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Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different 
surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food 
realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious 
structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to 
develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or 
small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most 
recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related 
environments; and (iii) inhibition and dispersal using natural compounds, in particular.
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Yeast biofilm

The ability of fungal species to adhere to and grow on dif-
ferent substrates or hosts is surprisingly broad: from human 
and plant tissues to food matrices, fuel lines, and even bare 
rocks (Fanning and Mitchell 2012; Rola et al. 2016). Most 
of the knowledge accumulated on fungal biofilms has been 
stimulated by the implications of fungi, such as Cryptococ-
cus, Aspergillus, Pneumocystis, Coccidioides in human 
pathogenesis (Fanning and Mitchell 2012). Similarly, health 
issues related to the development of the yeast Candida albi-
cans have stimulated the study of yeast biofilms (Lohse et al. 
2018). An imprecise distinction has been made between 
yeasts and those dimorphic filamentous fungi that often 
produce abundant yeast-like growth. Notwithstanding this 
possible confusion, yeasts, whether ascomycetes or basidi-
omycetes, have been defined as single-cell microorganisms 
generally characterized by budding or fission as the primary 
means of asexual reproduction, and having sexual states that 

are not enclosed in fruiting bodies (Kurtzman et al. 2011). 
As with other microbial biofilms, that produced by yeast is 
a highly structured microbial community associated with or 
attached to a surface, upon which the microbial cells enclose 
themselves within a self-produced extracellular matrix (Wu 
et al. 2017). Yeast beneficial biofilms in the food realm have 
been also described, mostly in relation to Saccharomyces 
cerevisiae, such as those required for the ageing and matura-
tion of special wines, fermented olives and dairy products.

Genetic determinants of yeast biofilm formation

In the first step of biofilm formation, yeast cells adhere to 
each other and to both biotic and abiotic surfaces (Bojsen 
et al. 2012). Cell attachment is mediated by specific adhesion 
molecules, called adhesins, through amyloid-like or hydro-
phobic interactions (Lipke 2018). In S. cerevisiae, different 
proteins have been described that are involved in biofilm for-
mation, including Flo11p (Zara et al. 2005), Hsp12p (Zara 
et al. 2002), Ccw14p (Moreno-García et al. 2018), Fig. 2p 
(Van Mulders et al. 2010), etc. Of these, Flo11p is directly 
involved in biofilm formation on solid or semisolid agar, on 
plastic surfaces, and on the air-liquid interface (Reynolds 
and Fink 2001; Zara et al. 2005). Differences in the biofilm-
forming ability of S. cerevisiae strains have been related to 
the number of repeated sequences and the transcriptional 
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levels of FLO11 (Zara et al. 2009). FLO11 transcription 
responds to nutritional and environmental stimuli through 
signals that activate different pathways, including the MAPK 
cascade, the cAMP-PKA pathway, and the TOR pathway, 
as well as the Cyc8p/Tup1p complex (Vinod et al. 2008; 
Nguyen et  al. 2018). Whole-genome resequencing has 
enabled 155 loci to be identified that are highly divergent 
between 110 S. cerevisiae strains able to form biofilm vs. 
those unable to do so (Coi et al. 2017). These loci include 
the major regulators cAMP, IRA1, and the MAP-kinases 
STE7, KDX1, and RGA2. In Candida, the major regulatory 
mechanisms governing biofilm development involve both the 
MAPK and cAMP pathways, as well as transcriptional regu-
lators such as Bcr1p and Tec1p (Gulati and Nobile 2016; 
Fox et al. 2015).

Once yeasts cells have started to adhere to each other 
and to a surface, they proliferate, grow into filamentous 

forms (hyphae and pseudohyphae), and accumulate an 
extracellular matrix (ECM) (Vopálenská et al. 2010). Cells 
capable of forming a network of hyphae/pseudohyphae 
display stronger attachment to inert surfaces (e.g. stainless 
steel and plastic). In particular, the pseudohyphal content 
is directly correlated with biofilm strength and resistance, 
probably due to the higher amount of chitin in pseudohy-
phal cells (Paramonova et al. 2009). ECM is commonly 
made of carbohydrate, protein, lipid, and nucleic acid 
(Flemming and Wingender 2010; Faria-Oliveira et  al. 
2015). Karunanithi et al. (2010) suggested that in mature 
biofilms of S. cerevisiae, Flo11p forms part of the ECM, 
where it promotes a kind of cellular lubrication phenom-
enon that facilitates cellular motility. The ECM confers 
yeast cells a broad range of advantages, such as adhesion, 
cohesion, and mechanical properties, nutritional sources, 
enzymatic activities, and protection (Flemming and Wing-
ender 2010) (Fig. 1).

