Skip to main content
Log in

Photo-Catalytic Reduction of Destructive U(VI) from Uranium-Defiled Wastewater: an Overview

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater is frequently utilised as the source of consuming water throughout the entire globe. Hence, the defilement of this groundwater by noxious radioactive metals like Uranium (VI) which are produced from the expansion in thermal energy stations, radio-nuclear plants as well as their releasing by-product materials, which are delivered into the conduits and waterways is a pressing issue.  The noxious as well as deadly Uranium (VI) is viewed as a toxic by-product related to the course of enrichment process used to create atomic energy, and also the risk factor associated with it is caused by the radioactivity, carcinogenicity and toxicity of uranium. Numerous strategies have been proposed to manage these issues, yet photocatalytic degradation stands apart as a simple, cost-effective, and efficient process that has acquired huge consideration as of late in spite of specific constraints concerning its functional and operational applications. The various photocatalytic reagents and their applications for removing uranium (VI) from radioactive wastewater are summed up in this review.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

AC:

Activated carbon

CCC:

Critical coagulation concentrations

CMP:

Conjugated microporous polymers

CP:

Conducting polymers

DBP:

Disinfecting by-products

FMR:

Feed molar ratio

PPCP:

Pharmaceutical drugs and personal care product

RO:

Reverse osmosis

UV-VIS:

Ultra-violet visible

WT:

Wastewater treatment

WHO:

World Health Organization

References

  • Ahmad Wani, A., Shahadat, M., Wazed Ali, S., Ziauddin Ahammad, S., & Kashif Uddin, M. (2022). Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: A review. Journal of Molecular Liquids, 365, 119976. https://doi.org/10.1016/j.molliq.2022.119976

    Article  CAS  Google Scholar 

  • Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143(June), 109700. https://doi.org/10.1016/j.inoche.2022.109700

    Article  CAS  Google Scholar 

  • Asadzadeh-Khaneghah, S., & Habibi-Yangjeh, A. (2020). g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. Journal of Cleaner Production, 276, 124319. https://doi.org/10.1016/j.jclepro.2020.124319

    Article  CAS  Google Scholar 

  • Bai, J., Shen, R., Chen, W., Xie, J., Zhang, P., Jiang, Z., & Li, X. (2022). Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 429(September 2021), 132587. https://doi.org/10.1016/j.cej.2021.132587

    Article  CAS  Google Scholar 

  • Chen, B., Zhang, G., Chen, L., Kang, J., Wang, Y., Chen, S., et al. (2022a). Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution. Journal of Hazardous Materials, 426(September 2021). https://doi.org/10.1016/j.jhazmat.2021.127851

  • Chen, L., Alharbi, N. S., Chen, C., & Ren, X. (2022b). UV-induced simultaneous removal of GO and U(VI): The role of aggregation, photo-transformation, adsorption and reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648(March), 129151. https://doi.org/10.1016/j.colsurfa.2022.129151

  • Chen, L., Wakeel, M., Haq, T. U., Chen, C., & Ren, X. (2022c). Insight into UV-induced simultaneous photocatalytic degradation of Ti3C2Tx MXene and reduction of U(VI). Journal of Hazardous Materials, 430(January), 128377. https://doi.org/10.1016/j.jhazmat.2022.128377

  • Chen, M., Liu, T., Zhang, X., Zhang, R., Tang, S., Yuan, Y., et al. (2021). Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Advanced Functional Materials, 31(22), 1–10. https://doi.org/10.1002/adfm.202100106

    Article  CAS  Google Scholar 

  • Chen, T., Yu, K., Dong, C., Yuan, X., Gong, X., Lian, J., & Cao, X. (2022d). Advanced photocatalysts for uranium extraction. Coordination Chemistry Reviews 467(3), 214615. https://doi.org/10.1016/j.ccr.2022.214615

  • Chen, T., Yu, K., Dong, C., Yuan, X., Gong, X., Lian, J., et al. (2022e). Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordination Chemistry Reviews, 467, 214615. https://doi.org/10.1016/j.ccr.2022.214615

