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Pyocyanin – biological origin and properties

P. aeruginosa is an opportunistic pathogen often associated 
with nosocomial infections, cystic fibrosis complications, 
and arising in antibiotic resistance. However, the adapt-
ability to different environments and production of robust 
secondary metabolites allowed noticing its biotechnological 
potential. To date, substances such as rhamnolipids, biopoly-
mers, and pigments have been acquired from P. aeruginosa 
cultures (Bedoya et al. 2019; Mahato et al. 2021). Among 
pigments, pyocyanin (5-methylphenazin-1-one) is the most 
studied due to its unique properties. This pigment belongs 
to the group of phenazines that are heterocyclic compounds 
containing nitrogen atoms. Pyocyanin (PYO) is a zwitter-
ion at pH 7 and has a low molecular weight, which enables 
biological membranes’ permeation. It is characterized by 
a blue-greenish colour at the neutral and alkaline pH that 
changes to pink-red in acidic conditions. Due to the pres-
ence of a phenol group, its characteristic is weakly acidic 
(pKa 4.9). The pigment’s colour also depends on its redox 
state. It was reported that oxidized PYO is blue, whereas the 
reduced form is transparent (Rada and Leto 2013). Thanks 
to the zwitterionic nature, PYO accepts the electrons from 
reducing agents, i.e. NADH or reduced glutathione, and 
transports them to electron acceptors, i.e. oxygen (Liu and 
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	● Pyocyanin is not only a virulence factor but also a potent 
chemical for the industry.

	● Pyocyanin production may be stimulated or inhibited 
depending on the approach.

	● A growing interest in pyocyanin motivates the search for 
novel production methods.
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Abstract
The ambiguous nature of pyocyanin was noted quite early after its discovery. This substance is a recognized Pseudomonas 
aeruginosa virulence factor that causes problems in cystic fibrosis, wound healing, and microbiologically induced cor-
rosion. However, it can also be a potent chemical with potential use in a wide variety of technologies and applications, 
e.g. green energy production in microbial fuel cells, biocontrol in agriculture, therapy in medicine, or environmental pro-
tection. In this mini-review, we shortly describe the properties of pyocyanin, its role in the physiology of Pseudomonas 
and show the ever-growing interest in it. We also summarize the possible ways of modulating pyocyanin production. 
We underline different approaches of the researchers that aim either at lowering or increasing pyocyanin production by 
using different culturing methods, chemical additives, physical factors (e.g. electromagnetic field), or genetic engineering 
techniques. The review aims to present the ambiguous character of pyocyanin, underline its potential, and signalize the 
possible further research directions.
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Nizet 2009). In oxygen-poor conditions, PYO enables bac-
terial survival by transporting the electrons away from the 
cells (Rada and Leto 2013). Therefore, it is utilised by P. 
aeruginosa as a mobile electron transfer and allows it to 
control the redox balance. PYO leads to the generation of 
reactive oxygen species (ROS), mostly superoxides (O2

∙−) 
and hydrogen peroxide (H2O2). The mechanism of ROS 
formation by PYO was proposed by Jacob et al. (2011). 
It states that PYO can be non-enzymatically reduced by 
reducing agents such as NADH and NADPH which leads 
to the formation of hydrophenazine. This compound reacts 
with a second PYO molecule to form two PYO radicals that 
reduce oxygen molecule to superoxide anion radical (O2

·−). 
O2

·− radical can be transformed to H2O2 by dismutation. 
The imbalance of ROS leads to oxidative stress that can be 
a cause of cell death. Koley et al. (2011) reported that P. 
aeruginosa in the biofilm form produces a gradient of PYO 
in a reduced state called ‘electrocline’. This gradient was 
proven to extend up to 400 microns and is promoted by the 
limited presence of an electron acceptor and correlated with 
the increase in soluble iron. This confirmed that PYO and 
other phenazines can reduce Fe3+ ions to Fe2+ under aerobic 
conditions. PYO and phenazine-1-carboxamide (PCN) are 
kept within biofilms due to binding to extracellular DNA 
(eDNA). PYO also promotes eDNA release from the bio-
films through cell lysis mediated by H2O2 (Saunders et al. 
2020). The combination of the phenazines and eDNA was 
also reported to support an efficient extracellular electron 
transfer.

Phenazines, including PYO, are significant molecules in 
the physiology, ecological fitness, and competitiveness of P. 
aeruginosa (Mavrodi et al. 2013). PYO’s role is based on 
its redox properties and plays an important role in polymi-
crobial communities. Castañeda-Tamez et al. (2018) proved 
that it restricts the growth of metabolically-redundant bacte-
ria called ‘social cheaters’ that do not contribute to the pro-
duction of public goods such as siderophores or enzymes. 
Dietrich et al. (2008) reported that PYO is one of the redox-
active molecules that influence colony morphology. Pig-
ment-null mutants produced wrinkled colonies faster than 
the wild type. Moreover, PYO overproducers remained in 
the form of smooth colonies throughout the whole experi-
ment. PYO was also confirmed to affect more than 35 
genes, excluding the ones in the SoxR regulon (Dietrich et 
al. 2006). Such a finding underlines the role of PYO in the 
cell’s physiology. Moreover, Meirelles and Newman (2018) 
reported that PYO plays a multifaceted role in P. aerugi-
nosa. On one hand, it promotes cell survival in biofilms in 
oxidant-limited conditions. On the other hand, PYO can 
also lead to autointoxication of the population, resulting in 
cell death and the release of eDNA. P. aeruginosa possesses 
multiple mechanisms protecting it from PYO, including 