Fig. 1   Extracellular matrix from different S. cerevisiae biofilm-forming yeast
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Nutritional factors that induce yeast biofilm 
formation

In most cases, the availability of nutrients, such as carbon 
and nitrogen sources, but also lipids, controls biofilm devel-
opment. In S. cerevisiae, the ammonia permease Mep2p 
activates the MAPK and the cAMP–PKA pathways when 
low concentrations of diammonium phosphate are available 
(Vinod et al. 2008). Furthermore, TOR pathway activity 
switches off in response to increasing nitrogen concen-
trations (Vinod et al. 2008). Thus, biofilm formation and 
FLO11 gene expression are enhanced in S. cerevisiae when 
nitrogen sources are scarce (Zara et al. 2011). Similarly, 
glucose starvation increases biofilm formation and FLO11 
expression through the cAMP–PKA and SNF1 pathways 
(Livas et al. 2011; Bojsen et al. 2012). Van Nguyen et al. 
(2020) reported that the inhibition of biofilm formation at 
high glucose concentration is mediated by increased Cyc8p-
mediated FLO11 repression. Zara et al. (2010) suggested 
that biofilm formation requires an energy input provided by 
reduced carbon sources. Indeed, greater biofilm formation 
was obtained by growing S. cerevisiae on glycerol, ethyl 
acetate, and ethanol. In addition to carbon and nitrogen 
compounds, lipids also play a major role in biofilm forma-
tion. In particular, the fatty acid residues of biofilm-forming 
strains of S. cerevisiae were shown to have a larger medium 
chain length and higher unsaturation levels than those in 
non-film‐forming strains (Zara et  al. 2008). Zara et  al. 
(2012) found that cerulenin, an inhibitor of the fatty acid 
synthase complex, prevents biofilm formation and FLO11 
transcription. Whole transcriptomic analysis revealed that a 
lack of lipid nutrients induces a stress response in biofilm-
forming strains, leading to the induction of PAUs and HSPs 
gene families (Zara et al. 2019b). Similarly, biofilm cells of 
C. albicans differ from planktonic cells in their phospho-
lipid, sterol, and sphingolipid content (Lattif et al. 2011). In 
accordance, sterol, fatty acid, and lipid metabolism pathways 
were found to be upregulated during biofilm formation (Lat-
tif et al. 2008).

Yeast biofilm in food realms

Yeast are found in a range of fresh and processed foods: 
dairy, meat, fruit and vegetable products, syrups, honey, 
juices, soft drinks, alcoholic beverages, salad dressings, 
mayonnaise, confectioneries, jams, and bread (Deák 1991). 
The main source of microbial contamination in the produc-
tion chain may be the processing plant itself, due to inad-
equate hygiene measures that can favor the formation of 
biofilms. Yeast contamination in food processing plants is 
likely due to aerosols and to splash and overspray during 
sanitation programs (Snyder and Worobo 2018). High levels 

of spoilage yeasts have also been found in floor drains (Sny-
der and Worobo 2018). An abundant growth of unwanted 
yeast, such as Brettanomyces bruxellensis, Candida krusei, 
Candida parapsilosis, Debaryomyces hansenii, Kloeckera 
apiculata, Pichia membranaefaciens, Rhodotorula mucilagi-
nosa, S. cerevisiae, Schizosaccharomyces pombe, Torulopsis 
holmii, and Zygosaccharomyces bailii, can lead to problems 
in food quality and safety (Salo and Wirtanen 2005). In addi-
tion, many yeast species can develop as biofilm cells that 
are significantly more difficult to eradicate than planktonic 
cells (Brugnoni et al. 2007). Indeed, microbial biofilms cost 
the food industry several billion dollars every year due to 
product losses, reduced heat transfer, increased fuel con-
sumption, and the excessive use of chemical agents for their 
control and removal (Chambers et al. 2006; Lyon et al. 2008; 
Srey et al. 2013). Below, some examples of how yeast bio-
films spoil different foods and beverages, including drinking 
water, are provided (Fig. 2).