  • Cui, X., Yang, Z., Zhang, X., Liu, W., Zou, B., & Liao, W. (2022). Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U(VI) from water. Applied Surface Science, 599(March), 154027. https://doi.org/10.1016/j.apsusc.2022.154027

    Article  CAS  Google Scholar 

  • Dai, Z., Lian, J., Sun, Y., Li, L., Zhang, H., Hu, N., & Ding, D. (2022). Fabrication of g-C3N4/Sn3O4/Ni electrode for highly efficient photoelectrocatalytic reduction of U(VI). Chemical Engineering Journal, 433(September 2021). https://doi.org/10.1016/j.cej.2021.133766

  • Deng, X., Zou, G., Tu, B., Hu, M., Zhu, W., He, R., & Chen, T. (2022). Efficient photoreduction of hexavalent uranium over defective ZnO nanoparticles by oxygen defect engineering. Crystal Engineering Communication. https://doi.org/10.1039/d2ce00892k

  • Dong, Z., Zhang, Z., Li, Z., Wang, Y., Yu, F., Cheng, Z., et al. (2022). Double-shelled hollow nanosphere assembled by TiO2@surface sulfate functionalized CdS for boosting photocatalysis reduction of U(VI) under seawater conditions. Chemical Engineering Journal, 431(P3), 133256. https://doi.org/10.1016/j.cej.2021.133256

    Article  CAS  Google Scholar 

  • Drwal, K., Miecznikowski, K., & Krasnodębska-Ostręga, B. (2022). Photoactive materials for decomposition of organic matter prior to water analysis—A review containing original research. Catalysts, 12(6). https://doi.org/10.3390/catal12060616

  • Duan, P., Lin, D. Y., Yang, W. T., Huang, X. J., Sun, A. H., & Pan, Q. H. (2022). Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Metals, 41(4), 1323–1331. https://doi.org/10.1007/s12598-021-01884-0

    Article  CAS  Google Scholar 

  • Feng, Y., Qiu, X., Tao, Z., Zhengyang, E., Song, J., Dong, Y., et al. (2022). Oxygen-containing groups in cellulose and lignin biochar: their roles in U(VI) adsorption. Environmental Science and Pollution Research, (Vi). https://doi.org/10.1007/s11356-022-20981-w

  • Gandhi, T. P., Sampath, P. V., & Maliyekkal, S. M. (2022). A critical review of uranium contamination in groundwater: Treatment and sludge disposal. Science of the Total Environment, 825, 153947. https://doi.org/10.1016/j.scitotenv.2022.153947

    Article  CAS  Google Scholar 

  • Gong, J., Xie, Z., Wang, B., Li, Z., Zhu, Y., Xue, J., & Le, Z. (2021). Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U(VI). Journal of Environmental Chemical Engineering, 9(1), 104638. https://doi.org/10.1016/j.jece.2020.104638

    Article  CAS  Google Scholar 

  • Gong, X., Tang, L., Zou, J., Guo, Z., Li, Y., Lei, J., et al. (2022). Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. Journal of Hazardous Materials, 423(PA), 126935. https://doi.org/10.1016/j.jhazmat.2021.126935

    Article  CAS  Google Scholar 

  • Guediri, M. K., Chebli, D., Bouguettoucha, A., Bourzami, R., & Amrane, A. (2022). Interfacial coupling effects on adsorptive and photocatalytic performances for photoresponsive graphene-wrapped SrTiO3@Ag under UV–visible light: Experimental and DFT approach. Environmental Science and Pollution Research, 29(19), 28098–28114. https://doi.org/10.1007/s11356-021-17543-x

    Article  CAS  Google Scholar 

  • Guo, H., Mei, P., Xiao, J., Huang, X., Ishag, A., & Sun, Y. (2021). Carbon materials for extraction of uranium from seawater. Chemosphere, 278, 130411. https://doi.org/10.1016/j.chemosphere.2021.130411

    Article  CAS  Google Scholar 

  • Guo, Y., Li, S., Yang, F., Li, C., Guo, Y., Xuan, K., et al. (2022). Efficient charge separation in sulfur doped AgFeO2 photocatalyst for enhanced photocatalytic U(VI) reduction: The role of doping and mechanism insights. Journal of Hazardous Materials, 440(April), 129734. https://doi.org/10.1016/j.jhazmat.2022.129734

