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Abstract
Dipsacus asperoides contains multiple pharmacologically active compounds. The principal are saponins. The plant can be 
cultivated, but it contains lower levels of bioactive compounds than the plant in the wild. It may be the reason to exploit the 
endophytic fungi that colonize the plant roots in order to produce bioactive compounds. However, the endophytic fungi of 
D. asperoides have not been analyzed in detail. In this study, we isolated and identified 46 endophytic fungal strains from 
the taproots, lateral roots and leaves, and we used morphological and molecular biological methods to assign them into 15 
genera: Fusarium sp., Ceratobasidium sp., Chaetomium sp., Penicillium sp., Aspergillus sp., Talaromyces sp., Cladosporium 
sp., Bionectria sp., Mucor sp., Trichoderma sp., Myrothecium sp., Clonostachys sp., Ijuhya sp., Leptosphaeria sp. and Phoma 
sp. Taproots contained abundant endophytic fungi, the numbers of which correlated positively with level of dipsacus saponin 
VI. Primary fermentation of several endophytic fungal strains from taproots showed that Fusarium, Leptosphaeria, Cera-
tobasidium sp. and Phoma sp. can produce the triterpenoid saponin. These results may guide efforts to sustainably produce 
bioactive compounds from D. asperoides.
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Introduction

Dipsacus asperoides is a well-known medicinal plant used 
to curing occlusion diseases, punch injury, and rheumatism 
(Niu et al. 2015; Wong et al. 2007). Saponins, the major 
bioactive compound in D. asperoides, are isolated primarily 
from the taproots and widely used to treat fractures (Zhang 
et al. 2003; Jung et al. 2012). D. asperoides in the wild has 
diminished as a result of exploitation (Zhang et al. 1997; 
Chen et al. 2014; Wang et al. 2016), and the cultivated plant 
contains lower levels of dipsacus saponin VI than the plant 
in the wild. Therefore, rapid, efficient and environmentally 
sustainable methods are needed to obtain this and other sap-
onins from D. asperoides (Cira et al. 2008; Jiao et al. 2015).

It may be possible to obtain saponins from the endo-
phytic fungi that colonize D. asperoides (Jiao et al. 2015). 
Such fungi colonize the flowers, seeds, taproots, stems 
and leaves of many plant species, without causing visible 
disease symptoms (Aly et al. 2011). Endophytes establish 
a long-term symbiotic relationship with their plant hosts 
(Zuccaro et al. 2011). Some endophytic fungi and their 
metabolites increase resistance to plant pathogens and 
tolerance to drought (Redman et al. 2002; Waller et al. 
2005; Herre et al. 2007; Rodriguez and Redman 2008). 

Endophytic fungi can combine with other endogenous 
microorganisms and antibacterial compounds to form 
a defense system that produces alkaloids to strengthen 
immunity and maintain growth under stress (Qin et al. 
2011; Clay and Holah 1999). Some endophytic fungi 
produce active proteases helped maintain plant activities, 
such as pectinase and esterase, which degrade cell walls 
(Zhao et al. 2016). Pathology can result when programmed 
senescence in the plant or environmental change perturb 
the fungal population in the plant (Stamford et al. 2001).

In addition to supporting the growth and productivity of 
medicinal plants, endophytic fungi can produce bioactive 
metabolites similar to plant hosts, making them a poten-
tial source of medicinal compounds (Chandra 2012). For 
example, the endophytic fungus isolated from Taxus chin-
ensis can be produced the anti-cancer compound paclitaxel 
(Li et al. 2009b). Other endophytic fungi produce the drug 
compounds camptothecin, podophyllotoxin (Eyberger et al. 
2006; Puri et al. 2006), hypericin and emodin (Kusari et al. 
2009). Endophytic fungi can produce bioactive compounds 
through industrial fermentation (Winter et al. 2011; Walsh 
and Fischbach 2010) (Kusari and Spiteller 2011). The 
research of endophytic fungi may provide new ideas and 
methods for developing bioactive compounds in medicinal 
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plants in ways that sustain the development of traditional 
Chinese medicine resources (Zuccaro et al. 2011).

Endophytic fungi have been analyzed in at least 145 
species of medicinal plants, but no such analysis has been 
reported for D. asperoides, to the best of our knowledge. 
Here we characterized the taxonomic diversity of D. asper-
oides taproots, lateral roots and leaves, and analyzed the 
correlation between the number of fungi and the level of 
saponins. Primary fermentation was performed with several 
endophytic fungal strains to examine the possibility of large-
scale development of natural products.