Yeasts have a central role in the fermentation of table 
olives and in the development of their sensorial features. 
In particular, yeasts contribute to olive debittering, through 
the activity of β-glucosidase, to the degradation of phytic 
complexes, and to the release of inorganic phosphorous, 
due to the production of enzymes such as phosphatases 
and phytases. Yeasts, particularly Candida boidinii, can 
co-aggregate on the surface of olives together with lactic 
acid bacteria (LAB) and establish poly-microbial biofilms 
(Arroyo-López et al. 2012; Benítez-Cabello et al. 2015). 
Recently, the presence of biofilm-forming yeast such as 
Candida spp. and Pichia spp. was also observed in olive 
oil by Santona et al. (2018), and although biofilm-forming 
yeast can make a positive contribution to olive fermentation 
and maturation (Camiolo et al. 2017; Porru et al. 2018), the 
consequences of their presence in olive oils remains open to 
debate (Santona et al. 2018; Fancello et al. 2020).

Another setting in which biofilms play an important role 
is that of dairy products. Microbial communities can influ-
ence the quality of dairy products in both a negative or posi-
tive way. Floor drains in dairy processing facilities are one of 
the niches where the formation of biofilms can occur. Due to 
their open system, floor drains are exposed to a wide range 
of microbes and nutrients and may also serve as a reservoir 
for food-borne pathogens. In particular, Schön et al. (2016) 
showed that floor drain communities were dominated by 
product-associated bacterial (e.g. Lactobacillus kefiranofa-
ciens, Streptococcus thermophilus) and eukaryotic phylo-
types (e.g. Debaryomyces hansenii, Saccharomyces unispo-
rus). Vitzilaiou et al. (2019) found that the reverse osmosis 
membrane filtration elements from a whey water filtration 
unit were highly contaminated by biofilm-forming microbial 
populations, both before and after cleaning-in-place treat-
ments. These microbial populations consisted of the budding 
yeasts Sporopachydermia lactativora in association with 
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filamentous fungi (Magnusiomyces spicifer and Saprochaete 
clavate) and Gram-negative bacteria. In other instances, the 
development of a biofilm in dairy products contributes posi-
tively to the product. It has been showed that Kluyveromyces 
marxianus strains isolated from fermented goat’s milk were 
able to from a biofilm, and this yeast species also performs 
a useful role in the maturation of ‘Pecorino di Farindola’ 
and ‘Parmigiano Reggiano’ cheeses (Perpetuini et al. 2018, 
2019).

With regard to alcoholic beverages, yeast biofilms are 
also present in the wine and beer industry. In the former, 
a well-known example of positive yeast biofilm is that 

represented by S. cerevisiae in Sherry fino (Spain) and 
Sherry-like wines, such as Szamorodni (Hungary), ‘Vin 
Jaune’ (France), ‘Vernaccia di Oristano’ (Italy), etc. At 
the end of the alcoholic fermentation, the so-called “flor 
strains” of S. cerevisiae rise to the surface of the wine 
and switch from fermentative to the oxidative metabolism 
(Legras et al. 2016). Specifically, yeast oxidize ethanol 
to produce acetaldehyde, which is the precursor of mol-
ecules responsible for the specific sensorial properties of 
biologically aged wines (Pozo-Bayón and Moreno-Arribas 
2011). Contrary to these beneficial biofilms, the develop-
ment of other oxidative yeast species on the surface of 