    Article  CAS  Google Scholar 

  • He, P., Zhang, L., Wu, L., Yang, X., Chen, T., Li, Y., et al. (2022). Synergistic effect of the sulfur vacancy and schottky heterojunction on photocatalytic uranium immobilization: The thermodynamics and kinetics. Inorganic Chemistry, 61(4), 2242–2250. https://doi.org/10.1021/acs.inorgchem.1c03552

    Article  CAS  Google Scholar 

  • Jarusheh, H. S., Yusuf, A., Banat, F., Haija, M. A., & Palmisano, G. (2022). Integrated photocatalytic technologies in water treatment using ferrites nanoparticles. Journal of Environmental Chemical Engineering, 10(5), 108204. https://doi.org/10.1016/j.jece.2022.108204

    Article  CAS  Google Scholar 

  • Jiang, P., Yu, K., Yuan, H., He, R., Sun, M., Tao, F., et al. (2021). Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. Journal of Materials Chemistry A, 9(15), 9809–9814. https://doi.org/10.1039/d1ta00386k

    Article  CAS  Google Scholar 

  • Koppula, S., Jagasia, P., Panchangam, M. K., & Manabolu Surya, S. B. (2022). Synthesis of bimetallic metal-organic frameworks composite for the removal of copper(II), chromium(VI), and uranium(VI) from the aqueous solution using fixed-bed column adsorption. Journal of Solid State Chemistry, 312(April), 123168. https://doi.org/10.1016/j.jssc.2022.123168

    Article  CAS  Google Scholar 

  • Kuang, P., Ni, Z., Yu, J., & Low, J. (2022). New progress on MXenes-based nanocomposite photocatalysts. Materials Reports: Energy, 2(1), 100081. https://doi.org/10.1016/j.matre.2022.100081

    Article  CAS  Google Scholar 

  • Kumar, V., Singh, V., Kim, K. H., Kwon, E. E., & Younis, S. A. (2021). Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coordination Chemistry Reviews, 447, 214148. https://doi.org/10.1016/j.ccr.2021.214148

    Article  CAS  Google Scholar 

  • Li, P., Wang, J., Wang, Y., Dong, L., Wang, W., Geng, R., et al. (2021a). Ultrafast recovery of aqueous uranium: Photocatalytic U(VI) reduction over CdS/g-C3N4. Chemical Engineering Journal, 425(August), 131552. https://doi.org/10.1016/j.cej.2021.131552

  • Li, P., Wang, J., Wang, Y., Liang, J., Pan, D., Qiang, S., & Fan, Q. (2019). An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 41(Vi), 100320. https://doi.org/10.1016/j.jphotochemrev.2019.100320

    Article  CAS  Google Scholar 

  • Li, P., Wang, Y., Wang, J., Dong, L., Zhang, W., Lu, Z., et al. (2021b). Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates. Chemical Engineering Journal, 414(October 2020), 128810. https://doi.org/10.1016/j.cej.2021.128810

  • Li, S., Wang, Y., Wang, J., Liang, J., Li, Y., & Li, P. (2022a). Modifying g-C3N4 with oxidized Ti3C2 MXene for boosting photocatalytic U(VI) reduction performance. Journal of Molecular Liquids, 346, 117937. https://doi.org/10.1016/j.molliq.2021.117937

  • Li, Z., Zhang, Z., Dong, Z., Yu, F., Ma, M., Wang, Y., et al. (2022b). Solar light-responsive CdS/UiO-66-NH2 for ultrafast uranium reduction from uranium-containing mine wastewater without external sacrificial agents. Separation and Purification Technology, 283(October 2021), 120195. https://doi.org/10.1016/j.seppur.2021.120195

  • Li, Z., Xie, Z., Wang, B., Gong, J., Xue, J., & Le, Z. (2020). Gas-sculpted g-C3N4 for efficient photocatalytic reduction of U(VI). Journal of Radioanalytical and Nuclear Chemistry, 326(3), 1805–1817. https://doi.org/10.1007/s10967-020-07458-1