oxidative stress response mechanisms. Nevertheless, in high 
concentrations PYO is toxic to P. aeruginosa and only some 
cells called ‘persister-like’ can survive (van den Bergh et al. 
2017; Meirelles and Newman 2018).

The virulence of P. aeruginosa is controlled by quo-
rum sensing (QS). QS allows the regulation of cell density 
through the secretion of small autoinducer molecules that 
while present in certain concentrations activate or repress 
gene expression. In P. aeruginosa two QS systems are based 
on acyl homoserine lactone signalling (HSL): (1) las system 
and (2) rhl system (comprised of the transcriptional activa-
tor RhlR and RhlI) (Pesci et al. 1997; Vilaplana and Marco 
2020). las system activates rhlR and rhlI, and therefore it 
is placed above rhl system. Besides HSL signalling, there 
is a quinolone signalling system (pqs) characteristic of P. 
aeruginosa. It is intertwined with HSL systems. las system 
positively controls the level of quinolone molecule (PQS), 
while rhl system negatively influences PQS levels (Galla-
gher et al. 2002; Schuster et al. 2003; Brouwer et al. 2014). 
The biosynthesis of PYO and other phenazines is based on 
the conversion of chorismate derived from shikimate path-
way (da Silva et al. 2021). To date, seven enzymes have 
been recognized as conserved in all phenazine-producing 
bacteria – PhzA-PhzG. It is worth underlining that P. aeru-
ginosa has two independent homologous gene clusters, 
phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 
(phz2) (Mavrodi et al. 2001) that are responsible for phen-
azine production. These enzymes take part in the conversion 
of chorismate to phenazine-1-carboxylic acid (PCA) and 
phenazine-1,6-dicarboxylic acid (PDC). PCA and PDC are 
recognized as ‘core’ phenazines. PCA is later modified in a 
strain-specific way to other phenazines. Two genes, phzM 
and phzS code two phenazine-modifying enzymes that act 
together to convert PCA to PYO. Phenazine-1-carboxylate 
N-methyltransferase produced by phzM is essential to pro-
vide 5-methylphenazine-1-carboxylate for the final synthe-
sis step employing 1-monooxygenase (expressed by phzS 
gene) that converts it to PYO. Reduced expression of phzM 
creates an oversupply of PCA that may be directly converted 
by phzS to 1-hydroxyphenazine. However, phzS alone can 
also convert PCA to 1-hydroxyphenazine (Mavrodi et al. 
2001). It was proven by Dietrich et al. (2006) that PYO is 
the terminal signalling factor in the QS of P. aeruginosa. 
PYO biosynthesis is linked to QS due to the fact that regu-
latory proteins comprised in rhl and pqs systems, namely 
RhlR and PqsE, activate both phz operons by acting together 
(Higgins et al. 2018). To date, full biosynthesis pathways 
of phenazines and pyocyanin have been described and pre-
sented, e.g., in works of Mavrodi et al. (2001), Blankenfeldt 
and Parsons (2014) and da Silva et al. (2021), or in KEGG 
database (https://www.genome.jp/pathway/map00405, 
accessed on 13.02.2023).
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The clinical significance of PYO, which is often a hall-
mark of bacteraemia, resulted in the development of many 
detection methods. Among them, are spectrophotometric 
reads, voltammetric detection, and high-performance liquid 
chromatography, often coupled with a mass spectrometer 
(HPLC-MS). Absorbance reads can be performed either on 
the culture supernatant or the PYO extracted with chloro-
form and hydrochloric acid (λ = 520 nm for acidic extract, 
λ = 690 for extract in chloroform (Vilaplana and Marco 
2020)). Thanks to its redox properties, the pigment can 
also be detected in buffer/medium employing voltammetric 
methods (Schneider et al. 2022). The most reliable method 
is HPLC-MS, which not only enables the quantification of 
PYO, but also verifies the presence of the desired metabolite 
(Vilaplana and Marco 2020).

Why is pyocyanin production worth 
controlling?

