Skip to main content
Log in

The role of a periplasmic gluconolactonase (PpgL)-like protein in Pseudomonas syringae pv. syringae B728a

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In Pseudomonas syringae pv. syringae B728a, the Psyr_1712 locus ID encodes a putative protein with a signal peptide and a COG2706 domain of the type present in 3-carboxy-cis,cis-muconate lactonizing enzymes. An amino acid sequence alignment of the P. aeruginosa PpgL with other genome sequenced fluorescent pseudomonads such as P. syringae Psyr_1712 showed that they have the same enzymatic active site residue comprising one histidine, one glutamic acid and two arginines. Based on the similarity of the Psyr_1712 locus ID and PpgL of P. aeruginosa, it was designated as PspL (P seudomonas s yringae PpgL- like) protein. Deletion of the pspL gene caused a delay in lag phase growth of bacterium. Mutants lacking pspL were defective in N-acylhomoserine lactones production. The PspL with signal peptide was expressed in a ppgL mutant of P. aeruginosa and restored the defects. The presence of a lux-like box sequence in upstream of pspL along with decreased expression level of the pspL gene in an ahlI negative mutant indicated that the pspL gene is under control of quorum sensing. Furthermore, two acylhomoserinelactone regulated phenotypes, swarming motility and susceptibility to hydrogen peroxide were enhanced in ΔpspL mutant. Together, this work reveals the important role of the new PpgL-like protein PspL in quorum sensing of P. syringae pv. syringae B728a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaeffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 40:959–978

    Article  Google Scholar 

  • Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323

    Article  CAS  Google Scholar 

  • Bredenbruch F, Geffer R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an ironchelating activity. Environ Microbiol 8:1318–1329

    Article  CAS  Google Scholar 

  • De Bruijn I, Raaijmakers JM (2009) Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP Protease. J Bacteriol 191:1910–1923

    Article  Google Scholar 

  • Dulla GF, Lindow SE (2009) Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves. ISME J 7:825–834

    Article  Google Scholar 

  • Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506

    CAS  Google Scholar 

  • Eberl L, Tümmler B (2004) Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294:123–131

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  Google Scholar 

  • Feil H, Feil W, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti F, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 102:11064–11069

    Article  CAS  Google Scholar 

  • Fuqua W, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 172:922–931

    Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  Google Scholar 

  • Galperin MY, Moroz OV, Wilson KS, Murzin AG (2006) House cleaning, a part of good housekeeping. Mol Microbiol 59:5–19

    Article  CAS  Google Scholar 

  • Gnanamanickam S (2006) Plant associated bacteria. Springer, The Netherlands Gospodarek E, Bogiel T, Zalas-Wiecek P (2009) Communication between microorganisms as a basis for production of virulence factors. Pol J Microbiol 58:191–198

    Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  CAS  Google Scholar 

  • Hossain MM, Tani C, Suzuki T, Taguchi F, Ezawa T, Ichinose Y (2008) Polyphosphate kinase is essential for swarming motility, tolerance to environmental stresses, and virulence in Pseudomonas syringae pv. tabaci 6605. Physiol Mol Plant Pathol 72:122–127

    Article  CAS  Google Scholar 

  • Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, Steinmetz I (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiol 150:831–841

    Article  CAS  Google Scholar 

  • Kanagasundaram V, Scopes R (1992) Isolation and characterization of the gene encoding gluconolactonase from Zymomonas mobilis. Biochim Biophys Acta 1171:198–200

    CAS  Google Scholar 

  • Kang H, Gross DC (2003) Characterization of an RND transporter located within the syr-syp genomic island of Pseudomonas syringae pv. syringae. Phytopathol 93:43–49

    Google Scholar 

  • Keith LM, Bender CL (1999) AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181:7176–7184

    CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:310–317

    Google Scholar 

  • Kinscherf TG, Willis DK (1999) Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-homoserin lactone biosynthetic gene ahlI. J Bacteriol 181:4133–4136

    CAS  Google Scholar 

  • Kovach M, Phillips W, Elzer PH, Roop RM, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–801

    CAS  Google Scholar 

  • Kupor SR, Fraenkel DG (1969) 6-Phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene. J Bacteriol 100:1296–1301

    CAS  Google Scholar 

  • Marutani M, Taguchi F, Ogawa Y, Hossain MM, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genom 279:313–322

    Article  CAS  Google Scholar 

  • Maruyama K, Shibayama T, Ichikawa A, Sakou Y, Yamada S, Sugisaki H (2004) Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem 68:1434–1441

    Article  CAS  Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Cámara M, Daykin M, Lamb J, Swift S, Bycroft BW, Stwart G, Williams P (1997) Quorum sensing and Chromobacteriumium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  CAS  Google Scholar 

  • Miclet E, Stoven V, Michels PA, Opperdoes FR, Lallemand JY, Duffieux F (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem 276:34840–34846

    Article  CAS  Google Scholar 

  • Milton DL, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319

    CAS  Google Scholar 

  • Nguyen LC, Yamamoto M, Ohnishi-Kameyama M (2009) Genetic analysis of genes involved in synthesis of modified 4-amino-4, 6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci. Mol Genet Genom 282:595–605

    Article  CAS  Google Scholar 

  • Ornston LN, Stanier RY (1964) Mechanism of ketoadipate formation by bacteria. Nature 204:1279–1283

    Article  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  CAS  Google Scholar 

  • Quiňones B, Pujol C, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant-Microb Interact 17:521–531

    Article  Google Scholar 

  • Quiňones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microb Interact 18:682–693

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Puhler A (1983) A broad host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  • Tarighi S, Wei Q, Ca′mara M, Williams P, Fletcher M, Kajander T, Cornelis P (2008) The PA4204 gene encodes a periplasmic gluconolactonase (PpgL) which is important for fitness of Pseudomonas aeruginosa. Microbiology 154:2979–2990

    Article  CAS  Google Scholar 

  • Thomason LC, Court DL, Datta AR, Khanna R, Rosner JL (2004) Identification of the Escherichia coli K-12 ybhE gene as pgl, encoding 6-phosphogluconolactonase. J Bacteriol 186:8248–8253

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorumsensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  CAS  Google Scholar 

  • Withers H, Swift S, Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4:186–193

    Article  CAS  Google Scholar 

  • Workman C, Yin Y, Corcoran DL, Ideker T, Stormo G, Benos P (2005) enoLOGOS: a versitale web tool for energy normalized sequence logos. Nucleic Acids Res 33:389–392

    Article  Google Scholar 

  • Zhang H, Wang L, Zhang L (2002) Genetic control of quorumsensing signal turnover in Agrobacterium tumefacience. Proc Natl Acad Sci USA 99:4638–4643

    Article  CAS  Google Scholar 

  • Zimenkov D, Gulevich A, Skorokhodova A, Biriukova I, Kozlov Y, Mashko S (2005) Escherichia coli ORF ybhE is pgl gene encoding 6-phosphogluconolactonase (EC 3.1.1.31) that has no homology with known 6PGLs from other organisms. FEMS Microbiol Lett 244:275–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Steven Lindow, Univ. of California, Berkeley for his gift of strains P. syringae pv. syringae B728a and ahlI mutant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Tarighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarighi, S., Taheri, P. The role of a periplasmic gluconolactonase (PpgL)-like protein in Pseudomonas syringae pv. syringae B728a. World J Microbiol Biotechnol 27, 1303–1311 (2011). https://doi.org/10.1007/s11274-010-0577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0577-2

Keywords

Navigation