    Article  CAS  Google Scholar 

  • Liao, Y., Yan, C., Zeng, K., Liao, C., & Wang, M. (2021). Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions. Chemical Engineering Journal, 424(April), 130351. https://doi.org/10.1016/j.cej.2021.130351

    Article  CAS  Google Scholar 

  • Liu, W., Huang, Y., Huang, G., Fan, L., Xie, Y., Zhang, Q., & Shi, J. (2022). Facile strategy to separate uranium (VI) using glued Amidoxime-functionalized composite beads synthesized from aqueous solution. Separation and Purification Technology, 293(March). https://doi.org/10.1016/j.seppur.2022.121132

  • Liu, Y., Wu, S., Liu, J., Xie, S., & Liu, Y. (2021). Synthesis of g-C3N4/TiO2nanostructures for enhanced photocatalytic reduction of U(vi) in water. RSC Advances, 11(8), 4810–4817. https://doi.org/10.1039/d0ra10694a

    Article  CAS  Google Scholar 

  • Liu, Y., Yuan, Y., Ni, S., Liu, J., Xie, S., & Liu, Y. (2022). Construction of g-C3N4/Ag/TiO2 Z-scheme photocatalyst and Its improved photocatalytic U(VI) reduction application in water. Water Science and Technology, 85(9), 2639–2651. https://doi.org/10.2166/wst.2022.139

    Article  CAS  Google Scholar 

  • Lu, Y., Cai, Y., Zhang, S., Zhuang, L., Hu, B., Wang, S., et al. (2022). Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective. Biochar, 4(1). https://doi.org/10.1007/s42773-022-00173-y

  • Mallakpour, S., Tabesh, F., & Hussain, C. M. (2022). Potential of tragacanth gum in the industries: A short journey from past to the future. Polymer Bulletin, (0123456789). https://doi.org/10.1007/s00289-022-04284-1

  • Meng, Q., Yang, X., Wu, L., Chen, T., Li, Y., He, R., et al. (2022). Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. Journal of Hazardous Materials, 422(August 2021), 1–10. https://doi.org/10.1016/j.jhazmat.2021.126912

    Article  CAS  Google Scholar 

  • Nezhad, M. M., Semnani, A., Tavakkoli, N., & Shirani, M. (2021). Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. Journal of Environmental Management, 299(August), 113587. https://doi.org/10.1016/j.jenvman.2021.113587

    Article  CAS  Google Scholar 

  • Pang, H., Zhang, E., Zhang, D., Wang, X., Zhao, B., Liu, L., et al. (2022). Precursor impact and mechanism analysis of uranium elimination by biochar supported sulfurized nanoscale zero-valent iron. Journal of Environmental Chemical Engineering, 10(2), 107288. https://doi.org/10.1016/j.jece.2022.107288

    Article  CAS  Google Scholar 

  • Qiang, S., Wang, J., Wang, Y., Yuan, L., Shi, L., Ding, Z., et al. (2022). Analysis of the uranium chemical state by XPS: Is what you see real? Applied Surface Science, 576(PB), 151886. https://doi.org/10.1016/j.apsusc.2021.151886

    Article  CAS  Google Scholar 

  • Santhosh, C., Daneshvar, E., Tripathi, K. M., Baltrėnas, P., Kim, T. Y., Baltrėnaitė, E., & Bhatnagar, A. (2020). Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 27(26), 32874–32887. https://doi.org/10.1007/s11356-020-09275-1

    Article  CAS  Google Scholar 

  • Song, Y., Li, A., Li, P., He, L., Xu, D., Wu, F., et al. (2022). Unassisted uranyl photoreduction and separation in a donor-acceptor covalent organic framework. Chemistry of Materials, 34(6), 2771–2778. https://doi.org/10.1021/acs.chemmater.1c04407

    Article  CAS  Google Scholar 

  • Sun, S., He, L., Yang, M., Cui, J., & Liang, S. (2022). Facet junction engineering for photocatalysis: A comprehensive review on elementary knowledge, facet-synergistic mechanisms, functional modifications, and future perspectives. Advanced Functional Materials, 32(1), 1–33. https://doi.org/10.1002/adfm.202106982

