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Abstract The present study utilized zinc-tin nano-
flowers (ZT-NFs) in a batch adsorption treatment 
process to effectively remove cadmium from syn-
thetic wastewater. The batch adsorption strategy was 
optimized using the univariate approach to enhance 
the efficiency of the adsorption process. The domi-
nant parameters examined in the optimization experi-
ments were pH/volume of buffer solution, nanoflower 
amount, and sample agitation type/period. After 
determining the optimal batch adsorption conditions, 
equilibrium studies were performed by adding cad-
mium to synthetic wastewater at concentrations in the 
range of 1.0 – 40 mg/L. The quantification accuracy 

for cadmium was improved by developing the cali-
bration plot with spiked sample matrix. The equilib-
rium data were subjected to mathematical modelling 
utilizing the Langmuir adsorption isotherm model. 
The calculated isotherm constants indicated a well-
fitted isotherm model to the experimental data. The 
reported ZT-NFs-based adsorptive removal strategy 
was effectively employed to remove cadmium from 
synthetic wastewater.

Keywords Adsorption · Cadmium · Langmuir 
isotherm · Synthetic wastewater · Zinc-tin oxide 
nanoflower

1 Introduction

Heavy metal toxicity is among the alarming issues 
facing humans, and these toxic metals are known to 
be more prevalent in areas where industrial activities 
are prominent (Yang et al., 2016). Cadmium, which is 
a toxic metal, occurs naturally in the environment but 
is released in larger proportions into living environs 
through many human activities such as the use of fos-
sil fuels, untreated mining waste, welding, smelting, 
and cigarette smoking (Akkaya et al., 2017). Due to 
its poisonous effect on both animals and humans, this 
element has receives a lot of attention for its poten-
tial long-term risks to public health (Ehrampoush 
et al., 2015). Determining the level of cadmium in the 
environment is a crucial issue because of its potential 
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toxicity to humans, plants, and other species, even at 
low concentrations (Ali et al., 2019). It is also one of 
the ten most harmful compounds for public health, 
according to the literature (Koju et al., 2018). It was 
reported that cadmium accumulation in the body can 
result in hypertension, bone ailments, and damage 
of the liver and kidneys (Dias et al., 2019). Accord-
ing to the World Health Organization, regions with 
the highest contamination levels recorded average 
daily consumption of cadmium in the range of 600 
– 2000 µg/day, and regions with lower contamination 
levels- recorded cadmium levels in the range of 100 
– 390 µg/day (WHO, 2011).

With reference to the negative impacts stated 
above, accurate and sensitive determination of cad-
mium is a very crucial issue. This metal has been 
determined in different matrices using a variety of 
analytical instruments including FAAS (flame atomic 
absorption spectrometry) (Prasad et al., 2006; Meira 
and Souza, 2017; Sixto et  al., 2019; Fontes et  al., 
2020), GF-AAS (graphite furnace atomic absorp-
tion spectrometry) (Zeini Jahromi et al., 2007; Moin-
far & Khayatian, 2017; Valasques et al., 2020), AFS 
(atomic fluorescence spectrometry) (Lei et al., 2018; 
Yuan et  al., 2018), ICP-MS (inductively coupled 
plasma-mass spectrometry) (Rodríguez Giraldo et al., 
2022; Shao et al., 2020; Zergui et al., 2022) and ICP-
OES (inductively coupled plasma-optical emission 
spectrometry) (Guedes et al., 2020; Mohamed et al., 
2020; Rodríguez Giraldo et al., 2022). Among these 
instruments, FAAS is reasonably affordable, easy 
to use, compatible with other equipment, and yields 
exact findings (Kasa et al., 2020).