Materials and methods

Sample collection

Two-year-old D. asperoides from Meihuashan in Wein-
ing County, Guizhou Province (N26°23′10.46′′) was 
planted at the Guiyang University of Chinese Medicine 
(E106°37′41.64′′). Plant material was washed and soaked 
in 0.1% SDS for 10 min, then rinsed with double-distilled 
water. The material was divided into taproots, lateral roots 
and leaves, which were stored at 4 °C.

Isolation of endophytic fungi

The surface of plant material was sterilized by soaking 
in 0.1% mercuric chloride for 5 min, then in 75% ethanol 
for 3 min. The disinfected material was rinsed three times 
(1 min each time) with sterile water. The material was cut 
into pieces measuring 0.5 × 0.5 cm, and incubated at 28 °C 
on petri dishes containing potato dextrose agar (PDA), tryp-
tone soy agar (TSA), beef extract tryptone agar (NA) and 
Luria–Bertani (LB) medium. Five biological replicates were 
prepared for each tissue, and growth was monitored every 
day. Endophytic fungal strains were inoculated on PDA slant 
culture-medium. After fungal cultures were fully grown, 
slant culture tubes were closed with tampons wrapped with 
oilpaper and stored at 4 °C.

Taxonomic identification of endophytic fungi

Identification of endophytic fungi was accomplished fol-
lowing the methods described by Cannon et al. (Cannon 
and Simmons 2002). In this study, we perform its molecular 
reidentification, based on the analysis of internal transcript 
spacer (ITS) regions of endophytic fungi (Ding et al. 2018; 
Koljalg et al. 2005). Colonial morphology of endophytic 
fungi was identified using the point planting method as 
described (Chen et al. 2012). In brief, fungal spores were 
inoculated onto the center of solid PDA and incubated at 
28  °C. Fungal characteristics were recorded every day, 

including colony shape, height and color of aerial hyphae, 
base color, growth rate, margin, surface texture, and depth of 
growth into the agar. At least three cultures were character-
ized on each petri dish, and on the attempts equated colony 
morphologies from different plates of the same plant. Endo-
phytic fungi were preliminarily assigned to genera based on 
spore and culture characteristics.

The sequence analysis was also performed to assist in 
specimen identification. Mycelium was gathered directly 
from the surface of 4-day-old agar cultures and ground into 
a powder in liquid nitrogen. The powder was suspended in 
buffer [200 mM Tris–HCl (pH 8.0), 25 mM EDTA (pH 8.0), 
250 mM NaCl and 0.5% SDS (pH 7.5)]. DNA was extracted 
using phenol and chloroform, and precipitated in ethanol. 
DNA integrity was analyzed by agarose gel electrophoresis, 
and purity was assessed using a Micronuclear Quantifier 
(Nanodrop 2000, Thermo Scientific, USA).

Internal transcript spacer (ITS) regions of endophytic 
fungi were amplified using polymerase chain reaction (PCR) 
and the universal ITS primers, V9D (5′-TTA AGT CCC 
TGC CCT TTG TA-3′) and LS266 (5′-GCA TTC CCA AAC 
AAC TCG ACTC-3′). Reactions (25 µL) contained 100 ng 
of genomic DNA, 10 µM of each primer, 12 µL of Premix 
 Taq™ (Ex Taq™ 2.0 plus dye) and sterile double-distilled 
water. Thermal cycling parameters for PCR were as follows: 
pre-denaturation at 94 °C for 5 min; 30 cycles of denatura-
tion at 94 °C for 30 s, annealing at 53 °C for 30 s and exten-
sion at 72 °C for 2 min; and a final extension step at 72 °C 
for 10 min. PCR products were detected on 1.2% (w/v) aga-
rose gel prepared in 1× TAE buffer and electrophoresed at 
100 V for 45 min.

Fragments were eluted and sent to be sequenced by King-
sley Biotech (Nanjing, China). Further information to guide 
the taxonomic identification of fungal strains came from 
the Flora of Chinese Mycology. BLAST searches of fungal 
sequences were conducted to analyze homology with iden-
tified sequences in ITS. Moreover, the comparison analy-
sis of UNITE database to complement GenBank results. 
Tree topologies were evaluated using bootstrap analyses in 
MEGA6 (1000 bootstrap replicates). Phylogenetic trees were 
inferred using the neighbor-joining method.

