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Abstract
Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms 
from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use 
in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although 
considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due 
to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for 
relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we 
first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus 
is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of 
microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.
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Introduction

Melanin is an ancient pigment that occurred very early in 
all living organisms (Zhang et al. 2010; Glass et al. 2012). 
Melanin is typically known for its unique ability to absorb 
a wide range of radiations (Brenner and Hearing 2008; Liu 
et al. 2013). Moreover, melanization is considered a survival 
strategy for many organisms inhabiting unfavorable environ-
mental conditions. Owing to the multifunctionality of the 
pigment, it has been known to serve as: (a) an antioxidant 
and radical scavenger (Ju et al. 2011; Le Na et al. 2019), 
(b) a photo-protector that efficiently absorbs and dissipates 
solar radiation in the form of heat (d’Ischia et al. 2015), 
(c) an absorber that chelates metals and binds organic com-
pounds (Karlsson and Lindquist 2016; Tran-Ly et al. 2020) 
and (d) an organic semiconductor (Bothma et al. 2008). 
Besides these functions, melanin is considered eco-friendly 

and biocompatible since it is naturally synthesized by most 
organisms. Melanin has recently burst onto the scene of 
materials science and green technology as a functional addi-
tive or coating that can substantially improve the perfor-
mance of conventional materials for different applications. 
However, upscaling production and extraction protocols of 
melanin needs further optimization so that it can be used for 
developing novel materials.

In this review, we first introduce the current understand-
ing of melanin, along with its chemical structures and physi-
cal properties. We then present the strategies of melanin 
production, including the chemical synthesis and methods 
based on natural resources with emphasis on promising 
biotechnology processes using microorganisms. We high-
light several recent applications of microbial melanins, and 
provide our perspectives on how to bring melanin closer to 
practical applications in materials science.

Melanin pigments

Recent studies suggest that melanin is in fact a general term 
for a group of heterogeneous pigments produced by organ-
isms of all domains of life from bacteria to mammals (the 
plural form “melanins” is occasionally used in sections 
below indicating the heterogeneous nature of melanin). In 
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humans, melanin is the prominent pigment responsible for 
the colour of skin, hair and eyes (Solano 2014; d’Ischia et al. 
2015). As melanin usually appears black or dark brown, the 
pigment derives its name “melanin” from “melanos”—an 
ancient Greek word for black (Borovanskỳ and Riley 2011). 
However, there are other pigments in this group that produce 
reddish or yellowish colours such as the pheomelanin found 
in red hair, freckles, and feathers.

Melanin has a relatively diverse and heterogeneous 
structure. This is due to the ubiquitous sources of melanin, 
which leads to its heterogeneity in composition, size, color 
and function. Moreover, the physicochemical properties of 
melanin (a highly negative charge, high molecular weight 
and hydrophobic nature) hinder analytical approaches to 
identify and characterize its structure (Pralea et al. 2019). 
Additionally, the pigment is insoluble in most solvents and 
is resistant to chemical degradation (Nosanchuk et al. 2015; 
Pralea et al. 2019). Chemical treatments, such as using a 
strong base, can be used to dissolve melanin but often alter 
its native structure and may even break the initial polymer 
into fragments. Enzymatic digestion is relatively inefficient 
in eliminating the protein and lipid content of natural sam-
ples (Pralea et al. 2019).

A widespread definition of melanin is “a heterogeneous 
polymer derived from the oxidation of phenolic or indolic 
compounds and subsequent polymerization of intermediate 
phenols and their resulting quinones” (Solano 2014). Mela-
nin pigments can be categorized based on their chemical 
structures, namely, eumelanin, pheomelanin, neuromelanin 
and allomelanin (d’Ischia et al. 2013). Eumelanin is the 
black-to-brown subgroup of melanin formed by oxidative 
polymerization of tyrosine derivatives such as L-3,4-dihy-
droxyphenylalanine (L-Dopa), and it is the most common 
melanin found in animals, including humans (Solano 2014). 
Eumelanin is, therefore, by far the most relevant source from 
a biological and technological perspective and has been 
widely studied and used as a model for synthetic melanin. 
Pheomelanin is another type of animal melanin, found in 
red hair, freckles or feathers, which differs from eumela-
nin by the presence of sulfur in the composition since its 
precursor is 5-cysteinyl-Dopa. Neuromelanin is explicitly 
produced within human neurons by the oxidation of dopa-
mine and other catecholamine precursors. In plants, fungi 