    Article  CAS  Google Scholar 

  • Wang, F., Liao, Y., Li, T., & Xia, L. (2022a). Coupling of CdS and g-C3N4 decorated dendritic fibrous nano-silica for efficient photocatalytic reduction of uranium (VI). Separation and Purification Technology, 299(May), 121707. https://doi.org/10.1016/j.seppur.2022.121707

  • Wang, J., Wang, Y., Wang, W., Ding, Z., Geng, R., Li, P., et al. (2020a). Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chemical Engineering Journal, 383(July 2019), 123193. https://doi.org/10.1016/j.cej.2019.123193

  • Wang, J., Wang, Y., Wang, W., Peng, T., Liang, J., Li, P., et al. (2020b). Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environmental Pollution, 262, 114373. https://doi.org/10.1016/j.envpol.2020.114373

  • Wang, R., Li, M., Liu, T., Li, X., Zhou, L., Tang, L., et al. (2022b). Encapsulating carbon-coated nano zero-valent iron particles with biomass-derived carbon aerogel for efficient uranium extraction from uranium-containing wastewater. Journal of Cleaner Production, 364(March), 132654. https://doi.org/10.1016/j.jclepro.2022.132654

  • Wang, T., Zhang, Z. B., Dong, Z., Cao, X., Cheng, Z., & Liu, Y. H. (2022c). A facile synthesis of g-C3N4/WS2 heterojunctions with enhanced photocatalytic reduction activity of U(VI). Journal of Radioanalytical and Nuclear Chemistry, 331(1), 577–586. https://doi.org/10.1007/s10967-021-08118-8

  • Wang, Y., Chen, G., Weng, H., Wang, L., Chen, J., Cheng, S., et al. (2021). Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light. Chemical Engineering Journal, 410(December 2020), 128280. https://doi.org/10.1016/j.cej.2020.128280

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, J., Ding, Z., Wang, W., Song, J., Li, P., et al. (2022d). Light promotes the immobilization of U(VI) by ferrihydrite. Molecules, 27(6), 1–11. https://doi.org/10.3390/molecules27061859

  • Wang, Y., Wang, J., Wang, J., Liang, J., Pan, D., Li, P., & Fan, Q. (2020c). Efficient recovery of uranium from saline lake brine through photocatalytic reduction. Journal of Molecular Liquids, 308, 113007. https://doi.org/10.1016/j.molliq.2020.113007

  • Salau, A. O., Deshpande, D. S., Adaramola, B. A., Habeebullah, A. (2021). Design and Construction of a Multipurpose Solar-Powered Water Purifier. Smart Innovation, Systems and Technologies, vol. 196, Springer, Singapore, 377-387. https://doi.org/10.1007/978-981-15-7062-9_37

  • Xiong, T., Li, Q., Li, K., Zhang, Y., & Zhu, W. (2022). Construction of novel magnesium oxide aerogel for highly efficient separation of uranium(VI) from wastewater. Separation and Purification Technology, 295(March), 121296. https://doi.org/10.1016/j.seppur.2022.121296

    Article  CAS  Google Scholar 

  • Ye, Y., Jin, J., Chen, F., Dionysiou, D. D., Feng, Y., Liang, B., et al. (2022). Removal and recovery of aqueous U(VI) by heterogeneous photocatalysis: Progress and challenges. Chemical Engineering Journal, 450(P3), 138317. https://doi.org/10.1016/j.cej.2022.138317

    Article  CAS  Google Scholar 

  • Ye, Y., Jin, J., Liang, Y., Qin, Z., Tang, X., Feng, Y., et al. (2021). Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method. iScience, 24(11). https://doi.org/10.1016/j.isci.2021.103230

  • Yin, W., Liu, M., Chen, Y. Y., Yao, Q. Z., Fu, S. Q., & Zhou, G. T. (2022). Microwave-assisted preparation of Mn3O4@sepiolite nanocomposite for highly efficient removal of uranium. Applied Clay Science, 228(April), 106597. https://doi.org/10.1016/j.clay.2022.106597

