in all the treatments shows the relevance of 
whinc as a co-substrate, treatments without whinc produced 
the least amount of methane during AD (Fig. 1). Aside from 
the controls (Wh:whinc 1:0 and Wh:whinc 0:1), treatment 
Wh:whinc 1:1 produced the least methane and highest 
ammonia content after AD. This reduced volume of pro-
duced methane could be attributed to the inhibitory effect of 
accumulated ammonia in the digesters (Fig. 2), which prob-
ably was due to the mineralization of the abundant nitrogen 
content of the primary substrate, water hyacinth (Chen et al. 
2016; Varanasi et al. 2018). The metabolic process of AD 
of water hyacinth with whinc enhanced the generation of 
ammonia from different nitrogen sources in the substrate 
such as protein, amino acids, urea etc. (Omondi et al. 2019). 
The presence of large amounts of digestible substrates in 
treatment Wh:whinc 4:1 prompted the potential production 
of optimal methane. Utilization of more water hyacinth con-
tributed to increased concentration of mineralised nitrogen, 
ammonium as treatments Wh:whinc 1:1, Wh:whinc 4:1, 
Wh:whinc 2:1 and Wh:whinc 1:0 doubled their ammonium 
content after AD (Fig. 2). The accumulated ammonia is 
suggested to have limited the growth of potential microbial 
consortia thereby constraining methane production in some 
of the treatments (Shi et al. 2017). When compared with the 

Table 5   Kinetic features of water hyacinth inoculum used in this 
study

Substrate M (mlCH4) Rm (mlCH4d−1) λ (days) R2

Water hyacinth 
inoculum

140 26 2 0.995
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results of previous studies on AD of water hyacinth with 
dung inoculum, this study recorded a lower methane pro-
duction (Tasnim et al. 2017). Reports by Westerholm et al. 
(2018) and Zhang et al. (2022) similarly confirm the detri-
mental impact of ammonia on synthrophic acetate oxidiz-
ing bacteria during AD. Additionally, exclusion of foreign 
microbes such as those found in cow dung inoculum in the 
digesters could have also contributed to reduced methane 
production, due to inefficiency of the indigenous microbial 
community of water hyacinth inoculum to improve methane 
production (Horváth et al. 2016).

High moisture content of inoculum has been reported 
to improve the mixing efficiency of digesters and meta-
bolic activities of indigenous microorganisms, which could 
enhance the metabolic process of AD (Mir et al. 2016; 
Muthudineshkumar and Anand 2019). The importance of 
moisture in AD cannot be overemphasized as a part of this 
study exhibited the beneficial effect of moisture on methane 
production. Less methane production was observed in the 
treatment that was digested without water or water hyacinth 
inoculum (Fig. 1). Moisture played a vital role in enhancing 
the dissolution and digestion of the substrate (Guna et al. 
2017). Nonetheless, the need to conserve water is impera-
tive as water is fast becoming a scarce commodity attribut-
able to global population growth and changes in climatic 
conditions (Flörke et al. 2018). Methane is produced by 
anaerobic methanogens, which are very sensitive to changes 
in environmental conditions such as pH and temperature. 
Optimal activity of methanogens in previous studies has 
been recorded at pH 6.5–7.5 and this supports the results 
of this study where the pH of most of the treatments (diges-
tate) was in an optimal range that supported the growth of 
methanogens suggesting stability of the AD process (Rozy 
et al. 2017; Cerón-Vivas et al. 2019). Increased pH relates to 
accumulated ammonium, however, the presence of accumu-
lated ammonia in the digesters though toxic to methanogens, 
further supports the utilization of the resultant digestate as 
a soil ameliorant (Zhang et al. 2017; Adeleke et al. 2019). 
Incorporation of whinc during AD promoted the phosphorus 
content of the digesters considering that treatments without 
whinc had the least content of P after AD. This study also 
suggested activation of P solubilization by AD (Liu et al. 
2019). Despite the fact that no effect of AD on P solubility 
was recorded by Bachmann et al. (2016) during AD, low 
concentrations of phosphorus observed in the digestate in 
this study could be due to the transformation of phospho-
rus to various forms of inorganic compounds during AD 
which could be attributed to the pH of the digesters’ content 
(Wu et al. 2019, 2021; Li et al. 2020). Such inorganic com-
pounds include struvite, MgNH4PO4·6H2O, hydroxyapatite, 
Ca5(PO4)3(OH) and vivianite, Fe++3(PO4)2·8(H2O). They are 
known as slow release sources of phosphate to plants; their 
insolubility decreases their loss during leaching when the 

digestate is applied as a soil ameliorant (Bachmann et al. 
2016; Taşkın et al. 2018). Significant reduction of P and K 
after AD as observed in Figs. 3 and 4 could also be related 
to the ability of the high organic content feedstock to provide 
a favorable environment for the proliferation of microorgan-
isms as the growth of anaerobic microorganisms depends 
on the availability of macro-nutrients such as P and K, as 
well as several other inorganic elements that act as micro-
nutrients. This conforms to the study of Sawatdeenarunat 
et al. (2018).