and bacteria, the identified melanin is called allomelanin. 
This group encompasses a variety of non-nitrogenous sub-
groups of melanin derived from different catecholic and 
dihydroxynaphtalene precursors, which are usually men-
tioned as catechol melanin (in plants), DHN-melanin and 
pyomelanin (in bacteria and fungi). Lastly, it is notable that 
many microorganisms can produce different types of mela-
nin, including eumelanin via a similar pathway with mam-
malian melanin synthesis (Eisenman and Casadevall 2012; 
Cordero and Casadevall 2017) (Table 1).

Melanin isolation from conventional natural 
sources

Conventionally, melanin is extracted from sepia ink or ani-
mals’ dark hair/feathers. One of the challenges for melanin 
production and extraction from these sources is that most 
melanins are formed inside melanosomes and are tightly 
bound to some cellular components such as proteins or 
minerals (Prota 1995). Therefore, the isolation procedure 
of melanin usually involves harsh chemical treatments to 
remove the entire protein fraction, cell debris and uncon-
sumed nutrients. Normally, these treatments include exten-
sive hydrolysis with boiling mineral acids or bases followed 
by successive washing steps with organic solvents such as 
chloroform, acetone or absolute ethanol (Liu and Simon 
2003; Pralea et al. 2019). However, during the latter process, 
the melanin polymeric skeleton suffers chemical alterations 
(Pralea et al. 2019). Alternative strategies reported in the 
literature have described the use of milder isolation method-
ologies such as: mechanical separation using ultracentrifu-
gation; proteolytic digestion using enzymes to eliminate the 
residue protein matrix; or a combination of both strategies 
(Novellino et al. 2000; Xiao et al. 2018) (Fig. 1). Some 
studies have shown that enzymatic extraction methods can 
retain the melanin structure and its morphology in the form 
of intact melanosomes better than the acid/base extraction 
protocols (Liu et al. 2003).

Natural melanins are complete polymers with limited 
potential for modification. Besides, the final drying method 
can have a great influence on the physical properties of mel-
anin such as the aggregation, the surface area-to-mass ratio, 

Table 1   Summary of common 
melanins, sources and their 
corresponding precursors

Type of melanin Producing sources Melanin precursor

Eumelanin (DOPA-melanin) Animals, bacteria, fungi Tyrosine or L-Dopa
Pheomelanin Animals 5-S-cys-Dopa
Neuromelanin Human (brain) Dopamine and 5-S-cys-dopamine
Catechol-melanin Plants Catechol
DHN-melanin Fungi, bacteria 1,8-dihydroxynaphthalene (DHN)
Pyomelanin Fungi, bacteria Homogentisic acid
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and porosity (d’Ischia et al. 2013). This source-dependency 
makes natural melanin supply difficult and expensive for 
up-scaling and can result in contamination depending on 
its source. For example, melanin extracted from feathers of 
birds or the ink sac of sepia may have an increased amount 
of associated toxic metals related to their environmental 
exposure. Moreover, these melanin sources are of ethical 
concern as the animals, from which melanin is extracted, 
may need to be killed. All these factors emphasize the cau-
tious use of natural melanin for applied research.

Melanin production by chemical synthesis

In the last decade, the synthesis of materials with proper-
ties mimicking that of natural melanins has been extensively 
investigated (Lee et al. 2007; Liu et al. 2013; D’Ischia et al. 
2014; Solano 2017). In chemical synthesis, polydopamine, 
which shares some properties with natural melanin due to 
their similar functional groups such as catechol, amine and 
imine groups (Solano 2017), is synthesized via oxidative 
polymerization of dopamine. The high tunability of polydo-
pamine has rapidly promoted research on this material (Liu 
et al. 2014). Notably, when studies on synthetic melanin-
based materials are cited, they usually refer to polydopamine 
and its derivatives.