PYO has been called a ‘double-edged sword’ of P. aerugi-
nosa for it can have both beneficial and detrimental effects 
on the producer population (Meirelles and Newman 2018). 
This problem scales up to humans, animals, and techno-
logical systems (see Fig. 1). The negative role of PYO has 
been extensively studied and described for decades (Liu 
and Nizet 2009; Rada and Leto 2013; Hall et al. 2016). 
The most prominent reason behind that is its role in cystic 
fibrosis (CF). PYO toxicity is based on the generation of 
ROS. Naturally, ROS occur in vital and normally function-
ing cells. However, their excess leads to oxidative stress that 

disturbs the cell’s metabolism, which can eventually cause 
the cell’s death. PYO oxidizes NADH and NADPH, which, 
together with increased ROS, enhances the redox potential 
of cytosol. Another consequence is reduced ATP production 
and the ratio of reduced to oxidized glutathione. Detrimen-
tal effects of PYO were also reported concerning urological, 
nervous, hepatic, and vascular systems (Hall et al. 2016). 
Among these are the influence on antioxidant enzymes, the 
production of interleukin IL-2, IL-6, prostaglandin E2, and 
immunoglobulin. Moreover, PYO can alter lymphocyte 
proliferation, macrophage function, ciliary beating, and 
increase mucous secretion (Bianchi et al. 2008; Hao et al. 
2012; McDermott et al. 2013). Ulmer et al. (1990) under-
lined that PYO effects are dose-dependent. For example, it 
stimulated the proliferation of T and B lymphocytes, IL-2 
production, and B lymphocyte differentiation when applied 
in low dosages. However, higher concentrations resulted in 
opposite observations. Peng et al. (2022) analysed the influ-
ence of PYO on mice and pig digestive tracts. The authors 
proved that PYO exposure led to dysbiosis of microbiota 
and damage to the mucus layer. It was recently reported that 
PYO can permeate the blood-brain barrier and influence 
cognitive function in the murine model (Rashid et al. 2022). 
PYO is also present during P. aeruginosa infections of the 
wounds. It was reported to inhibit the repair of the wound 
(Muller et al. 2009) by inducing cellular senescence. PYO 
accelerates neutrophil apoptosis in vivo in mice. This results 
in reduced local inflammation and supports P. aeruginosa 
survival during the infection (Allen et al. 2005). In contrast 
to other bacterial pigments, e.g. staphyloxanthin or melanin 
that have an antioxidant nature, PYO exhibits pro-oxidant 

Fig. 1  Positive and negative 
aspects of PYO.
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These observations describe PYO’s redox nature. Das and 
Ma (2013) demonstrated that PYO enhanced hydrocarbon 
emulsification with biosurfactants. However, the mecha-
nism of this phenomenon remains unclear. Wu et al. (2014) 
presented the dual use of PYO in toluene biodegrada-
tion and power generation in MFC. DeBritto et al. (2020) 
showed that PYO is a durable fabric dye when used in its 
acidic form. The tested fabric was a cotton cloth that turned 
pink due to PYO presence and its colour persisted after 3–5 
washings with soap.

Saleem et al. (2021) suggested that PYO could be uti-
lised as a food preservative and food-grade colourant after 
ruling out the potential toxicity to humans. Hamad et al. 
(2020) confirmed the antifungal and antibacterial properties 
of PYO, verified the toxicity on brine shrimp and mice, and 
concluded that no toxic effect was noted for 50 µg/mL and 
750 µg/mL, respectively. Li et al. (2018) also reported that 
PYO is well-tolerated by probiotic microorganisms (Lacto-
bacillus spp.). However, considering an opposing conclu-
sion made by Peng et al. (2022) who indicated that PYO 
may be detrimental to the function of intestinal microbiota, 
it appears that further experimental investigations still have 
to be carried out. Regarding humans, the current data can-
not exclude that ingesting PYO will cause adverse effects. 
Since the observations made by different authors are often 
contradictory, a clinical study may be necessary to reliably 
define its toxicity.

Even though, PYO is a well-known virulence factor, 
thanks to its properties it perhaps can find use in medicine. 
As previously mentioned, PYO exhibits strong antimicrobial 
properties against fungal, e.g. Candida albicans, Crypto-
coccus spp. (Rella et al. 2012; Morales et al. 2013), and bac-
terial pathogens, e.g. methicillin-resistant Staphylococcus 
aureus, Chlamydia spp. (Li et al. 2018; Leanse et al. 2021). 
Kasozi et al. (2011) showed the antimalarial properties of 
PYO that could expand the potential uses of this compound 
to protozoan parasites. However, the authors concluded that 
the tested concentration of PYO in murine models (100 mg/
kg) was toxic and cannot be applied in therapy, rather than 
the dose of 750 µg/mL presented by Hamad et al. (2020) 
that did not cause observable toxicity in tested rodents. PYO 
potential was also demonstrated in cancer research, where 
the viability of liver, pancreas, breast, lung, cervix, and skin 
cancer cell lines was reduced by this potential drug (Zhao et 
al. 2014; Patil et al. 2017; Moayedi et al. 2018; Abdelaziz 
et al. 2022). PYO may be used to produce other substances 
expressing anticancer properties. Moreover, Kohatsu et al. 
(2020) showed that IC50 of PYO and its halogenated form 
– chloropyocyanin, is much lower in human lung cancer 
and leukaemia cell lines than in normal fibroblasts. Patil et 
al. (2022) applied P. aeruginosa metabolites, namely PYO, 
and pyoverdine, to synthesize gold and silver nanoparticles 

properties (Liu and Nizet 2009). From the engineering 
standpoint, the pivotal role of PYO in microbiologically 
induced corrosion (MIC) was recently recognized (Huang et 
al. 2020). TEM analyses showed that P. aeruginosa biofilm 
and PYO led to the breakdown of the passive film of iron 
oxides and accelerated the MIC process (Li et al. 2022b). 
Moreover, it was proven by Huang et al. (2020) that mutants 
with phzS and phzM gene knockouts unable to produce PYO 
exhibited a lower potential to support MIC.