Analysis of endophytic fungal diversity

Menhinick’s index (Dmn) was used to quantify species rich-
ness among the isolated endophytic fungi. Dmn was cal-
culated as Dmn = S∕

√

N , where S refers to the number of 
different endophytic fungal species, and N refers to the total 
number of isolated endophytic fungi. The Shannon diversity 
index (H′) was calculated using H� = −

∑k

i
Pi(LnPi) , where 

Pi = Ni/N, Ni is the number of individuals of the species, and 
k is the number of different endophytic species in a sample. 
The isolation rate (IR) was calculated by dividing the total 
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number of isolates in a trial by the total number of samples 
in the trial. IR was used to measure the richness of endo-
phytic fungi in plant tissues. The Sorensen similarity index 
(Cs) was calculated as Cs = 2j/(a + b), where j is the num-
ber of endophytic fungi common to the two tissues being 
compared, and a and b are the numbers of endophytic fungi 
in each tissue. Cs was used to quantify species similarity 
between different tissues.

Quantification of dipsacus saponin VI

Samples of D. asperoides taproots, lateral roots and leaves 
were dried and ground into powder. Sample powder were 
soaked in methanol solution, ultrasonicated for 30 min 
(power, 100  W; frequency, 40  kHz), allowed to cool, 
weighed, and membrane-filtered. The filtered sample was 
analyzed for dipsacus saponin VI on a C18 symmetry col-
umn (4.6 × 250 mm, 5 µm) on a Waters HPLC system, with 
the following chromatography parameters: mobile phase, 
acetonitrile–water (30:70); flow rate, 1.0 mL/min; injection 
volume, 20 µL; detection wavelength, 212 nm; and theo-
retical plate number, ≥ 3000. HPLC run time was 25 min 
(Pharmacopoeia of the People’s Republic of China, 2015).

HPLC was also conducted with standard dipsacus sapo-
nin VI (purity, 91.3%; JY8R—BINA2), which was obtained 
from the China Food and Drug Certification Research Insti-
tute (Beijing, China). The standard was dissolved in metha-
nol to a concentration of 0.15 mg/mL. Retention time of the 
standard was 18.254 min under our conditions.

Fermentation of endophytic fungi

Taproot mycelium were transferred to an Erlenmeyer flask 
containing 100 mL liquid medium and cultured at 28 °C for 
5 days with shaking at 160 rev min−1. Fungal characteristics 
were recorded every day, including color, viscosity, odor 

and other properties of the fermentation broth. Samples of 
mycelium (100 mg) were harvested by filtering and ground 
into powder in liquid nitrogen. DNA was extracted and PCR-
amplified as described above (Cannon and Simmons 2002).

Statistical analyses

All results were expressed as mean ± SEM. Graphs were 
prepared using GraphPad Prism 7.0. Differences between 
mean values were assessed for significance using one-way 
analysis of variance (ANOVA), followed by the least signifi-
cant difference (LSD) test for post hoc comparisons (equal 
variances were assumed). Significance was indicated as fol-
lows: *P < 0.05, **P < 0.01, and ***P < 0.005.

Results

Identification of endophytic fungi from D. 
asperoides roots and leaves

Different tissues of D. asperoides were cultured in PDA, 
LB, TSA and NA culture media. A total of 46 strains were 
isolated and preliminarily assigned based on colony and 
hyphal characteristics (Fig. 1). The largest number of endo-
phytic fungal isolates (40) were found in taproots, followed 
by leaves (4) and lateral roots (2) (Fig. 1A). The isolates in 
four media showed that the greatest number was obtained 
in PDA (37), followed by NA (4), TSA (3) and finally LB 
medium (2) (Fig. 1B). The IR in taproots (0.40) was sig-
nificantly higher than that in lateral roots (0.02) or leaves 
(0.04). Taproots also showed that H′ and Dmn were higher 
than leaves and lateral roots (Table 1; Fig. 2). These results 
suggest that the taproots may provide the best niche or entry 
point for colonization and penetration by endophytic fungi.

Fig. 1  Isolation of endophytic fungi from Dipsacus asperoides. Tis-
sues of Dipsacus asperoides were cultured in the culture medium of 
PDA, LB, TSA and NA. 46 isolates were identified in 100 taproot 
segments, 100 lateral root segments and 100 leaf segments based on 
their morphological characteristics. A Distribution of endophytes in 
different tissues of D. asperoides: 40 strains (86.96%) were isolated 

