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Abstract  A solid-phase microextraction (SPME) 
method had been applied to speciate chromium 
in natural and wastewater samples. MWCNTs@
CuAl2O4@SiO2 nanocomposite was synthesized by 
sol–gel and calcination methods and then character-
ized using SEM, FTIR, and XRD techniques. MWC-
NTs@CuAl2O4@SiO2 was used to extract Cr(VI) as 
pyrrolidine dithiocarbamate chelates. Some analytical 
parameters involving pH, ligand (APDC) and adsor-
bent amounts, sample initial and final volume, and 
the effects of matrices were tested and optimized. For 
the oxidation of Cr(III) to Cr(VI), potassium perman-
ganate was used, and after that, the presented method 

was applied to determine the total chromium levels. 
The calculations were carried out to obtain Cr(III) 
concentration by finding differences between total 
chromium and Cr(VI) concentrations. The limit of 
detection (LOD) and limit of quantification (LOQ) 
were found to be 6.2 µg L−1 and 20.8 µg L−1, respec-
tively. The proposed method was successfully applied 
for chromium speciation in wastewater samples.

Keywords  Speciation · Chromium · Solid-phase 
microextraction · MWCNTs@CuAl2O4@SiO2 · 
Flame atomic absorption spectrometry

1  Introduction

Pollution by heavy metals is one of the most impor-
tant environmental problems. Heavy metals have 
toxic impacts on humans and animals because they 
can accumulate in their bodies throughout the food 
chain (Akdogan et  al., 2016; Demirel et  al., 2008; 
Filik et  al., 2004; Hu et  al., 2009; Kowalski, 1994). 
Chromium is deemed a high-priority environmental 
pollutant. Chromium is found in nature as ores and in 
several other natural materials in its compound form. 
It can be found in electroplating, leather tanning, 
textile factories, metal finishing, wood preservation, 
some fertilizers, chromate preparation, etc. (Saraco-
glu et al., 2007; Shen et al., 2010). It can also enter 
aquatic systems through the discharge of concentrated 
industrial effluents. In general, there are two different 
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oxidation states of chromium (Cr(III) and Cr(VI)) 
in nature (Cheng et al., 2022; Hu et al., 2009; Kara-
tepe et al., 2010; Prabhakaran et al., 2009; Tuzen & 
Soylak, 2006). The toxicity of chromium depends on 
the existence of Cr oxidation states and the concen-
tration of Cr species (Marques et al., 2000; Outridge 
& Scheuhammer, 1993). Cr(III) is a fundamental 
trace element that is necessary for the normal func-
tioning of living organisms. It has a significant role 
in carbohydrates, proteins, and lipid metabolism, and 
its deficiency could cause an illness called chromium 
deficiency (Hu et  al., 2009; Ozturk et  al., 2021). 
The National Research Council recommendation 
for Cr(III) is 50–200 mg per day (Arain et al., 2018; 
Gjerde et al., 1993).

In contrast, Cr(VI) is toxic to the human biologi-
cal system. It is water soluble, extremely irritating, 
and has high toxicity to humans due to its oxidation 
potential and permeability to biological membranes 
(Bağ et  al., 2000; Krishna et  al., 2004; Narin et  al., 
2008). Cr(VI) compounds are approximately 100 
times more dangerous and 1000 times more muta-
genic than Cr(III) salts. This is because its oxidation 
potential is high, and it readily permeates biological 
membranes (Narin et  al., 2008; Rahman & Singh, 
2019; Tripathi et al., 1998). In humans, Cr(VI) expo-
sure may also easily inhibit DNA, RNA, and protein 
syntheses; increase the death rate; and increase the 
incidence of certain types of cancer, such as throat, 
lung, and bladder cancers, as well as other diseases 
like pneumonia, bronchitis, hypersensitivity, gastroin-
testinal hepatic, and renal impairments (Balali-Mood 
et al., 2021; Erarpat et al., 2022; Nriagu & Nieboer, 
1988). The International Agency for Research on 
Cancer (IARC) has categorized Cr(VI) as a Class I 
carcinogen, while the US Environmental Protection 
Agency (EPA) has rated it as very hazardous (Islam 
et  al., 2016; Mashhadizadeh & Amoli-Diva, 2013; 
Ouejhani et al., 2003). The maximum permitted con-
tent of Cr(VI) in drinking water, according to the 
World Health Organization (WHO), is 0.05  mg L−1 
(Ozkantar et al., 2020; Saracoglu et al., 2012).