Three common approaches for the synthesis of poly-
dopamine are: (1) solution oxidation, (2) enzymatic 
oxidation, and (3) electropolymerization (Liu et  al. 
2014). Solution oxidation under alkaline conditions is 
widely used and involves the oxidation with oxygen and 

self-polymerization of the dopamine monomers. The 
second approach is often related to the enzymatic oxida-
tion of L-tyrosine using the enzyme tyrosinase. Another 
method in this approach involves the oxidation of diphe-
nolic groups of dopamine, followed by its polymeriza-
tion into polydopamine using the enzyme laccase. Lastly, 
the electropolymerization method has mainly been used 
for the formation of polydopamine on an electrode. In a 
deoxygenated solution, a polymeric film with high thick-
ness can be effectively obtained by applying an appropriate 
electrical voltage. One disadvantage of this method, how-
ever, is the requirement that the surface of the electrode 
is conductive, hence polydopamine can only be deposited 
on conductive materials.

Despite a number of attempts to mimic natural melanins, 
synthetic melanins often have altered structural and func-
tional properties compared to natural melanins (Ligonzo 
et al. 2009; Bridelli and Crippa 2010). Some reports have 
demonstrated that natural melanins in biotechnological 
applications outperform synthetic melanins. For instance, 
sepia melanin exhibits a higher specific capacity (16.1 in 
comparison with 7.9 mAhg−1) in aqueous sodium-ion bat-
teries compared to polydopamine (Kim et al. 2013). The 
higher efficiency of natural melanins may be attributed to 
their innate features, including the carboxyl content of the 
starting precursor (i.e. tyrosine or L-DOPA vs. dopamine, 
which is devoid of a carboxylic group), the melanogenesis 
mechanism (Pezzella et al. 1997), the unique nanostructure 
of melanin granules attached to small amounts of proteins, 
and the higher hydration degree of the molecules (Berns-
mann et al. 2010).

Fig. 1   Mild and harsh melanin 
extraction steps currently used 
to obtain melanin from living 
cells
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Melanin production by microorganisms

The diverse biological roles of melanin in bacteria and 
fungi have been extensively reported in the literature 
(Nosanchuk and Casadevall 2003; Plonka and Grabacka 
2006; Eisenman and Casadevall 2012; Solano 2014; Cord-
ero and Casadevall 2017). However, the control of melanin 
synthesis in different microorganisms has only recently 
been investigated. Considering the advantages of using 
microorganisms to produce melanin, such as no seasonal 
growth constrains, cost-effectiveness, and eco-friendliness, 
microbial melanin is a valuable source of natural melanin.

Generally, most microbial melanins are formed through 
the transformation of either tyrosine (DOPA-pathway) or 
malonyl-coenzyme A (DHN-pathway), facilitated by dif-
ferent sets of enzymes (Fig. 2). The first pathway is very 
similar to mammalian melanin synthesis. In this pathway, 
the melanin precursor, tyrosine, is converted to L-Dopa, 
then to dopaquinone by tyrosinase and laccase. Dopaqui-
nones are highly active and spontaneously oxidized and 
autopolymerized to form melanin. Synthesis of melanin 
via the DOPA-pathway is referred to as DOPA-melanin or 
eumelanin. However, during the catabolic process, other 
hydroxylated aromatic compounds such as homogenti-
sic acid, can accumulate due to enzymatic imbalances or 

interruptions, which may result in different types of mela-
nins. In the second pathway, the corresponding precursor, 
malonyl-coenzyme A, is produced endogenously. Cata-
lyzed by polyketide synthases, the sequential decarboxyla-
tive condensation of five molecules of malonyl-coenzyme 
A creates 1,3,6,8-tetrahydroxynaphthalene (THN). THN 
then undergoes a series of reduction and dehydration 
reactions to form 1,8-dihydroxynaphthalene (DHN). The 
polymerization of DHN results in DHN-melanin as the 
final product (Plonka and Grabacka 2006; Eisenman and 
Casadevall 2012; Pavan et al. 2020). Notably, both path-
ways can be found in bacteria and fungi. Nevertheless, 
most bacteria and basidiomycetous fungi synthesize mela-
nin via the DOPA-pathway, whereas, ascomycetous and 
some imperfect fungi including non-microscopic fungi, 
for instance Tuber spp., use the DHN-pathway to produce 
melanin.