from the taproots, 2 strains (4.35%) were isolated from lateral roots 
and 4 strains (8.70%) were isolated from the leaves. B Culture of dif-
ferent endophytes from different D. asperoides tissues on different 
media: PDA supported growth of 37 strains (80.43%); LB medium, 
2 strains (4.35%); TSA, 3 strains (6.52%); and NA, 4 strains (8.70%)
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Microscopic analysis of the 46 endophytic fungi allowed 
them to be assigned preliminarily to Fusarium sp. (samples 
daef 1–14) on the basis of their irregular, round shape and 
hyphae uplift, fast growth, yellow pigment production, and 
presence of conidia or spores; to Ceratobasidium sp. (daef 
15–18) on their basis of their loose white hyphae and lack of 
conidia; to Chaetomiaceae sp. (daef 19–20) on the basis of 
white colonies and soft hair or cotton with yellow pigment 
on the back of hyphae; to Penicillium sp. (daef 21–22) on the 
basis of scattered hyphae, pigment production, and broom-
like stem with a string of conidia; to Aspergillus sp. (daef 
23) on the basis of white, pilose, cotton-like hyphae with 
erect hyphae, conidiophores and a hemispherical capsule; to 
Talaromyces sp. (daef 24) on the basis of green cotton-like 
hyphae and a small, broom-like stem with conidiophores; 
to Cladosporium sp. (daef 25) on the basis of green villi-
like hyphae with small water-like substances, elliptical and 
round conidia; and to Bionectria sp. (daef 26–27) on the 

basis of white cotton-like appearance with some water-like 
substances, broom-like branches with long spindle-shaped 
spore stalks on the branchlets, and small curved elliptical 
and ovate spores on the spore stalks (Figs. 3 and S1).

The remaining endophytic fungal isolates were assigned 
to genera based on comparison with known fungi: Clonos-
tachys sp. (daef 28–29), Mucor sp. (daef 30–34), Tricho-
derma sp. (daef 35–36), Myrothecium sp. (daef 37), Ijuhya 
sp. (deaf 38–39), Leptosphaeria sp. (daef 40–42), Phoma sp. 
(daef 43–45) and Heliogales sp. (daef 46).

Comparison of ITS sequences from the 46 isolates with 
fungal sequences in GenBank (Table 2) lead to the iden-
tification of 15 genera: Fusarium sp., Ceratobasidium sp., 
Chaetomium sp., Penicillium sp., Aspergillus sp., Talaromy-
ces sp., Cladosporium sp., Bionectria sp., Mucor sp., Tricho-
derma sp., Myrothecium sp., Clonostachys sp., Ijuhya sp., 
Leptosphaeria sp. and Phoma sp. Two strains that could not 
be assigned to a genus were identified as Chaetomiaceae sp. 
and Helotiales sp. based on GenBank analysis. Taxonomic 
identification based on ITS sequencing was consistent with 
that based on morphological observation. In addition, the 
results of blastn analysis by UNITE database were consistent 
with NCBI analysis (Table S1).

The two dominant genera were Fusarium sp. to which 
29.09% of isolates, and Ceratobasidium sp. to which 10.91% 
of isolates. Myrothecium sp. was isolated only from leaves. 
Cs analysis showed that the tissue pair with greatest simi-
larity was lateral roots and leaves (Cs 2.00), followed by 
taproots and lateral roots (1.88) and finally taproots and 
leaves (1.79). These results suggest the heterogeneity of the 
endophyte assemblage.

A phylogenetic tree based on ITS sequences (Fig. 4) 
assigned Fusarium sp. isolates to six clusters, three of 
which were closely related and clustered with Fusarium 
globosum (LT746280.1), two of which clustered with 
Fusarium tricinctum (MG274296.1) and Fusarium sp. 
(JF740911.1), and one of which was related to Fusarium 
solani (KY484984.2). Clades comprised daef 6, 7, 13 and 
14; daef 4 and 8; and daef 11 and 12. Fusarium sp. was the 
most frequently isolated fungal genus. The four isolates daef 
30 and 32–34 were grouped into a branch with the refer-
ence taxon Mucor sp. The daef 15, 16 and 18 and Ceratoba-
sidium sp. were grouped into a branch with 100% bootstrap 
support, with daef 15 clustering with Ceratobasidium sp. 
(KC782938.1).