Fig. 2   Negative and positive 
effects of yeast biofilm
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wine constitutes a common problem in alcoholic bever-
age industry. The visual manifestation is the formation 
of a film resulting from the repeated budding of mother 
and daughter cells that remain attached, forming chains 
that eventually develop into a thick biofilm over the entire 
surface of the wine (Fugelsang and Edwards 2007). This 
behavior has been ascribed to Candida vini, P. membrani-
faciens, and Hansenula polymorpha, which produce sen-
sorially negative compounds. Other yeast species able to 
form a biofilm in wine belong to the fermentative species 
Brettanomyces/Dekkera bruxellensis, Saccharomycodes 
ludwigii, Z. bailii, and S. pombe (David-Vaizant and Alex-
andre 2018). Their development during wine storage leads 
to defects such as cloudiness or haziness, sediment pro-
duction, off-odors, and off-tastes. In beer, yeast biofilms 
constitute a negative phenomenon. In breweries, yeast can 
form biofilms colonizing new surfaces or existing fungal 
or bacterial biofilms (Gattlen et al. 2011). In particular, 
yeasts have a high impact on alcohol-free beer and beer-
mixed beverages, where they can be responsible for up to 
90% of the spoilage incurred (Riedl et al. 2019). These 
beverages are characterized by chemical properties (a high 
sugar content and a low pH) that favors the attachment 
of first-stage yeast biofilm colonizers. Wickerhamomyces 
anomalus was reported to be the most important in the 
context of biofilm formation in breweries (Laitila et al. 
2011). Dekkera anomala has also been reported to form 
biofilms in beer and wort, with strain-dependent biofilm 
production (Storgårds et al. 2006). C. krusei, R. mucilagi-
nosa, P. anomala, P. membranifaciens, and S. cerevisiae 
are able to form biofilms on stainless steel surfaces and 
in the filling area, especially in the conveyor system near 
the filler (Storgårds et al. 2006). Similarly, Brettanomyces 
spp. are able to form a biofilm on plastic surfaces under 
conditions with low sugar concentrations (Joseph et al. 
2007). Goode et al. (2010) investigated the efficacy of dif-
ferent cleaning procedures in reducing the formation of 
yeast biofilm in a brewery processing plant using NaOH 
based agents. However, biofilm formed of D. anomala was 
found to be resistant to many cleaning and disinfecting 
solutions, as well as antibiotics (Hutzler et al. 2012). Yeast 
biofilms also have a negatively effect upon fruit juice pro-
duction lines. Yeast belonging to Saccharomyces, Zygo-
saccharomyces, Candida, and Rhodotorula spp. have all 
been isolated from biofilms on conveyor tracks, and on 
can and bottle warmers in the packaging department of 
fruit juice processing plants, due to their high resistance 
to thermal processing (Salo and Wirtanen 2005). Brugnoni 
et al. (2007, 2011) found that C. krusei isolated from a 
large-scale apple juice processing plant was capable of 
rapidly colonizing and covering stainless steel surfaces. 
Moreover, C. krusei was found in mixed biofilms subjected 
to varying hydrodynamic conditions commonly found in 

apple juice facilities (Brugnoni et al. 2014). Of particular 
significance, C. krusei biofilm was identified as potentially 
playing an important role in the survival and dissemination 
of Escherichia coli O157:H7 and Salmonella enterica in 
food-processing environments (Tarifa et al. 2017).

Finally, the negative role of yeast biofilm in drinking 
water systems needs to be considered. Black yeasts are 
commonly associated with water handling systems and 
form recalcitrant biofilms in filters, grates, and nozzle 
heads (De Hoog et al. 2006). In particular, mixed spe-
cies microbial biofilms have been found in Drinking Water 
Distribution Systems (DWDS). DWDS are complex pipe 
networks that function as dynamic ecosystems where con-
sortia of fungal-bacterial biofilms, attached to the inner 
pipe surfaces, are involved in a range of processes that 
ultimately determine the quality and safety of the delivered 
water. In particular, biofilm cells are responsible for the 
biocorrosion of metal pipes and their mobilization may 
affect the safety of bulk water (Husband et al. 2016).

Control of yeast biofilm

Yeast biofilms are tenacious structures difficult to eradi-
cate and to treat with the current arsenal of antifungal 
agents available. As Ramage et al. (2014) pointed out, fun-
gal biofilm resistance involves both physical barriers and 
regulatory processes. Many genetic determinants of anti-
fungal resistance are involved in the formation of ECM, 
the upregulation of drug efflux pumps, the activation of 
stress responses, and the modification of general cell phys-
iology, such as a reduced growth rate (Fanning and Mitch-
ell 2012; Gulati and Nobile 2016). Thus, the antifungal 
resistance of biofilms is multifactorial and heterogeneous, 
often related to specific developmental phases of biofilm 
formation. Furthermore, ECM composition and surface 
density greatly influence biocide effectiveness (Alvarez-
Ordóñez et al. 2019). Biocides are generally employed by 
the food industries at concentrations the exceed the mini-
mal inhibitory concentrations and should therefore be able 
to guarantee microbial inactivation. However, biocides, 
and other antimicrobials are less effective in inactivat-
ing microbes within biofilms than in the planktonic state 
(Cappitelli et al. 2014). It was reported that biofilm cells 
are up to 1000-fold more resistant to antifungal agents 
(Ramage et al. 2014). Considering the role of biofilms as 
a reservoir of potential spoilage and pathogenic microor-
ganisms, much research effort is being devoted to improv-
ing the methods and strategies available to eliminate them 
from industrial settings or to developing novel inhibitory 
or removal tools that are more effective, economic, and 
sustainable.
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Natural compounds against yeast biofilms

Considering that the currently available antifungal agents 
usually have very little effect on yeast biofilms, novel active 
compounds derived from plants, lichens, algae, and microbes 
(fungi or bacteria) have been sought and described (Table 1).