On the other side, PYO can be a potent and useful chemi-
cal in industry and diagnostics. Microbial fuel cells (MFC) 
for green energy generation seem to be the most popular 
application of PYO. Thanks to the unique redox properties it 
can serve as an electron shuttle which results in higher pro-
duction of the current that is confirmed by numerous recent 
works (Bagchi and Behera 2021; Ajunwa et al. 2021, 2022). 
The redox properties of PYO were also applied in a sensor 
recording glucose levels (Ohfuji et al. 2004).

PYO can also be potentially useful in agriculture. It exhib-
its antibacterial and antifungal properties, and it success-
fully reduced the number of Xanthomonas oryzae pv. oryzae 
causing bacterial leaf blight in rice (Yasmin et al. 2017) and 
Macrophomina phaseolina which is the agent of charcoal 
rot in chickpea (Khare et al. 2011). Furthermore, Gupta et 
al. (2020) showed that Pseudomonas spp. isolated from soil 
can play a role in peanut growth by inducing plant immune 
response. There is a commercially available product called 
Shenqinmycin, which is a phenazine-based antifungal agent 
(in this case PCA) (Zhao et al. 2018). The potential of PYO 
is not restricted to plants. This pigment can be applied as 
a drug for the control of vibriosis in shrimp aquacultures 
(Balakrishnan et al. 2022). It was proven that LC50 values of 
PYO (concentration needed to reduce cell viability by 50%) 
for Penaeus monodon were higher than the ones required to 
obtain a bactericidal effect on Vibrio harveyi (Priyaja et al. 
2017). This underlines the potential use of PYO as a biocon-
trol agent in animal husbandry.

Moreover, PYO can also be used in environmental 
protection. The use of PYO in the degradation of various 
compounds was previously reported. Among them are 
2,4,6-trinitrotoluene (Stenuit et al. 2012), phenanthrene (Nie 
et al. 2020), hexadecane (Nie et al. 2018) and tetrabromo-
bisphenol (Huang et al. 2020b). The mechanism suggested 
by Stenuit et al. (2012) indicates that PYO coupled with 
NAD(P)H in aerobic conditions can denitrate 2,4,6-trini-
trotoluene (TNT). Since superoxide radical anions were 
detected, it has been suggested that the underlining mech-
anism of this phenomenon is based on superoxide-driven 
nucleophilic attack of the radical on TNT. Similarly, Nie 
et al. (2020) showed that PYO/NADH/O2 system gener-
ated reactive oxygen species that led to the cleavage of 
phenanthrene ring and the formation of phthalate products. 
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the scientific community, which is confirmed by database 
analysis showing the rapidly growing number of articles 
(Fig. 2.). To date, several review articles focusing on PYO 
have been published (Pierson and Pierson 2010; Jayaseelan 
et al. 2014; Gonçalves and Vasconcelos 2021) and each of 
them underlines the potential applications of the pigment. 
Nevertheless, the analysis of PYO market prices lead to the 
conclusion that it remains a relatively expensive chemical 
since the prices vary from around €56.40 (calculated from 
$60) to more than €202.10 per 5  mg of PYO (Table  1.). 
PYO can also be chemically synthesized (Cheluvappa 2014; 
Kohatsu et al. 2019; Mortzfeld et al. 2019). However, up 
to now, the companies providing PYO as a chemical list P. 
aeruginosa culture as a source of the pigment (e.g. Sigma 
Aldrich). This indicates that biological production is a 
method of choice to introduce it to the market. Interestingly, 
based on the Scopus database search, the number of works 
showing PYO production in bioreactors is still scarce and 
usually focuses on electrical energy generation in MFCs.

that had cytostatic properties against Hep-G2, SK-MEL-2, 
HeLa, and A-549 cell lines. On the other hand, Peruzzo et 
al. (2021) demonstrated that PYO can be used for mitochon-
drial disease treatment by restoring the correct function of 
respiratory complex III. The authors confirmed the benefi-
cial action of PYO on fibroblasts and proved that effective 
PYO concentrations were not toxic to Drosophila, Danio 
rerio, and mice. Additionally, it was also shown that PYO 
and other phenazine derivatives (i.e. PCA) act as 5-lipoxy-
genase inhibitors by binding to the active site of the enzyme 
(Santha and Vishwanathan 2021). Such findings may be 
crucial in the treatment of inflammatory diseases. Moreover, 
it was recently described that PYO can lead to the induction 
of bacteriophages from the lysogenic to lytic cycle, which 
is essential in phage therapy (Jancheva and Böttcher 2021).