Leptosphaeria isolates formed a cluster with reference 
taxa Leptosphaeria sp. (KJ934197.1 and AJ317958.1). 
Phoma sp. isolates formed a cluster with reference taxa 
Phoma exigua var. (EU343130.1 and EU343168.1). 
Penicillium sp. isolates were grouped into two clus-
ters: daef 21 clustered with Penicillium janthinellum 
(MG938669.1), and daef 22 clustered with Penicillium 
skrjabinii (EU427287.1). Trichoderma isolates formed a 

Table 1  Colonisation, isolation, species richness and multiple infec-
tion rates of endophytic fungi at each healthy tissue of Dipsacus 
asperoides 

Diversity statistical table of endophytic fungi in D. asperoides tap-
roots, lateral roots and leaves. Indicated are the number of isolates 
recovered, isolation rate (IR), Shannon diversity index (H′), and Men-
hinick’s index (Dmn)

Parameter Taproots Lateral roots Leaves Total

No. of samples 100 100 100 300
Isolation rate (IR) 0.40 0.02 0.04 0.46
Shannon diversity index (H′) 2.60 0.00 1.40 4.00
Menhinick’s index (Dmn) 2.53 0.71 2.00 5.24

Fig. 2  Diversity of endophytic fungi from D. asperoides. Statistical 
histogram of the number of different endophytic fungi in the taproots 
(green), lateral roots (blue) and leaves (orange)



 World Journal of Microbiology and Biotechnology (2019) 35:42

1 3

42 Page 6 of 14

cluster with Trichoderma hamatum (KM491888.1), Tricho-
derma asperellum (KF723005.1) and Trichoderma konin-
giopsis (GQ229070.1). Clonostachys sp. isolates formed 
a cluster with Clonostachys rosea f. (HM751081.1), Clo-
nostachys sp. (KC806284.1) and Clonostachys pseudoch-
roleuca (KC806259.1). A Bionectria sp. isolate formed a 

cluster with Bionectria sp. (KF367470.1) with 100% boot-
strap support. Myrothecium sp. isolates were grouped into 
two clusters: two closely related isolates formed a clade 
and one isolate formed a clade with Myrothecium roridum 
(FJ914699.1) and Myrothecium sp. (KY086248.1) with 
99% bootstrap support. Chaetomium sp. isolates formed a 
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Fig. 3  Morphological characteristics of endophyte fungi. Photo-
graphs showing typical morphology of endophyte fungi from tap-
roots, lateral roots and leaves of D. asperoides. A Characteristics 
of endophytic fungi isolated from the taproots, showing “surface”, 
“back” and microstructure. These characteristics were observed for 
the following isolates: daef 11, 15, 22, 23, 25, 40, 41 and 44. Scale 

bar, 20 µm. B Characteristics of endophytic fungi isolated from the 
lateral roots, showing “surface”, “back” and microstructure. These 
characteristics were observed for daef 5 and 21. Scale bar, 20 µm. C 
Characteristics of endophytic fungi isolated from the leaves, show-
ing “surface”, “back” and microstructure. These characteristics were 
observed for daef 18 and 37. Scale bar, 20 µm
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Table 2  Similarity between the 
isolates and closest species in 
GenBank

Strain ID Accession no. Closest (Accession no.) Similarity (%)

daef1 MH550471 Fusarium oxysporum (KU872828.1) 99
daef2 MH550472 Fusarium globosum (LT746280.1) 99
daef3 MH550473 Fusarium solani (KY484984.2) 98
daef4 MH550474 Fusarium sp. (JF740911.1) 99
daef5 MH550475 Fusarium tricinctum (MG274296.1) 99
daef6 MH550476 Fusarium lateritium (AF310980.1) 99
daef7 MH550477 Fusarium acuminatum (KJ082098.1) 99
daef8 MH550478 Fusarium sp. (LT746244.1) 98
daef9 MH550479 Fusarium sp. (AF310976.1) 98
daef10 MH550480 Fusarium acuminatum (HM068320.1) 98
daef11 MH550481 Fusarium lateritium (AF310980.1) 99
daef12 MH550482 Fusarium sp. (LT746240.1) 99
daef13 MH550483 Fusarium sp. (LT746244.1) 99
daef14 MH550484 Fusarium proliferatum (LT841264.1) 99
daef15 MH550485 Ceratobasidium sp. (DQ520098.1) 97
daef16 MH550486 Ceratobasidium sp. (KC782938.1) 99
daef17 MH550487 Ceratobasidium sp.(DQ097889.1) 96
daef18 MH550488 Ceratobasidium sp.(AF354091.1) 99
daef19 MH550489 Chaetomiaceae sp. (KC007192.1) 99
daef20 MH550490 Chaetomium megalocarpum (KC109744.1) 99

Chaetomium pseudocochliodes (JN209925.1) 98
daef21 MH550491 Penicillium janthinellum (MG938669.1) 98
daef22 MH550492 Penicillium sp. (KX961210.1) 98

Penicillium skrjabinii (EU427287.1) 99
daef23 MH550493 Aspergillus lentulus (KX903293.1) 99