With respect to high-yield melanin production, microor-
ganisms using the DHN-pathway are not preferred since in 
this pathway, the pigment is synthesized endogenously and 
is tightly attached to the inner side of the cell wall (Toledo 
et al. 2017). This makes melanin extraction extremely diffi-
cult and can generate artifacts derived from harsh extracting 
chemicals. Alternatively, melanogenesis via the DOPA-path-
way is a mechanism microorganisms use to neutralize toxic 
phenolic compounds from the environment, such as those 

Fig. 2   Schematic representation of melanin synthesis in bacteria and 
fungi, indicating key chemical transformations common to microbial 
melanin forming processes. a DHN-pathway; b DOPA-pathway; c In 

the event of enzymatic imbalances, altered metabolic pathway can 
occur, leading to different types of melanins, for example pyomelanin
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released by microorganisms during host defense (Schmaler-
Ripcke et al. 2009; Almeida-Paes et al. 2012). Consequently, 
many microbes depend on exogenous tyrosine or tyrosine 
derivative substrates for melanin synthesis. This is of great 
interest for scientists that study microbial melanization since 
melanin is produced extracellularly and harsh extraction can 
therefore be avoided. Several bacteria and fungi in this cat-
egory are summarized in Table 2.

Additionally, these characteristics allow considerable con-
trol of the yield and the type of resulting melanin. Although 
tyrosine is identified as the main melanin substrate, other 

catecholamines such as dopamine and norepinephrine can 
also be used as substrates. However, it is important to note 
that melanins resulting from different substrates may dif-
fer in structure due to various catabolic processes with dif-
ferent enzymes involved. This creates room for tuning the 
physicochemical properties and optimizing the production 
of microbial melanins.

The formation of melanin depends highly on the regula-
tion of melanin synthesis enzymes, which is driven by multi-
ple nutritional factors and physicochemical conditions. Pep-
tone, glucose and yeast extract are widely chosen as carbon 

Table 2   Studies focused on optimization of microbial melanin production

Nd not defined

Microorganisms Melanin type Max. melanin 
production/g L−1, 
(Incubation time / 
days)

Tyrosine added Metal ions added Substrates References

Bacteria
 Actinoalloteichus 

sp. MA-32
DOPA 0.1 (7) Yes Fe, Mg Glycerol (Manivasagan et al. 

2013)
 Bacillus safensis Nd 6.9 (24 h) None None Fruit waste extract (Tarangini and Mishra 

2014)
 Brevundimonas sp. 

SGJ
DOPA 6.8 (54 h) Yes Cu Tryptone (Surwase et al. 2013)

 Nocardiopsis alba 
MSA10

Nd 3.4 (7) Yes Nd Sucrose (Kiran et al. 2014)

 Pseudomonas sp. 
WH001 55

Nd 7.6 (6) Yes None Starch, yeast extract (Kiran et al. 2017)

 Pseudomonas 
stutzeri HMGM-7

DOPA 7.2 (3) Yes None Nutrient broth in sea 
water

(Ganesh Kumar et al. 
2013)

 Streptomyces 
glaucescens 
NEAE-H

DOPA 0.4 (6) Yes Fe Protease peptone (El-Naggar and El-
Ewasy 2017)

 Streptomyces kathi-
rae SC-1

DOPA 13.7 (5) Yes Cu Amylodextrine, yeast 
extract

(Guo et al. 2014)