All the above-mentioned uses of PYO prove that apart 
from its contribution as a virulence factor, this compound 
may find numerous applications that will require intensi-
fied production. The growing demand can be confirmed by 
the number of studies using this pigment that are published. 
Over the last 30 years, PYO has gained more attention in 

Fig. 2  Scopus database analysis of documents including ‘pyocyanin’ as the searched phrase (years 2000–2022; search covering ‘pyocyanin’ found 
in the title, abstract, or keywords)
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possibility for cross-reactions between these factors, lead-
ing to the inhibition of PYO synthesis.

On the other hand, more and more research is devoted 
to the intensification of PYO production, which is caused 
by the lack of a validated large-scale method in the indus-
try. The currently used approaches focus on optimization 
of culturing conditions (e.g. agitation, pH, incubation time) 
and medium components, exposure to various chemical and 
physical factors or using genetic engineering methods to 
obtain a strain that is an effective PYO producer. Factors 
and approaches reported stimulating PYO production are 
summarized in Table 2.

It is worth underlining that the choice of a good bacterial 
PYO producer is one of the vital factors in the upstream 
part of the bioprocess (Askitosari et al. 2019). A significant 
number of articles published used isolates from samples of 
water, soil, wastewater, or patients (El-Fouly et al. 2015; 
Patil et al. 2017; DeBritto et al. 2020; Ajunwa et al. 2022). 
However, this approach can make it difficult to use the strain 
in possible further research as they are often not deposited 
in any international and easily accessible collection of 
microorganisms such as American ATCC, British NTCC, 
German DSMZ, or Polish PCM. Surprisingly frequently, 
the strain of choice is P. aeruginosa PAO1. Nevertheless, 
some works reported that it is a poor PYO producer when 
compared with other strains (Dietrich et al. 2006; Bosire et 
al. 2016; Cao et al. 2017). Some authors proposed the use of 
PA14 strain (Price-Whelan et al. 2007; Sismaet et al. 2014; 
Elbargisy 2021), and P. aeruginosa ATCC 27853 (Hendiani 
et al. 2019; Jabłońska et al. 2022a, b).

Another important aspect is the choice of the medium 
and culture conditions. PYO production is most frequently 
conducted in Luria-Bertani broth (LB), glycerol-supple-
mented Nutrient Broth (GSNB), Mineral Medium, Tryptic 
Soy Broth (TSB), and King A medium (Price-Whelan et al. 
2007; Sismaet et al. 2014; El-Fouly et al. 2015; Cao et al. 
2017). Many researchers proved that low phosphate content 
is crucial for PYO production (Whooley and McLoughlin 
1982; Hassett et al. 1991; Matilla et al. 2022). It is worth 
mentioning that some research groups attempted utilising 
raw materials and waste for PYO production, e.g. brewing 
process and maize cooking waste, corn steep liquor, potato 
washing water, coffee, tea, molasses, cheese, grape seeds, 
taro leaves, pea pods, moss, cotton seed meal, olive wastes, 
vegetable frying oil, corn, soya bean, sweet potato, water-
melon seeds and groundnut (El-Fouly et al. 2015; Teixeira 
et al. 2019; Bacame-Valenzuela et al. 2020; DeBritto et al. 
2020, Kahraman and Karaderi 2021). However, pigment pro-
duction in this approach is usually relatively low. Only El-
Fouly et al. (2015) and Teixeira et al. (2019) reported higher 
PYO production in waste-supplemented than in the conven-
tional medium (cotton seed and beer waste, respectively). 

How to modulate pyocyanin production?

To date, multiple methods were proposed to modulate PYO 
production by P. aeruginosa. Most of them focus on the 
inhibition of pigment production due to its role as a viru-
lence factor. Many substances inhibiting PYO production 
have been described. This group includes plant extracts 
(Naga et al. 2022; Inés Molina et al. 2022; Shariff et al. 
2022), nanomaterials such as La2O3 nanoparticles (NPs), 
ZnO NPs, Sm2O3 NPs, Ag NPs and polysaccharide-capped 
Ag NPs, Ag-TiO2 and ZnO-graphene nanocomposites (Bal-
usamy et al. 2012; Lee et al. 2014; Zanni et al. 2017; Alavi 
and Karimi 2018; Alavi et al. 2019; Saleh et al. 2019; Ali 
et al. 2020; El-Deeb et al. 2020; Zahmatkesh et al. 2022), 
antimicrobial peptides (calgranulin C) (Mishra et al. 2022), 
acylases (enzymes disrupting QS in bacteria) (de Celis et 
al. 2021), phenolic compounds (from olive oil processing 
waste) (Viola et al. 2022), nitric oxide (Gao et al. 2016), 
sodium citrate (Khayat et al. 2022), phage protein (gp70.1 
from P. aeruginosa phage PaP3) (Zhao et al. 2016), hispidu-
lin (flavone) (Anju et al. 2022), diallyl trisulfide (Li et al. 
2022a), benzimidazolium salts (Önem et al. 2022), or co-
cultivation with another microorganism (Liang et al. 2022). 
Zhou et al. (2022) proposed phzM gene as a target for reduc-
ing PYO production. Such approaches were proven to be 
effective against P. aeruginosa and inhibited PYO secretion. 
Among suggested mechanisms is inhibition of the expres-
sion of the genes involved in QS, which is intertwined, e.g., 
with PYO production and biofilm formation. Phenazine 
biosynthesis pathway starts from chorismate that is also a 
substrate for the synthesis of Pseudomonas quinolone sig-
nal (PQS), a QS signalling molecule. Furthermore, PQS 
may also mediate iron acquisition, another factor playing 
a role in PYO production (Lin et al. 2018). This creates the 