Aspergillus viridinutans (EF661280.1) 99
daef24 MH550494 Talaromyces apiculatus (JN899375.1) 98
daef25 MH550495 Cladosporium cladosporioides (KP701868.1) 99

Cladosporium pseudocladosporioides (KP701943.1) 99
Cladosporium delicatulum (KP701939.1) 98

daef26 MH550496 Bionectria sp. (KF367470.1) 99
daef27 MH550497 Bionectria sp.(KF367477.1) 99
daef28 MH550498 Clonostachys rosea f. (HM751081.1) 99
daef29 MH550499 Clonostachys sp. (KC806284.1) 99

Clonostachys pseudochroleuca (KC806259.1) 99
daef30 MH550500 Mucor racemosus (KJ911228.1) 99
daef31 MH550501 Mucor sp. (KU060772.1) 98
daef32 MH550502 Mucor fragilis (JQ972062.1) 97
daef33 MH550503 Mucor circinelloides f. (JN205987.1) 96
daef34 MH550504 Mucor fragilis (JQ972063.1) 97
daef35 MH550505 Trichoderma hamatum (KM491888.1) 99
daef36 MH550506 Trichoderma asperellum (KF723005.1) 99

Trichoderma koningiopsis (GQ229070.1) 99
daef37 MH550507 Myrothecium roridum (FJ914699.1) 99

Myrothecium sp. (KY086248.1) 99
Myrothecium verrucaria (KM215639.1) 97

daef38 MH550508 Ijuhya corynospora (KY607539.1) 96
daef39 MH550509 Ijuhya vitellina (KY607531.1) 95
daef 40 MH550510 Leptosphaeria sp. (KJ934197.1) 99
daef41 MH550511 Leptosphaeria sp. (AJ317958.1) 99
daef42 MH550512 Leptosphaeria biglobosa (KY221834.1) 99
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Fungi were grouped into OTUs defined by 97% internal transcribed spacer (ITS) sequence similarity
The statistical table shows the similarity of the rDNA-ITS sequence of endophytic fungi from D. asper-
oides to the closest fungal sequences in GenBank, based on BLAST alignment. The strain ID has the for-
mat: Latin initials of Dipsacus asperoides, the initial letter of the endophytic fungus and the strain number. 
The GenBank accession number is also shown, with “Closest (Accession No.)” indicating the most similar 
fungus (and its accession number) from GenBank. Similarity (%) is the Ident value obtained by comparing 
the sequences between the two strains

Table 2  (continued) Strain ID Accession no. Closest (Accession no.) Similarity (%)

daef43 MH550513 Phoma exigua var. (EU343130.1) 99
daef44 MH550514 Phoma exigua var. (EU343168.1) 98
daef45 MH550515 Phoma exigua var.(EU343118.1) 98
daef46 MH550516 Helotiales sp. (FN548161.1) 99

Helotiales sp. (MG066445.1) 99

Fig. 4  Phylogenetic identification of endophytic fungi from D. asper-
oides. Phylogenetic tree based on neighbor-joining analysis of ITS 
sequences from the 46 strains of endophytic fungi isolated from tap-
roots, lateral roots and leaves. ITS sequences obtained were submit-
ted to the NCBI database, and BLAST searches were performed to 

select species showing 95–100% homology with the isolated species. 
Closely related species are labeled with taxonomic names, followed 
by the accession number. Significant bootstrap values are indicated at 
the branching points
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cluster with Chaetomium sp. (KC007192.1), Chaetomium 
pseudocochliodes (JN209925.1) and Chaetomium meg-
allocarpum (KC109744.1). The Talaromyces sp. isolate 
formed a cluster with Talaromyces apiculatus (JN899375.1) 
with 100% bootstrap support. The Aspergillus sp. isolate 
formed a cluster with Aspergillus lentulus (KX903293.1) 
and Aspergillus viridinutans (EF661280.1). The Clad-
osporium sp. isolate formed a cluster with Cladosporium 

pseudocladosporioides (KP701943.1), Cladosporium deli-
catulum (KP701939.1) and Cladosporium cladosporioides 
(KP701868.1) with 100% bootstrap support. The daef 17 
and 31 could not be represented in the phylogenetic tree 
because of low sequence quality. The daef 46 clustered with 
Helotiales sp. (FN548161.1 and MG066445.1) with 99% 
and 100% bootstrap support.