 Streptomyces lusi-
tanus DMZ-3

nd 5.3 (6) Yes Cu Beef extract (Madhusudhan et al. 
2014)

 Streptomyces sp. 
ZL-24

DOPA 4.2 (5) None Fe, Ni Soy peptone (Wang et al. 2019)

Fungi
 Armillaria borealis DOPA 11.58 (97) Yes Cu, Fe, Mg Glucose, yeast 

extract
(Ribera et al. 2019)

 Armillaria cepis-
tipes

DOPA 27.98 (161) Yes Cu, Fe, Mg Glucose, yeast 
extract

(Ribera et al. 2019)

 Armillaria ostoyae DOPA 24.80 (153) Yes Cu, Fe, Mg Glucose, yeast 
extract

(Ribera et al. 2019)

 Aspergillus fumiga-
tus

Nd 0.01 (10) No None Dextrose, peptone (Raman et al. 2015)

 Auricularia 
auricula

DOPA 2.97 (8) Yes Mg Lactose, yeast extract (Sun et al. 2016)

 Daldinia concen-
trica

DOPA 1.78 (73) Yes Cu, Fe, Mg Glucose, yeast 
extract

(Ribera et al. 2019)

 Gliocephalotrichum 
simplex

DOPA 6.60 (6) Yes Cu, Fe Peptone, yeast 
extract

(Jalmi et al. 2012)
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and nitrogen sources. Recent studies have also exploited 
agricultural residues, such as fruit waste extract, corn steep 
liquor and wheat bran extract, to lower the production cost 
while ensuring the high yield of production (Hamano and 
Kilikian 2006; Silveira et al. 2008; Zou and Tian 2017). 
Copper is an important element for melanin production 
because of its role as a cofactor for laccases and tyrosinases 
(Sendovski et al. 2011; Reiss et al. 2013; Yang et al. 2017). 
Variation in the amount of added copper leads to irregular 
pigmentation in several fungal and bacterial species (Held 
and Kutzner 1990; Griffith et al. 2007). On the one hand, 
besides copper, other metals can also enhance melanin 
formation. A recent study by Wang et al. (2019) showed a 
strong increase in tyrosinase activity and melanin produc-
tion driven by the addition of iron and nickel. On the other 
hand, the presence of metals may induce stress responses in 
microbes, resulting in melanin formation (Gowri and Sriv-
astava 1996). In other cases, melanin synthesis is promoted 
by different kinds of stress, for instance: high temperature, 
nutrient-poor growth media, hyperosmotic pressure, etc. 
(Coyne and Al-Harthi 1992; Fogarty and Tobin 1996; Cor-
dero and Casadevall 2017). Because of the multiple and 
diverse factors that affect melanin biosynthesis, there is no 
universal culture media or cultivation condition for grow-
ing melanogenic microorganisms. Instead, the composition 
and ratio of each component should be identified depend-
ing on the microbe. Similarly, environmental factors, i.e. 
temperature, pH, the presence of oxygen and aeration, light, 
stress and irradiation during cultivation, can greatly affect 
the cell growth and pigment biosynthesis, and should be 
carefully considered. Some statistic tools such as the Tagu-
chi method, the Plackett-Burman design, or the Response 
surface methodology are usually used to design multifacto-
rial experiments and to evaluate the impact of each factor 
in the production process (Surwase et al. 2013; Saini and 
Melo 2015; Sun et al. 2016; El-Naggar and El-Ewasy 2017).

Previously, most melanin-related studies involving other 
microorganisms, such as Aspergillus carbonarius or Strep-
tomyces glaucescens NEAE-H (El-Naggar and El-Ewasy 
2017), could not achieve melanin suitable for industrial 
application yields (< 1 g L−1 medium) even after optimizing 
the growth conditions. In contrast, studies focused on opti-
mizing melanin production utilize fungi and bacteria with 
the ability to produce melanin via tyrosine transformation. 
The optimized protocols usually involve the exogenous sup-
ply of tyrosine, copper and/or other metal ions and show the 
possibility to produce melanin pigments in significant yields. 
For instance, melanin can now be produced by Armillaria 
cepistipes at gram-scale (28 g L−1 medium) in laboratory 
condition, which paves the way for industrial scaling up and 
future applications of melanin (Ribera et al. 2019).