According to the literature, adsorptive treatment 
strategies are commonly preferred for the removal 
of cadmium from various matrices (Baskaran & 
Abraham, 2022; Kavisri et  al., 2023; Masood et  al., 
2023). In place of classical adsorbents, nanoadsor-
bents are capable of adsorbing a broad range of pol-
lutants by reason of their unique properties such as 
adjustable pore sizes, elevated surface activities, 
intraparticle-diffusion distances, and extended sorp-
tion sites/surface areas (Homaeigohar, 2020; Yadav 
et al., 2020). An additional advantage associated with 
the utilization of nanoadsorbents is the feasibility of 
their functionalization, which allows them to pos-
sess a high level of selectivity towards different con-
taminants (Abbas et al., 2015, 2017; Cai et al., 2014, 
2023; Harja et al., 2021; Lodhi et al., 2019). A wide 

range of novel nanomaterials such as nano volcanic 
ash (Alraddadi, 2022), nano-clay (Sethy et al., 2023), 
biofunctional reduced graphene oxide (Lin et  al., 
2023), nano-silica particles (Foroutan et  al., 2020), 
Ca-doped Ni-Zn nanoferrites (Punia et al., 2022), and 
nano calcium carbonate doped chitin hydrogel (Dou 
et  al., 2022) are commonly used as nanoadsorbents 
for the adsorption of cadmium from wastewater.

In this study, zinc-tin based nanoflower (ZT-NFs) 
were synthesized by a simple approach, characterized 
by SEM (scanning electron microscopy) and used 
for the adsorption of cadmium from synthetic waste-
water. To the best of our knowledge, this is the first 
study where the ZT-NFs is used for effective removal 
of Cd from the water medium. All the dominant 
parameters of the batch adsorptive removal process 
were optimized in the univariate manner to deter-
mine the optimum conditions. The experimental data 
was modelled using the most widely used Langmuir 
adsorption isotherm.

2  Materials and Methods

2.1  Chemicals and Reagents

A commercially available Cd standard solution 
(1000  mg/L) in 2.0%  HNO3 was purchased from 
Merck (Germany) and used for the optimization 
experiments. Synthesis of the ZT-NFs was achieved 
through the combination of zinc chloride, sodium 
hydroxide and tin (II) chloride. Tin (II) chloride and 
zinc chloride dihydrate were purchased from Merck, 
while sodium hydroxide was obtained from Sigma 
Aldrich (Germany). The standard and sample solu-
tions were prepared with deionized water taken 
from an ELGA PureFlex III water treatment system. 
Analytical grade salts of potassium hydrogen phtha-
late and tris(hydroxymethyl)aminomethane were 
dissolved in deionized water to prepare buffer solu-
tions that were adjusted to their specific pH values 
using dilute sodium hydroxide and hydrochloric acid 
solutions.

2.2  Instrumentations

An ATI UNICAM 929 AA (UK, Cambridge) model 
FAAS fitted with a  D2 (deuterium) lamp for the cor-
rection of background noise was utilized for the 
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determination of cadmium. The flame of the system 
was generated with a stoichiometric mixture of air 
(oxidant) and acetylene (fuel). A cadmium hollow 
cathode lamp, manufactured by Photron (Australia) 
was operated at 10  mA and used as radiation light 
source to detect cadmium at the analytical wavelength 
of 228.8 nm. The pH values of both the standard and 
sample solutions were regulated using a pH meter 
manufactured by Mettler Toledo (USA). The micro-
wave-assisted hydrothermal synthesis procedure was 
conducted with a MILESTONE Start D digestion 
system (Sorisole, Italy). The drying and incubation 
procedures were conducted using a laboratory oven 
D-6450 Hanau model (Heraeus, Germany). A table 
top BIOBASE BKCTL5II centrifuge (Shandong, 
China) was employed for the purpose of separating 
the nanoflowers from solution.