Fig. 5  Dipsacus saponin VI level positively correlated with endo-
phytic fungi in roots of D. asperoides. Dipsacus saponin VI was 
quantified in taproots, lateral roots and leaves using HPLC. A Chro-
matogram of the standard dipsacus saponin VI. The y-axis indicates 
the absorbance of dipsacus saponin VI, and the x-axis indicates the 
measurement time (min). B Chromatogram of dipsacus saponin 
VI in taproots. C Chromatogram of dipsacus saponin VI in lateral 
roots. D Chromatogram of dipsacus saponin VI in leaves. E Quan-
tification of dipsacus saponin VI content in different tissues. Data 
are mean ± SEM (n = 4). ***P < 0.005 (one-way ANOVA and least 

significant difference test post hoc). F Correlation analysis between 
dipsacus saponin VI level and the number of endophytic fungi in tap-
roots and lateral roots. Each isolate is represented by a spot (n = 4, 
 R2 = 0.9035, P = 0.0001). G Correlation analysis between dipsacus 
saponin VI level and the number of Fusarium sp. in taproots and lat-
eral roots. Each isolate was represented as a spot (n = 4,  R2 = 0.9122, 
P = 0.0001). H Correlation analysis between the dipsacus saponin VI 
level and the number of Mucor sp. in taproots and lateral roots. Each 
isolate was represented as a spot (n = 4,  R2 = 0.0875, P = 0.0896)
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Positive correlation between dipsacus saponin VI 
level and number of endophytic fungi in roots

Dipsacus saponin VI was quantified in taproots, lateral roots 
and leaves using HPLC (Fig. 5A–D). Levels differed signifi-
cantly in different tissues (P < 0.05). Levels were highest in 
taproots (2.98%), lower in lateral roots (0.87%) and below 
the detection limit in leaves (Fig. 5E). Level of dipsacus 
saponin VI positively correlated with the total number of 
endophytic fungi (Fig. 5F) and with the number of Fusarium 
sp. (Fig. 5G), but independent with the number of Mucor sp. 
in taproots (Fig. 5H).

Primary fermentation of endophytic fungi

Selected endophytic fungal isolates were subjected to 
primary fermentation tests to identify which strains may 
produce dipsacus saponin VI. Several endophytic fungi 
enriched in taproots and from different genera were tested: 
daef 11 (Fusarium sp.), 40 and 41 (Leptosphaeria sp.), 15 
(Ceratobasidium sp.) and 44 (Phoma sp.). Within 10 min at 
60 °C, all these strains produced foam and showed no fading 
(Fig. 6A). These strains may produce saponins. In addition, 
daef 15 produced red pigment, while daef 40, 41 and 44 
produced green or deep green pigments.

To verify that these fermented fungi were identical to 
the strains originally isolated and were not contaminated by 
other microorganisms, we confirmed that the microstructure 

of the fermented fungi was consistent with that of the origi-
nal strains. We also amplified ITS regions from mycelium 
of the fermented strains and confirmed that the sequences 
were 100% homologous to the regions sequenced from the 
original strains (Fig. 6B and S2).

Discussion

This study begins the process of correlating production of 
perhaps the most relevant bioactive compound from this 
plant, saponins, with the number and diversity of endo-
phytic fungi in different tissues. Our results help clarify 
the biodiversity and phylogenetic relationships of endo-
phytic fungi in D. asperoides, which can begin to shed 
light on how endophytic fungi can affect the quality of 
traditional Chinese medicinal plants.

The 46 endophytic fungi were isolated from different 
tissues of D. asperoides. This number is slightly lower 
than what has been reported with other plants, which may 
mean that some strains stopped colonizing D. asperoides 
over time, such as due to inhibition by other rapidly grow-
ing strains (Gonzaga et al. 2015).

Nearly all the fungal isolates in our study were colo-
nized in taproots, while only two strains were isolated from 
lateral roots and four strains were isolated from leaves. 
This suggests that in this medicinal plant, the taproots are 
most likely to be colonized. The much greater abundance 

Fig. 6  Primary fermenta-
tion of endophytic fungi from 
Dipsacus asperoides. Five 
endophytic fungi that were 
enriched in taproots and came 
from different genera were 
subjected to primary fermenta-
tion: daef 11 (Fusarium sp.), 
40 and 41 (Leptosphaeria sp.), 
15 (Ceratobasidium sp.) and 44 
(Phoma sp.). A Photographs of 
the fermentation of five strains 
of endophytic fungi and their 
microscopic morphology. Scale 
bar, 20 µm. B Quantification of 
synergistic alignment between 
ITS sequences of the foam-
ing fungus (ITS’) and the ITS 
sequences of the original fungal 
isolate
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of fungi in taproots reflects that fungi can penetrate host 
plants via the roots, where they gain access to nutrients in 
xylem and phloem (Martin et al. 2012; Pfurtscheller and 
Klimesch 1990; Sheng-Liang et al. 2014). The diversity 
of endophytic fungi in taproots was more higher than that 
in other tissues. We guess that these fungi colonized D. 
asperoides as spores that moved from the soil to the roots; 
the lateral roots acted simply as transport bridges to carry 
the fungi to taproots for storage (Courty et al. 2018). In 
contrast to our results, diversity of endophytic fungi was 
greatest in the leaves of Gossypium hirsutum (Li et al. 
2014) and Miscanthus × giganteus (Schmidt et al. 2018).