Plants comprise the largest source of compounds active 
against fungal biofilms, particularly essential oils (EOs), 
which have long been recognized to have antimicrobial 
properties and are classified as “Generally Recognized 
as Safe” (GRAS) by the Food and Drug Administration 
(FDA). Due to their natural origin, their utilization in food 
formulations is supported by a positive public perception 
of them being a safer and more eco-friendly alternative to 
“synthetic agents” (Martillanes et al. 2017). EOs coun-
teract the growth of bacteria, yeasts, and molds and have 
been extensively tested in vitro against a wide range of 
pathogenic bacteria and fungi, and in vivo for the con-
trol of potential pathogens in the animal gastrointestinal 
tract (Petretto et al. 2014). The activity of EOs is due to 
their phenolic compounds, such as coumarins, lignans, fla-
vonoids, anthocyanins, tannins, quinines, and stilbenes. 
These compounds have been proven to be active against 
fungal biofilms and are less likely to induce resistant phe-
notypes. Thus, their use improves of the shelf-life of per-
ishable products and the production of food without the 
use of synthetic additives. Tenore et al. (2012) showed 
that the polyphenolic fractions from red pitaya (Hylocer-
eus polyrhizus) inhibited yeasts and molds. Shahzad et al. 
(2014) investigated the anti-biofilm activity of 14 poly-
phenols, of which pyrogallol (present in cocoa, coffee, and 
beer) and curcumin (available in common foods such as 
dried turmeric and curry power) displayed activity against 

C. albicans biofilms. Similarly, methanol olive leave 
extracts, rich in polyphenols, such as oleuropein, exerted 
strong antibiofilm activity against C. albicans (Takó et al. 
2020). The anti-biofilm activity of terpenes against fungi 
and yeast have been reported by (Girardot and Imbert 
2016). More recently, the anti-biofilm activity of aldehy-
dic terpenes against the yeast Cryptococcus neoformans 
was reported by Kumari et al. (2019). Another recent study 
showed that essential oils from clove and thyme were able 
to efficiently inhibit biofilm formation by 17 Candida 
spp. isolated from different food matrices (Rajkowska 
et al. 2019). Tannins are other natural molecules that can 
be used to inhibit fungal biofilm; these substances also 
exhibit antioxidant, enzymatic inhibition, antidiarrheal, 
and mostly antiseptic properties, hence the interest in 
tannins as food additives (Bruneton 1999). Alejo-Armijo 
et al. (2017) showed that two procyanidins isolated from 
a laurel wood extract inhibited the growth of C. albicans 
at high concentrations and prevented biofilm formation at 
lower concentrations. Glasenapp et al. (2019) showed that 
the hydrolysable tannin fraction of Mangrove exhibits an 
anti-adhesion activity against C. albicans. Quinones also 
demonstrate antibacterial and fungicidal properties (Girar-
dot and Imbert 2016). Tsang et al. (2012) showed that 
the quinone purpurin was able to repress yeast-to-hyphal 
transition in C. albicans, downregulating the expression 
of hypha-specific genes. In the context of natural prod-
ucts, hydrosols, complex mixtures containing traces of 
EOs and several water-soluble components, are also of 
significant interest (D’Amato et al. 2018). Plant extracts 
with unknown composition also showed antibiofilm activ-
ity against C. albicans biofilm. Such was the case for fresh 
garlic extract, Cassia spectabilis methanol leaf and crude 

Table 1   Compounds of natural 
origin with inhibiting activity 
against yeast biofilm

Origin/compound Yeast species Authors

Red pitaya (Hylocereus polyrhizus) poly-
phenolic fractions

Yeasts and molds Tenore et al. (2012)

Cocoa, coffee, and beer polyphenols C. albicans Shahzad et al. (2014)
Olive leave extracts - oleuropein C. albicans Takó et al. (2020),

Edziri et al. (2019)
Orange nano emulsion S. cerevisiae Sugumar et al. (2016)
Aldehydic terpenes Cryptococcus neoformans Kumari et al. (2019)
Clove and thyme - essential oils Candida spp. Rajkowska et al. (2019).
Laurel wood extract - procyanidins C. albicans Alejo-Armijo et al. (2017)
Mangrove - hydrolysable tannin C. albicans Glasenapp et al. (2019)
l-histidine S. cerevisiae Bou Zeidan et al. (2014)
Arginine, lysine, cysteine, tryptophan, 

phenylalanine, threonine
S. cerevisiae Zara et al. (2019a)