Table 1  The analysis of the PYO market (price for 5 mg of the powder 
product, all prices were found on the company’s official website and 
calculated using the exchange rate of 15.12.2022 – €1.00=$1.07)
No. Company Price
1 A2B Chem $154 (€143.93)
2 AA BLOCKS $159 (€148.60)
3 Aaron Chemicals $161 (€146.51)
4 Abcam €100 ($107)
5 AK Scientific $176 (€165.44)
6 APExBIO $95 (€89.3)
7 AvaChem $60 (€56.4)
8 Biomol €98 ($104.86)
9 Focus Biomolecules $60 (€56.4)
10 GLPBIO $84 (€78.96)
11 Santa Cruz Biotechnology €102 ($109.14)
12 Sigma Aldrich €132 ($141.24)
13 Toronto Research Chemicals $215 (€202.1)
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(Elbargisy 2021; Abdelaziz et al. 2022). Furthermore, the 
optimal temperature of incubation differs among the strains, 
and the most used values are within the range of 28–37℃.

Finally, it is more and more popular to utilise mathemati-
cal methods, e.g. statistical planning of experiment (Design 

Most authors use agitation for enhanced production since 
PYO synthesis requires oxygen presence. However, some 
reported better production in stationary cultures (El-Fouly 
et al. 2015; Jabłońska et al. 2022a). An optimal pH of the 
process was estimated to pH = 7–8 by many research groups 

Adjustments made to the culture Reference
Type Adjustment
Culture condi-
tions and medium 
components

Addition of amino acids to the medium (tyrosine 
and valine)

(Sismaet et al. 2014)

Optimization of culture conditions and medium 
ingredients

(Elbargisy 2021)

Selection of carbon source (Schmitz and Rosenbaum 2020)
Co-culture with Klebsiella variicola (Islam et al. 2018)
Optimization of medium ingredients (Preetha et al. 2007;

Patil et al. 2017)
Selection of carbon source and strain (Bosire et al. 2016)
Low phosphate content (Whooley and McLoughlin 

1982; Hassett et al. 1991; 
Matilla et al. 2022)

Intermittent aeration of the culture (Bagchi and Behera 2021)
Chemical com-
pounds added 
to the medium 
(including 
nanomaterials)

Lanthanum oxide (Balusamy et al. 2012)
Multi-walled carbon nanotubes and zinc oxide 
nanoparticles

(Jabłońska et al. 2022a)

Cerium oxide nanoparticles (Xu et al. 2018)
Silver nanoparticles (Saeki et al. 2022)
Gallium nitrate (García-Contreras et al. 2014; 

Tovar-García et al. 2020)
N-hexane (Ozdal et al. 2019)
Toluene (Ozdal 2019)
Sophorolipids (Shen et al. 2014;

Ajunwa et al. 2021)
Ammonium chloride (Allam et al. 2021)
Manuka honey (Mokhtar et al. 2020)
Antibiotics in subinhibitory concentrations (Shen et al. 2008;

Cummins et al. 2009)
Peptidoglycan and N-acetylglucosamine (Korgaonkar and Whiteley 2011)
Calcium chloride (Sarkisova et al. 2005)

Physical factors Static magnetic field (Raouia et al. 2020)
Static and rotating electromagnetic field (Jabłońska et al. 2022b)
Photoswitchable autoinducers and light 
λ = 365 nm (UV-A)

(Van Der Berg et al. 2015)

Methylene blue and visible light (Hendiani et al. 2019)
Birnessite photoanode and visible light (Ren et al. 2018)
Hematite photoanode and visible light (Ren et al. 2017)

Genetic 
engineering

Genetically modified E. coli (da Silva et al. 2021)
Genetically modified P. putida (Schmitz et al. 2015;

Askitosari et al. 2019)
Overexpression of PqsE effector in pqsC deficient 
mutant

(Wang et al. 2013)

Overexpression of phzM (Yong et al. 2014)
rpoS-deficient mutant of P. aeruginosa (He et al. 2019)
Overexpression of rhl (Yong et al. 2011)
Combined overexpression of nadD and nadC 
genes

(Ajunwa et al. 2022)

rpoS-deficient mutant with overexpression of 
phzM

(Wang et al. 2020)