2.3  Synthesis of the Zinc-tin Oxide Nanoflowers

The synthesis of the zinc-tin based nanoflowers (ZT-
NFs) was achieved by modifying a method previously 
described in the literature (Jaculine et  al., 2014). A 
total of 6.0  mmol of  SnCl2.2H2O and 6.0  mmol of 
 ZnCl2 were precisely weighed using an analytical 
balance and subsequently transferred into separate 
beakers. The two distinct solutions were prepared by 
adding 8.0  mL of deionized water. Approximately 
4.0  mL of 5.0  M NaOH solution was pipetted into 
the  SnCl2.2H2O solution and agitated using a mag-
netic stirrer for a duration of 10  min. Subsequently, 

the  ZnCl2 solution was incrementally added to the 
mixture and further mixed for a period of 45  min. 
The nanoflowers was synthesized with a microwave 
digester employing a 55-min heating program as indi-
cated in Fig. 1. Finally, the specimen was subjected to 
an overnight drying process in an oven maintained at 
a temperature of 50 °C.

2.4  Preparation of Synthetic Wastewater

Synthetic wastewater was prepared with the follow-
ing composition via the procedure reported in the lit-
erature by Erşahin et al. (2014) (Ersahin et al., 2014). 
The chemicals used were  CuCl2·2H2O (0.015  g/L), 
 NiCl2·6H2O; boric acid; and  ZnCl2 (0.025  g/L), 
 (NH4)6Mo7O24·4H2O (0.045  g/L),  Na2SeO3·5H2O 
(0.05  g/L), resazurin and  MnCl2·4H2O (0.25  g/L), 
EDTA (0.5  g/L),  CoCl2·6H2O and  FeCl3·4H2O 
(1.0 g/L), and HCl 36% (0.5 mL) as micronutrients. 
Sunflower oil (1.4  mL), micronutrient (1.0  mL), 
 MgSO4·7H2O (0.25  g/L),  CaCl2.2H2O (0.37  g/L), 
 NH4Cl (0.56  g/L), ovoalbumin (0.84  g/L),  K2HPO4 
(2.2 g/L), urea (3 g/L),  NaCH3COOH·3H2O (6.3 g/L), 
starch (5.9  g/L), milk powder (5.6  g/L), and yeast 
extract (2.5 g/L) were used as macronutrients. Firstly, 
the synthetic wastewater was prepared as a concen-
trated stock solution and diluted with tap water until 
the chemical oxygen demand (COD) value of the 
wastewater reached 750 g/L. Then, it was diluted four 
times with ultrapure deionized water immediately 

Fig. 1  Representation of 
the time and temperature 
program employed for the 
microwave-assisted hydro-
thermal synthesis of the 
nanoparticles
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before being used in the equilibrium adsorption 
experiments.

2.5  Procedure of the Batch Adsorptive Removal 
Process

In the batch adsorption experiments, falcon tubes 
with a capacity of 50 mL were filled with 35 mL of 
sample solution. Subsequently, 75 mg of ZT-NFs and 
1.0 mL of a pH 6.0 buffer solution were added to the 
sample solution. The nanoflowers were uniformly dis-
persed within the aqueous solution with the aid of a 
mechanical shaker for a duration of 30 min. The nano-
flowers were retrieved from the bottom of the falcon 
tube following a centrifugation period of 5.0 min at 
a speed of 3000 rpm. Then, 20 mL of the supernatant 
was transferred into a clean falcon tube and subjected 
to an additional centrifugation step. The final step of 
the procedure was transferring 2.0 mL of the effluent 
solution into a separate tube and aspirating into the 
FAAS system to measure absorbance signals.

The percent removal efficiency (%RE) of the ZT-
NFs for cadmium was calculated according to Eq. 1.

In Eq.  1,  Xi (mg/L) and  Xe (mg/L) represent the 
initial and residual (equilibrium) adsorption levels, 
respectively. For the optimization experiments, the 
%REs were calculated via the difference in absorb-
ance values of cadmium in the influent and effluent 
samples. On the other hand, the cadmium concentra-
tions of the effluents calculated from the calibration 
plot of cadmium in synthetic wastewater were used as 
 Xe values for the equilibrium modelling studies. All 
the experimental steps of the adsorptive removal pro-
cess are shown in Fig. 2.