N-acetyl cysteine C. albicans Abd et al. (2014)
Farnesol C. tropicalis Agustín et al. (2019)
Tyrosol Candida spp. Sebaa et al. (2019)
Killer toxins Candida spp. Tan and Tay (2011)
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extract, and methanol and ethyl acetate methanol extracts 
from Schinus terebinthifolius and Croton urucurana 
against C. albicans biofilm in in vitro studies (Shuford 
et al. 2005; Sangetha et al. 2009; Barbieri et al. 2014).

Besides plant extracts and EOs, the antimicrobial activ-
ity of small molecules against yeast biofilm formation has 
also been evaluated (Bou Zeidan et al. 2013). In particular, 
Bou Zeidan et al. (2014) reported the reduction of biofilm 
formation by S. cerevisiae when l-histidine was added as the 
sole nitrogen source. Similarly, Szafranski-Schneider et al. 
(2012) found that l-histidine modulates biofilm formation 
in C. albicans. Zara et al. (2019a) found that the addition 
of histidine, arginine, lysine, cysteine, tryptophan, pheny-
lalanine, and threonine all reduce biofilm formation in S. 
cerevisiae. In particular, arginine and cysteine were the most 
effective against biofilm formation. In accordance, Abd et al. 
(2014) found that N-acetyl cysteine inhibits and removes C. 
albicans biofilms. Sanna et al. (2012) showed that methio-
nine induces morphology changes in Pichia fermentans 
through the activation of a putative methionine-sensing 
machinery involving phospholipase C (Sanna et al. 2014).

Another interesting approach to the fight against fungal 
biofilm involves interfering with the normal functioning 
of quorumsensing molecules (QSMs). QSMs have been 
described in bacteria and in yeast, where they allow cell-cell 
communication among the members of a microbial com-
munity (Albuquerque and Casadevall 2012). In particular, 
Candidasecreted QSMs induce phenotypic adaptations that 
include morphological changes, the secretion of virulence 
factors, and biofilm formation (Kruppa 2009; Deveau and 
Hogan 2011). Farnesol and tyrosol are the two most stud-
ied QSMs. Farnesol accumulation can block the yeasthy-
phal transition of C. albicans at high cell densities, thus 
preventing biofilm formation (Mosel et al. 2005). Recently, 
the effect of farnesol against C. tropicalis and other yeasts 
isolated from fruit juice filtration membranes in mono- and 
multispecies biofilms was assessed (Agustín et al. 2019). 
Similarly, the combination of tyrosol with other antifungals 
(amphotericin B, itraconazole, and fluconazole) showed a 
synergistic effect against C. albicans and C. tropicalis bio-
films (Sebaa et al. 2019). By contrast, nitric oxide (NO), 
a recognized QSM, enhanced the biofilm formation of S. 
cerevisiae through FLO11-independent mechanisms (Yan 
and Bassler 2019). Finally, microbial derived molecules 
(killer toxins) have also been considered for the inhibition 
of yeast biofilm formation, but the efficacy of their effect 
remains rather controversial. While it has been suggested 
that the spatial use by biofilms represents a sort of protective 
armor against yeast killer toxins, other authors observed that 
Aureobasidium, Pseudozyma, Ustilago, and Candida spp. 
exert an extensive biofilm inhibitory effect on Candida that 
is very likely due to the secretion of killer toxins (Mannazzu 
et al. 2019).

Conclusions

Recent scientific evidence has shown that yeast biofilms 
constitute a serious economic and health issue in food man-
ufacturing. In addition, it is now well-ascertained that in 
many or most natural environments and foods, biofilms are 
formed by mixed bacterial, yeast, and fungal populations. 
For these reasons, one of the major challenges in current 
food microbiology is the identification of novel tools capa-
ble of preventing or removing mixed species biofilms. In 
this respect, the knowledge of microbial interactions and 
the identification of the genetic and environmental mecha-
nisms involved in yeast biofilm formation could lead to the 
development of new biocontrol agents. Since the effective-
ness of plant essential oils, quorum-sensing molecules, small 
molecules, and killer toxins has mostly been demonstrated 
in vitro using over-simplified systems, further studies are 
required to directly assess their activities on food matrices 
and the environment.
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