Table 2  Reported factors stimu-
lating PYO production
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Another approach presented in the literature is the inser-
tion of the genetic constructs harbouring genes responsible 
for PYO production into other bacterial hosts, e.g., Esch-
erichia coli or Pseudomonas putida (Schmitz et al. 2015; 
Askitosari et al. 2019; da Silva et al. 2021). The use of 
genetically engineered E. coli could be the best way of 
obtaining high PYO concentrations, as its generation time 
is much shorter than P. aeruginosa and the stationary phase 
is reached faster. However, the yield in the case of E. coli 
is still far from the best producers among Pseudomonads. 
Moreover, E. coli is less resistant to high PYO concentra-
tions than P. putida (Askitosari et al. 2019), which possi-
bly makes the latter the most promising strain for possible 
industrial use. The last possible future solution could be the 
generation of highly attenuated P. aeruginosa strain, as it 
was done by Valentine et al. (2020) in case of alginate pro-
duction, or using a less virulent strain, such as P. aerugi-
nosa ATCC 9027 that was confirmed by Grosso-Becerra et 
al. (2016) to be sensitive to antibiotics and avirulent in the 
murine model.

Conclusion

The ambiguous nature of PYO makes it a good research 
candidate. It is well-known for its negative role, and further 
attempts to lower the virulence of P. aeruginosa should be 
continued. Notwithstanding, PYO should also be a recog-
nized potent chemical with a wide variety of potential appli-
cations. Considering both these views, the research focused 
on its efficient and cost-effective production should be fur-
ther conducted.

Based on the presented data, the market for PYO (and 
phenazines in general) is expected to grow over the fol-
lowing decades. The hallmarks of these developments are 
already visible with the launch of some commercial products 
based on PCA, that are already available on the market and 
can be applied in agriculture. Thus, an efficient and low-cost 
production technology should be sought and introduced. 
As we have shown, many approaches are tested to achieve 
this goal. To assure safety and maintain the process qual-
ity, it appears that genetically modified strains could be the 
most suitable candidates. However, the optimization meth-
ods for existing Pseudomonas models cannot be excluded, 
since they are still the most potent producers in the current 
state-of-the-art. There is considerable production potential 
that can be achieved through optimization techniques since 
many environmental factors can influence PYO produc-
tion. Possibly, the PYO production can also be achieved by 
utilizing waste and raw products. Such attempts play along 
with green chemistry and circular economy ideals. Nev-
ertheless, composition variabilities in these substrates can 

of Experiment), to determine which factor significantly 
influences the obtained results and to optimize the process 
(Preetha et al. 2007; Patil et al. 2017; Bacame-Valenzuela 
et al. 2020).

The improvement of PYO production can also be achieved 
by the addition of chemical agents to the medium. Among 
them are nanomaterials, including the ones that were proven 
to inhibit PYO production. Nevertheless, the stimulative 
effect of ZnO NPs, Ag NPs, CeO2 NPs, and multi-walled 
carbon nanotubes was reported (García-Lara et al. 2015; Xu 
et al. 2018; Saeki et al. 2022; Jabłońska et al. 2022a). Gar-
cía-Lara et al.  (2015)  showed that the effect of ZnO NPs 
may be strain-dependent, as four out of 18 tested strains 
expressed an increased pigment production, whereas for the 
rest the result was the opposite. Saeki et al. (2022) reported 
that low concentrations of Ag NPs led to the upregulation of 
some QS regulatory genes. These findings were supported 
by Xu et al. (2018). Sophorolipids, organic solvents, some 
salts, antibiotics, and other substances were also reported 
enhancing PYO production (Table  2.). Another approach 
tested the influence of physical factors, e.g. electromagnetic 
field or light exposure (at different wavelengths, sometimes 
combined with chemical substances) on pigment secretion. 
The research suggests that the use of such agents can elevate 
the production in some cases and the suggested mechanism 
is linked to oxidative stress generated by the stressor (Hen-
diani et al. 2019). However, the mechanisms underlining 
these observations remain unclear.

A distinctively followed method of elevating PYO pro-
duction during the past ten years seems to be genetic engi-
neering of the strains. Thanks to the extensive knowledge 
of the biochemical pathways and molecular mechanisms 
engaged in PYO production, it is possible to target specific 
genes, either to knock them out or to enhance their expres-
sion. Chen et al. (2020) proved that pip gene positively reg-
ulates the expression of the phz2 operon and therefore may 
be a targeted sequence to enhance PYO production. Xu et al. 
(2005) showed that the inactivation of ptsP gene leads to the 
overproduction of PYO in P. aeruginosa PA68 strain. The 
authors discovered that the lack of enzyme encoded by ptsP 
increased the activity of lasI and rhlI promoters, confirming 
that PYO and rhamnolipid production are connected, where 
more intensive production of one causes the inhibition of 
the other. Ajunwa et al. (2022) showed that overexpression 
of NAD synthase genes – nicotinic acid mononucleotide 
adenyltransferase (nadD) and quinolic acid phosphoribos-
yltransferase (nadC), led to increased PYO production in 
comparison to the wild-type strain. Wang et al. (2020) con-
structed a rpoS-deficient mutant and proved that the knock-
out led to higher phzM expression and an increase in PYO 
production.