3  Results and Discussion

3.1  Characterization of the Zinc-tin Oxide 
Nanoflowers

The SEM images of the synthesized ZT-NFs are dis-
played in Fig.  3 with two different magnifications. 
The provided image displays a substantial cluster of 
nanoflowers that exhibit a discernible morphology 

(1)%RE =
Xi − Xe

Xi
X100

Fig. 2  A schematic illustration depicting the sequential experimental procedures employed in the adsorptive removal process
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reminiscent of rose petals. The images clearly demon-
strate that each nanoflower consisted of multiple thin 
nanosheets, thereby offering a substantial surface area 
for its intended purpose.

3.2  Univariate Optimization of the Batch Adsorption 
Process

The batch adsorptive removal process was opti-
mized univariately via pH/volume of buffer solution, 
nanoflower amount and agitation type/period. The 
standard solutions of cadmium used in all the opti-
mization experiments were prepared with ultrapure 
water at room temperature. The effect of each param-
eter was evaluated according to the %RE calculated 
via the absorbance of the influent and effluent. The 
SDs (standard deviations) of the %REs were calcu-
lated for triplicate batch experiments. The optimum 

optimization parameters and values were selected as 
the highest means of triplicate %REs.

3.2.1  Effect of pH and Volume of Buffer Solution

The stability of an analyte on the surface of an adsor-
bent can be affected by the ionic balance of the 
sample solution. Therefore, the effect of pH on the 
adsorption process was examined by adding 3.0 mL 
of buffer solutions in the range of pH 5.0 – 8.0 (at 
1.0 intervals) to 2.0 mg/L of cadmium standard solu-
tions and treating with 25  mg ZT-NFs for 15  s and 
1.0 min period of agitation by vortex and ultrasonica-
tion, respectively. As shown in Fig. 4, cadmium was 
adsorbed effectively onto the ZT-NFs in the aqueous 
media buffered at pH 6.0. Highly acidic sample media 
presents several hydronium ions that may compete 
with cadmium ions for adsorptive sites on the sorbent 

Fig. 3  SEM images 
obtained with different 
magnification levels: 10 µm 
(left) and 1.0 µm (right)

Fig. 4  Effect of pH on cad-
mium removal by ZT-NFs 
based adsorption process, 
n = 3 error bars (35 mL 
of 2.0 mg/L Cd standard 
solution, 25 mg of ZT-NF, 
3.0 mL of each buffer solu-
tion)
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material. The surface chemistry of the sorbent mate-
rial is also maximized for adsorption through different 
mechanisms (physical and chemical) at the optimum 
pH value. Therefore, the pH of the buffer solution 
was selected as 6.0 for the adsorptive removal pro-
cess due to its highest average removal efficiency 
compared to the other pH values. The volume of pH 
6.0 buffer solution was also evaluated by testing 0.50, 
1.0, 2.0, 3.0, and 4.0 mL volumes, and the optimum 
buffer solution volume was selected as 1.0 mL. This 
observation can be supported by the principle of dilu-
tion, where the buffer volumes higher than 1.0  mL 
ended up diluting the analyte in solution with cor-
responding high initial volumes. The interaction of 
the same sorbent amount with analytes in higher vol-
umes becomes limited and this causes the decline in 
removal efficiency. For the 0.50 mL volume, it can be 
inferred that its buffer capacity was relatively lower 
than the optimum 1.0 mL volume.

3.2.2  Effect of Nanoflower Amount

This optimization step was performed to determine 
the optimum amount of the adsorbent that would 
yield maximum interaction with the analyte in solu-
tion. For this purpose, eight different amounts (10, 
20, 30, 40, 50, 60, 75, and 100 mg) of ZT-NFs were 
tested for 35 mL of sample solutions. The significant 
increase in the %REs from 10 to 60 mg amounts can 
be clearly seen in Fig.  5, indicating that the higher 
amounts offered large surface areas, facilitating 

the removal of cadmium from the aqueous sam-
ple solution compared to the lower amounts. On the 
other hand, no significant differences in %REs were 
observed from 60 to 100 mg. Consequently, the opti-
mum nanoflower amount was selected as 75 mg, con-
sidering its low standard deviation (SD) value of 6.4 
and relatively higher efficiency based on mean values.