Last but not least, microbial melanin production can be fur-
ther improved by applying genetic engineering techniques to 

increase the natural melanogenic capacity of some organisms 
or generating novel melanin-producing strains. The most com-
mon genetic modification to enhance/generate a production 
strain, targets the expression of genes encoding the enzymes 
involved in melanin formation, mostly tyrosinases. The latest 
advances in the generation of recombinant melanogenic strains 
and production processes were already summarized by (Mar-
tínez et al. 2019) and are not the focus of this review.

Applications of microbial melanins

In fungi and bacteria, melanins are usually reported for its 
important role in the virulence of pathogenic organisms 
(Jacobson 2000; Cordero and Casadevall 2017). With the 
advancement of new knowledge and technologies, melanin 
pigments can now be turned into valuable materials in vari-
ous fields of green technology, materials science, biomedi-
cine, cosmetics and environmental remediation (Fig. 3).

From a physicochemical viewpoint, melanin is a natural 
“sunscreen” that absorbs the broadband of UV–visible light 
spectrum. In addition to blocking UV light, this pigment 
is a powerful antioxidant. Melanin also exhibits a hydra-
tion-dependent semiconductor-like behavior. As such, it 
is evaluated as a component for organic electronic devices 
(Bothma et al. 2008; Kim et al. 2013). Other advantages of 
microbial melanin are its bioavailability, biocompatibility 
and biodegradability, making it a promising candidate for 
biomedical applications; for example, implantable devices 
(Vahidzadeh et al. 2018). In another type of application, 
melanin has been employed for the environmentally benign 
synthesis of silver nanostructures. These melanin-mediated 
silver nanostructures show broad-spectrum antimicrobial 
activity against food pathogens and have potential uses in 
the food and health industries (Kiran et al. 2014; Patil et al. 
2018). Dermal and cosmetic applications of melanin include 
its use for sunscreen and hair dyeing. Melanin can act as 
metal chelators, which can be employed in environmental 
applications. By incorporating fungal melanin with other 
polymers such as polycaprolactone and polyurethane, the 
melanin-based composites can remove up to 94% Pb(II) in 
water systems (Tran-Ly et al. 2020). Although there are a 
lot of studies reporting the potential applications of melanin, 
they are mostly in the developmental stage and have not yet 
been commercialized. In the era of transition towards sus-
tainable materials, microbial melanin research has not yet 
reached its full potential.

Conclusions and outlook

Melanins are a unique class of natural pigments that can 
be considered functional materials for multiple potential 
applications in industry. The future of melanin-based 
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materials and technology development depends on the 
ability to produce melanin at a large scale with a chemi-
cally defined structure and low cost. As discussed in 
this review, conventional approaches are the isolation of 
melanins from natural sources like sepia ink and chemi-
cal synthesis. They are, however, unsustainable and dif-
ficult to scale up. A feasible alternative approach is using 
melanogenic microorganisms and melanin precursors. 
Although no universal protocol is available, good tips for 
producing high-yield microbial melanins are: (i) choosing 
the microorganisms that can produce melanin extracel-
lularly from the exogenous substrate, and (ii) improving 
the metabolic process by adding tyrosine and copper to 
the culture media. However, it is worth pointing out that 
melanins comprise a chemically-diverse group of poly-
mers. So far, most of the published works on microbial 
melanin production focused on eumelanin. However, the 
chemical diversity of melanin, which can be controlled 
by the supplied melanin precursors, has not yet been fully 
explored. Furthermore, the accumulated knowledge on 
the biochemistry and genetic engineering of melanin in 
various organisms can contribute to the direct manipula-
tion and enhancement of melanin production. With this 
perspective, melanin can be used beyond basic research 
and encourage more researchers from industry to deploy 
bio-inspired melanin-based materials for biomedical, envi-
ronmental and technological applications.
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