    Article  CAS  Google Scholar 

  • Yu, F., Zhu, Z., Li, C., Li, W., Liang, R., Yu, S., et al. (2022a). A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (VI) in strongly acidic solution. Applied Catalysis B: Environmental, 314(March), 121467. https://doi.org/10.1016/j.apcatb.2022.121467

  • Yu, F., Zhu, Z., Wang, S., Wang, J., Xu, Z., Song, F., et al. (2022b). Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI). Applied Catalysis B: Environmental, 301(September 2021), 120819. https://doi.org/10.1016/j.apcatb.2021.120819

  • Yu, K., Jiang, P., Wei, J., Yuan, H., Xin, Y., He, R., et al. (2022c). Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. Journal of Hazardous Materials, 426(September 2021), 127823. https://doi.org/10.1016/j.jhazmat.2021.127823

  • Yu, K., Jiang, P., Yuan, H., He, R., Zhu, W., & Wang, L. (2021). Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Applied Catalysis B: Environmental, 288(October 2020), 119978. https://doi.org/10.1016/j.apcatb.2021.119978

    Article  CAS  Google Scholar 

  • Yu, K., Tang, L., Cao, X., Guo, Z., Zhang, Y., Li, N., et al. (2022d). Semiconducting metal–organic frameworks decorated with spatially separated dual cocatalysts for efficient Uranium(VI) photoreduction. Advanced Functional Materials, 32(20), 1–10. https://doi.org/10.1002/adfm.202200315

  • Zada, A., Khan, M., Khan, M. A., Khan, Q., Habibi-Yangjeh, A., Dang, A., & Maqbool, M. (2021). Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environmental Research, 195(November 2020), 110742. https://doi.org/10.1016/j.envres.2021.110742

    Article  CAS  Google Scholar 

  • Zhang, F., Liu, Y., Ma, K. Q., Yan, H., Luo, Y., Wu, F. C., et al. (2022a). Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica. Journal of Hazardous Materials, 435(April), 129022. https://doi.org/10.1016/j.jhazmat.2022.129022

  • Zhang, X. Y., Wang, J. J., Li, P., Tan, Z. Y., Zeng, J. H., He, Y. R., & Habibul, N. (2022b). Removal of U(VI) from aqueous solution via photocatalytic reduction over WO3/g-C3N4 composite under visible light. Chemical Engineering Journal, 428(March 2021), 131209. https://doi.org/10.1016/j.cej.2021.131209

  • Zhang, Z., Liu, C., Dong, Z., Dai, Y., Xiong, G., Liu, Y., et al. (2020). Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI). Applied Surface Science, 520(February), 146352. https://doi.org/10.1016/j.apsusc.2020.146352

    Article  CAS  Google Scholar 

  • Zhong, X., Ling, Q., Wang, S., & Hu, B. (2022). Visible-light-driven 2D/2D Bismuth oxyhalides/covalent organic framework heterojunctions for synchronous photocatalytic U(VI) reduction and bisphenol A degradation. Journal of Environmental Chemical Engineering, 10(4), 108097. https://doi.org/10.1016/j.jece.2022.108097

    Article  CAS  Google Scholar 

  • Zhong, X., Liu, Y., Wang, S., Zhu, Y., & Hu, B. (2021). In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction. Separation and Purification Technology, 279(September), 119627. https://doi.org/10.1016/j.seppur.2021.119627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S Gopal Krishna Patro: Conceptualization, Methodology, Software, Writing- Original draft preparation

Amrutashree Hota: Data curation, Methodology, Visualization, Validation.

Ayodeji Olalekan Salau: Data curation, Investigation, Writing- Reviewing, Editing and Validation.

Corresponding author

Correspondence to Ayodeji Olalekan Salau.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, S.G.K., Hota, A. & Salau, A.O. Photo-Catalytic Reduction of Destructive U(VI) from Uranium-Defiled Wastewater: an Overview. Water Air Soil Pollut 235, 279 (2024). https://doi.org/10.1007/s11270-024-07077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07077-6

Keywords

Navigation