3.2.3  Effect of Agitation Type and Period

In order to achieve a homogeneous dispersion of nan-
oparticles within an aqueous solution, it is essential 
to employ sample agitation. This process facilitates 
the uniform distribution of nanoparticles throughout 
the solution, thereby enhancing their interaction with 
the analyte and leading to efficient adsorption. The 
optimizations of pH/volume of buffer solution and 
nanoflower amount were performed with 2.0  mg/L 
cadmium solutions. For the optimization of sample 
agitation type and period, the concentration of cad-
mium was increased to 4.0  mg/L to determine the 
impact of these optimization parameters more sig-
nificantly due to the increasing removal efficiencies. 
Three agitation procedures including vortexing, ultra-
sonication, and mechanical mixing were employed 
to optimize the dispersion of the nanoflowers within 
the solution and improve the adsorption efficiency. 
The agitation procedures for all samples were con-
ducted for a period of 3 min. The mechanical mixing 
technique yielded the highest removal efficiencies, 
indicating that the technique facilitated enhanced 

Fig. 5  Effect of nano-
flower amount on cad-
mium removal by ZT-NFs 
based adsorption process, 
n = 3 error bars (35 mL 
of 2.0 mg/L Cd standard 
solution, 1.0 mL of pH 6.0 
buffer solution)
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interaction between cadmium and the ZT-NFs. Dif-
ferent periods (1.0, 2.0, 5.0, 10, 20, 30, 40, and 
50 min) of mechanical mixing were therefore tested 
to determine their impact on the removal efficiency 
for cadmium. There was a significant increase in the 
%REs from 1.0 to 30 min, followed by no significant 
differences from 30 to 50 min. Therefore, 30 min of 
mechanical mixing was selected as the optimum agi-
tation type and period.

The optimized experimental parameters/values 
determined via the univariate optimization experi-
ments for the adsorptive removal of cadmium by ZT-
NFs are detailed in Table 1.

3.3  Equilibrium Modelling in the Batch Adsorption 
Process

Ultrapure water was used for all the optimization 
experiments that were performed to determine the 
optimum parameters/values. Adsorption equilib-
rium experiments were performed with synthetic 

wastewater, to mimic a real sample matrix. The raw 
synthetic wastewater was analyzed under optimized 
conditions, but no analytical signals were recorded 
for cadmium. Afterwards, a calibration plot of the 
absorbance values plotted against their correspond-
ing concentrations in the range of 0.25 to 8.0 mg/L 
(in synthetic wastewater) was used to determine the 
equilibrium/residual concentrations  (Ci, mg/L) of 
cadmium in the effluent samples. The calibration 
plot of cadmium developed for the spiked synthetic 
wastewater is given in Fig. 6.

After developing the calibration plot, cadmium 
was spiked in the 4-times diluted synthetic waste-
water samples in the range of 1.0 – 40  mg/L. The 
cadmium concentrations of the effluent samples 
treated with the ZT-NFs-based adsorptive removal 
process was calculated via the calibration plot in 
synthetic wastewater and the calculated average 
%REs with their SDs for triplicate analyses are 
given in Table 2.

3.3.1  Langmuir Isotherm Model

The Langmuir equation, which has its basis in the 
theory of a finite number of uniformly distributed 
binding sites on the surface of an adsorbent, is 
widely recognized as the isotherm model that is 
most commonly employed for modelling adsorption 
data (Langmuir, 1918; Onkal Engin et  al., 2012). 
This isotherm model has the mathematical equation 
(non-linear) given in Eq. 2:

Table 1  Optimized experimental parameters of the adsorptive 
removal process

Parameter Optimized value

pH of buffer solution 6.0
Volume of buffer solution 1.0 mL
Nanoflower amount 75 mg
Sample agitation type Mechanical mixing
Agitation period 30 min