Endophytic fungi in plants are primarily Ascomycetes 
and their anamorphs, although they can also be Basidi-
omycetes, Zygomycetes, and Oomycetes (Soca-Chafre 
et al. 2011). In D. asperoides, endophytic fungi included 
many rare species, mainly belong to Deuteromycota, that 
accounted for 48.94% of isolates; Ascomycetes accounted 
for only 34.04% of isolates. Some Basidiomycetes and Zygo-
mycetes were observed.

Fusarium sp. is the predominant microflora in D. asper-
oides. This genus occurs as an endophyte in various cash 
crops, including Solanum lycopersicum (Aime et al. 2013), 
Drepanocarpus lunatus (Liu et al. 2016), and Dioscorea 
zingiberensis (Zhang et al. 2009). Ceratobasidium sp. can 
cause sheath blight and act as a saprotroph in rice (Mos-
quera-Espinosa et al. 2013), persimmon (Ceresini et al. 
2012) and soybean (Salehi et al. 2005). Aspergillus sp. acts 
as an endophyte of Opuntia dillenii and several other plants 
(Li et al. 2009a). Myrothecium sp. acts as an endophyte of 
Calophyllum apetalum and Garcinia Morella (Ruma et al. 
2015).

Several of the endophytic fungi that were identified 
in D. asperoides can produce bioactive compounds of 
medicinal interest. Trichoderma sp., Talaromyces sp., 
Mucor sp. and Penicillium sp. can produce proteases that 
degrade cellulose (Zhao et al. 2016; Thongekkaew et al. 
2013), dairy products, and polysaccharides (Inoue et al. 
2015). Fusarium sp. can produce triterpenoid saponins 
(Cira et al. 2008; Jiao et al. 2015), which are the main 
secondary metabolites of D. asperoides and used to treat 
osteoporosis, reduce lipids and protect against oxidation 
(Wang et al. 2016). Our results suggest that the main loca-
tion of saponin production in D. asperoides is roots. Lev-
els of dipsacus saponin VI were higher in taproot than in 
other tissues, and the taproot have been also the greatest 
number of endophytic fungi. In contrast, dipsacus saponin 
VI levels in leaves were below the limit of detection, per-
haps due to scarcity of interactions between endophytic 
fungi and host, reflected in the relatively low Dmn and 
IR. Endophytes can prefer different plant tissues, where 

they form specific symbiotic relationships; as a result, 
different tissues contain different profiles of secondary 
metabolites (Jasinska et al. 2018; Jarvis et al. 1985; Liu 
et al. 2006; Wang et al. 2016).

Changing the environmental conditions of endophytes 
can lead them to produce different secondary metabolites 
(Eaton et al. 2010; Wang et al. 2017), increasing their use-
fulness as bioactive molecule factories. Many active phar-
maceutical compounds have been isolated from filtrates of 
Fusarium sp. cultures (Suzuki et al. 2013). The leptosins 
I and J have been isolated from Leptosphaeria mycelium 
(Takahashi et al. 1994). A cyclic lipodepsipeptide has been 
isolated from Phoma sp. (Herath et al. 2009). When we sub-
jected Fusarium sp., Leptosphaeria sp., Ceratobasidium sp. 
and Phoma sp. to primary fermentation, we found that all 
them could produce triterpenoid saponin. In addition, our 
isolates (Cladosporium sp., Phoma sp., Fusarium sp., and 
Penicillium sp.) were produced pigments that may be useful 
in the food, cosmetic and pharmaceutical industries. These 
results with primary fermentation may facilitate the devel-
opment of strategies to produce natural products from D. 
asperoides (Bick and Rhee 1966; Zheng et al. 2017; Shah 
et al. 2015).

Our results highlight the diversity of endophytic fungi 
in medicinal plants and their ability to synthesize bioactive 
secondary metabolites (Gupta et al. 2018). They may also 
guide new approaches to synthesize dipsacus saponin VI 
from D. asperoides, permitting sustainable development of 
this important traditional Chinese medicine resource.
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