The capacity of water hyacinth to absorb heavy metals 
and salts in its natural habitat has been related to its phytore-
mediation abilities (Sidek et al. 2018; Nazir et al. 2020). The 
stimulatory effect of heavy metals on the metabolic potential 
of indigenous microorganisms to produce methane has been 
investigated (Zupančič and Grilc 2012; Romero-Güiza et al. 
2016). These metals are beneficial to the microorganisms 
at certain concentrations and the concentrations of heavy 
metals identified in the digestate met the required standard 
for fertilizers according to the Fertiliser regulations in South 
Africa (DAFF 2012; Mukhuba et al. 2018). This observa-
tion further explains the prospective use of the digestate as 
a soil ameliorant. Heavy metals such as iron, zinc, manga-
nese, copper and nickel which were present in the digestate 
have been associated with plant growth and productivity 
while arsenic, chromium, aluminium, cadmium are toxic to 
plants above selected concentrations (Hassan et al. 2017). 
The environmental condition of the aquatic ecosystem led to 
high electrical conductivity (EC) of sampled water hyacinth. 
The EC level of the substrate is an indication of its salinity 
and Chen et al. (2020) reported the absolute obstruction of 
methanogenesis at salinity of > 3000 mS/m, however, the 
present study reports minimum and maximum EC values of 
the treatments as 232 mS/m and 1832 mS/m respectively, 
thus signifying metabolism in all treatments. Digestate 
resulting from treatments with high concentration of water 
hyacinth had high EC values (Table 4) and high EC values 
of digestate treatments which also relates to high ion con-
centration has been previously linked to high concentration 
of water hyacinth (Piccoli et al. 2021). This suggests that EC 
of anaerobic digestate is a function of EC of the substrates 
prior to AD. Optimal EC levels for some plants ranges from 
150 to 250 mS/m and high EC levels have been recorded to 
interfere with plants ability to absorb nutrients while very 
low EC could affect productivity (Sharma et al. 2018).

Detection of distinct bands after PCR agarose gel elec-
trophoresis of the nifH genes (360 base pairs) as well as 
the phoD genes (370 base pairs) in the digestate samples 
signifies amplification of genes of interest. Amplification 
of phoD genes in digestate samples signify the presence of 
phosphate solubilising microorganisms that are capable of 
producing the enzyme, alkaline phosphatase (Zimmerman 
et al. 2013; Fraser et al. 2015). The phoD gene is one of 
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three homologous genes that encode the enzymes, alkaline 
phosphatase. These enzyme catalyses the mineralisation of 
organic phosphate to a form of phosphate (ortophosphate) 
that is accessible to plants in order to support their growth 
(Bergkemper et al. 2016; Raimi et al. 2017). The presence 
of the nifH genes indicates the existence of nitrogen fix-
ing microorganisms in the digestate. These organisms are 
known to convert atmospheric nitrogen gas to plant acces-
sible form of nitrogen (ammonium) through the secretion of 
nitrogenase enzymes, which are encoded by the nifH gene 
(Zehr and Turner 2001; Gérikas Ribeiro et al. 2018). Con-
sequently, the identification of these genes simply illustrates 
the viability of the digestate from this study as a potential 
nitrogen fixing and phosphate solubilising soil ameliorant 
(Niu et al. 2018).

Bacterial isolates obtained from the water hyacinth 
inoculum in this study as identified by the 16S rRNA gene 
sequence analysis characterised them as Pseudomonas 
stutzeri, Bacillus cereus, Bacillus subtilis, and Bacillus 
pumilus. The involvement of these indigenous microbial 
entities to produce water hyacinth inoculum for biogas and 
soil ameliorant production was to curtail the risk of path-
ogenicity of inoculum from other sources such as animal 
dung. These microorganisms have been previously reported 
to enhance the degradation of cellulose due to their cellulase 
producing nature (Siu-Rodas et al. 2018; Dutoit et al. 2019). 
However, recovery of undigested plant materials at the end 
of AD period and limited methane production confirms the 
limited activities of these identified bacteria as well as over-
all limited bacterial population and diversity in the treat-
ments. Stability of methane production after 29 days of AD 
cannot be attributed to exhaustion of substrates but limited 
microbial activities in the metabolism of more recalcitrant 
components of the organic substrates. Furthermore, these 
identified bacterial entities (Pseudomonas stutzeri, Bacil-
lus cereus, Bacillus subtilis, and Bacillus pumilus) have 
been associated with phosphate solubilisation and nitrogen 
fixation potential (Mohamed et al. 2018; Saeid et al. 2018; 
Hashem et al. 2019; Ke et al. 2019). The digestate also pos-
sesses readily available plant nutrients that can improve soil 
fertility and crop productivity, thus maximizing its feasibil-
ity as a soil ameliorant (Möller and Müller 2012; Walsh et al. 
2012; Sindhu et al. 2017).

In summary, this study is a novel report on the suitabil-
ity of water hyacinth from the Hartbeespoort dam as an 
inoculum to enhance methane production. The treatment, 
Wh:whinc 4:1 presents the ideal mixing ratio for optimal 
methane production when compared with other treatments. 
This signifies the requirement of water hyacinth inoculum 
to enhance the AD process but in low concentrations. The 
treatment without water hyacinth inoculum (Wh:whinc 
1:0) not only exhibited the potential of water hyacinth 
inoculum to enhance the process of AD of lignocellulosic 

substrate, it also provided evidence supporting the advan-
tages of utilizing the mixing ratio that resulted in the high-
est methane output. Although, overall production of low 
concentration of methane from AD of water hyacinth and 
water hyacinth inoculum is a function of limited essential 
microbial diversity and activities, low buffering capacity 
and accumulation of inhibitory compounds. The study also 
highlighted the high EC level of water hyacinth from the 
Hartbeespoort dam; however, the potential of water hya-
cinth inoculum to contribute to reduced EC levels of the 
digestate is a benefit to the utilization of the digestate as 
a soil fertility enhancer. The prospect of improving meth-
ane production and the feasibility of the digestate as soil 
ameliorant via bioaugmentation of the AD process with 
suitable microbial cultures could be explored.
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