Fig. 6  Calibration plot 
of cadmium in synthetic 
wastewater
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In this non-linear equation, the denotations of Ce, 
KL, qe, and qm represent residual/equilibrium adsorb-
ate concentration (mg/L), Langmuir constant (L/mg), 
equilibrium adsorption capacity (mg/g), and maxi-
mum adsorption capacity (mg/g). The equilibrium 
adsorption capacity (qe) can be easily calculated via 
Eq. 3:

(2)qe =
qmKLCe

1 + KLCe

where: m is the amount of adsorbent and V is the 
volume of sample solution (L). After calculating the 
Ce values from the developed calibration plot and 
the qe values from Eq. 3, the regression constants qm 
and KL can be calculated from the linearization of the 
non-linear Langmuir equation. The linearization of 
this model utilized in this study is given in Table  3 
(Sadeghi et al., 2023).

In the Langmuir model, there is a constant sepa-
ration factor (RL), which is dimensionless, indicating 
the isotherm type as: RL = 1 (linear), RL = 0 (irrevers-
ible), RL > 1 (undesirable), and 0 < RL < 1 (favorable). 
The mathematical equation for RL is given in Eq. 4.

In this ZT-NFs-based adsorptive removal study, 
the data was modelled according to the Langmuir 
isotherm model. The equilibrium isotherm plot (1/qe 
against 1/Ce) obtained from the linearization of the 
Langmuir isotherm equation is given in Fig. 7.

The  R2 (coefficient of determination) value of 
0.9942 indicated a good fit of this isotherm model 
(Table  4). The  qe and  RL values with their corre-
sponding initial concentrations are also given in 
Table  5. All the  RL values represented favorable 
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(
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Table 2  Summary of %REs with their SDs for different initial 
cadmium concentrations

Initial Cd concentration (mg/L) %RE ± SD

1.0 79.6 ± 2.2
2.0 78.1 ± 1.7
4.0 72.5 ± 1.4
8.0 74.6 ± 1.1
10 76.6 ± 0.4
20 56.3 ± 0.1
40 58.7 ± 0.6

Table 3  Linear equation of Langmuir adsorption isotherm 
model
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adsorptive removal of cadmium for the working con-
centration range (1.0 – 40 mg/L).

4  Conclusion

The development of wastewater treatment processes 
that serve as feasible alternatives or complements 
to conventional wastewater treatment plants help to 
effectively mitigate the release of heavy metals into 
water bodies. In the scope of this study, ZT-NFs 
were synthesized via a microwave-assisted hydro-
thermal technique and used as nanoadsorbents for 
the adsorptive removal of cadmium from synthetic 
wastewater. The structure and morphology of the 
nanoflowers were confirmed by SEM analysis. The 
dominant parameters of the adsorptive removal 
process (pH/volume of buffer solution, nanoflower 
amount, and agitation type/period) were optimized 
univariately to enhance the overall efficiency of the 
process. The optimization experiments were carried 
out in ultrapure deionized water, while the equi-
librium adsorption experiments were performed in 
synthetic wastewater. Cadmium was determined in 
the influent/effluent samples by a robust analytical 
instrument, FAAS, which is known to be afford-
able and compatible with different sample prepa-
ration methods. Moreover, the residual cadmium 

concentrations in the synthetic wastewater were 
calculated via the calibration plot developed in the 
sample matrix to improve the quantification accu-
racy of the method. Percent removal efficiencies 
of cadmium from synthetic wastewater up to 80% 
were achieved in the working concentration range. 
The equilibrium data of the adsorption process 
was modelled according to the Langmuir isotherm 
model and the results confirmed that this isotherm 
model fitted well with the data in the initial concen-
trations between 1.0 and 40  mg/L. Consequently, 
favorable adsorption of cadmium onto ZT-NFs 
was successfully achieved in synthetic wastewater 
at low concentrations, as confirmed by the Lang-
muir adsorption isotherm. A sound assumption can 
be made that the proposed removal method can be 
extended to other metal ions to achieve similar or 
better removal efficiencies.
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