1 3

103  Page 8 of 13



World Journal of Microbiology and Biotechnology (2023) 39:103

aeruginosa. Antibiot (Basel Switzerland) 9:260. https://doi.
org/10.3390/antibiotics9050260

Allam F, Elnouby M, Sabry SA et al (2021) Optimization of factors 
affecting current generation, biofilm formation and rhamnolipid 
production by electroactive Pseudomonas aeruginosa FA17. Int 
J Hydrogen Energy 46:11419–11432. https://doi.org/10.1016/j.
ijhydene.2020.08.070

Allen L, Dockrell DH, Pattery T et al (2005) Neutrophil apoptosis and 
impairs neutrophil-mediated host. J Immunol 174:3643–3649

Anju V, Busi S, Mohan MS et al (2022) In vivo, in vitro and molecular 
docking studies reveal the anti-virulence property of hispidulin 
against Pseudomonas aeruginosa through the modulation of quo-
rum sensing. Int Biodeterior Biodegradation 174:105487. https://
doi.org/10.1016/j.ibiod.2022.105487

Askitosari TD, Boto ST, Blank LM, Rosenbaum MA (2019) Boost-
ing heterologous phenazine production in Pseudomonas putida 
KT2440 through the exploration of the natural sequence 
space. Front Microbiol 10:1–12. https://doi.org/10.3389/
fmicb.2019.01990

Bacame-Valenzuela FJ, Pérez-García JA, Castañeda-Zaldivar F, 
Reyes-Vidal MY (2020a) Pyocyanin biosynthesis by Pseudo-
monas aeruginosa using a biodiesel byproduct. Mex J Biotech-
nol 5:1?16. https://doi.org/10.29267/MXJB.2020.5.3.1) - please 
cross this one out from the article, if possible.

Bacame-Valenzuela FJ, Pérez-Garcia JA, Figueroa-Magallón ML et 
al (2020b) Optimized production of a redox metabolite (pyo-
cyanin) by Pseudomonas aeruginosa nej01r using a maize 
by-product. Microorganisms 8:1–17. https://doi.org/10.3390/
microorganisms8101559

Bagchi S, Behera M (2021) Bioaugmentation using Pseudomonas 
aeruginosa with an approach of intermittent aeration for enhanced 
power generation in ceramic MFC. Sustain Energy Technol 
Assessments 45. https://doi.org/10.1016/j.seta.2021.101138

Balakrishnan S, Ameer A, Pazhur Mohandas S et al (2022) Pyocyanin 
as a safe aquaculture drug for the control of vibriosis in shrimp 
recirculating aquaculture system (RAS). Aquac Int. https://doi.
org/10.1007/s10499-022-00890-y

Balusamy B, Kandhasamy YG, Senthamizhan A et al (2012) Char-
acterization and bacterial toxicity of lanthanum oxide bulk 
and nanoparticles. J Rare Earths 30:1298–1302. https://doi.
org/10.1016/S1002-0721(12)60224-5

Bedoya JC, Dealis ML, Silva CS et al (2019) Enhanced production of 
target bioactive metabolites produced by Pseudomonas aerugi-
nosa LV strain. Biocatal Agric Biotechnol 17:653–664. https://
doi.org/10.1016/j.bcab.2019.01.025

Bianchi SM, Prince LR, McPhillips K et al (2008) Impairment of 
apoptotic cell engulfment by pyocyanin, a toxic metabolite of 
Pseudomonas aeruginosa. Am J Respir Crit Care Med 177:35–
43. https://doi.org/10.1164/rccm.200612-1804OC

Blankenfeldt W, Parsons JF (2014) The structural biology of phen-
azine biosynthesis. Curr Opin Struct Biol 29:26–33. https://doi.
org/10.1016/j.sbi.2014.08.013

Bosire EM, Blank LM, Rosenbaum MA (2016) Strain- and substrate-
dependent Redox Mediator and Electricity production by Pseu-
domonas aeruginosa. Appl Environ Microbiol 82:5026–5038. 
https://doi.org/10.1128/AEM.01342-16

Brouwer S, Pustelny C, Ritter C et al (2014) The PqsR and RhlR tran-
scriptional regulators determine the level of Pseudomonas quino-
lone signal synthesis in Pseudomonas aeruginosa by producing 
two different pqsABCDE mRNA isoforms. J Bacteriol 196:4163–
4171. https://doi.org/10.1128/JB.02000-14

Cao H, Lai Y, Bougouffa S et al (2017) Comparative genome and 
transcriptome analysis reveals distinctive surface characteristics 
and unique physiological potentials of Pseudomonas aeruginosa 
ATCC 27853. BMC Genomics 18:1–18. https://doi.org/10.1186/
s12864-017-3842-z

hinder obtaining a comparable product yield, which remains 
a challenge.
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