Depending on chromium oxidation states that may 
be essential or toxic, these oxidation forms must be 
determined individually by speciation analysis meth-
ods (Michalke & Caroli, 2013; Narin et  al., 2008; 
Wang et  al., 2020). The approach to estimating the 
total concentration of Cr by studying its physical and 
chemical forms is known as speciation. According to 

research on environmental contamination and pub-
lic health, the need for chromium evaluation at trace 
amounts in environmental samples has risen. Induc-
tively coupled plasma mass spectrometry (ICP-MS), 
inductively coupled plasma atomic emission spec-
trometry (ICP-AES), atomic absorption spectrometry 
(FAAS and ETAAS), energy-dispersive X-ray fluo-
rescence (EDXRF), and UV–VIS spectrophotometry 
are commonly used techniques for total Cr determi-
nation. Ion exchange techniques have also been used 
to remove chromium from wastewater and determine 
it properly (Bulut et  al., 2009; El-Feky et  al., 2023; 
Kanberoglu et al., 2019; Musielak et al., 2024; Narin 
et al., 2002, 2008; Ozkantar et al., 2020; Yalçin et al., 
2001).

FAAS is a trustworthy, cost-effective, and precise 
technique for determining metal ions at low levels. 
However, it has two limitations: lower amounts of 
analytes are below the detection limits, and matrix 
components of the tested samples influence the results 
(Guo et  al., 2003; Shemirani et  al., 2004; Tel et  al., 
2004; Dadfarnia and Shabani, 2010; Sarafraz-Yazdi 
& Amiri, 2010; Soylak et al., 2022). Atomic absorp-
tion spectroscopy cannot directly measure chromium 
species. Speciation of chromium species by precon-
centration and separation procedures such as solid-
phase extraction (SPE) (Fig. 1), liquid–liquid extrac-
tion (LEE), and others in conjunction with FAAS or 
ETAAS is frequently insensitive for chromium traces 
(Duran et  al., 2007; Jagirani & Soylak, 2020; Khan 
et  al., 2020). Most chromium speciation procedures 
involve the separation and enrichment of Cr(VI). Fol-
lowing the oxidation of Cr(III), the total chromium 
was determined in several published experiments 
(Marguí & Torrent, 2023).

In the presented work, MWCNTs@CuAl2O4@
SiO2 nanocomposite was synthesized by sol–gel 
methodology to be employed as an adsorbent in the 
speciation of chromium species. MWCNTs, CuAl2O4, 
and SiO2 have demonstrated significant utility in 
preconcentration applications across diverse fields. 
Their unique properties, including high surface area, 
tunable surface chemistry, and mechanical stability, 
make them highly effective sorbents for adsorbing 
and preconcentrating target analytes from environ-
mental samples (Alavi et  al., 2022; Li et  al., 2017; 
Soylak et al., 2024a, b). The MWCNTs@CuAl2O4@
SiO2 nanocomposite is a potential sorbent mate-
rial for SPME applications because of its distinct 
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combination of MWCNTs, copper–aluminum spinel, 
and SiO2. This combination provides a large sur-
face area and active sites for effective adsorption of 
target analytes, increasing extraction efficiency. The 
composition of the nanocomposite enables the selec-
tive extraction of analytes from complicated matri-
ces thanks to the various interactions between the 
components. The nanocomposite’s structural integ-
rity promotes stability and durability during SPME 
processes, reducing loss and maintaining consistent 
results over numerous cycles. Its large surface area 
and porous structure allow quick mass transfer kinet-
ics, resulting in reduced extraction times and greater 
adsorption. Its compatibility with analytical proce-
dures makes it appropriate for various applications, 
including environmental, medicinal, and food analysis 
(Deak et al., 2007; Bouali et al., 2023; Soylak et al., 
2024a, b) . Since ammonium pyrrolidine dithiocar-
bamate (APDC) is a highly selective chelating agent 
for Cr(VI), it is commonly used as a suitable ligand. 
Cr(VI) was assessed FAAS after being separated-pre-
concentrated as its APDC complex on MWCNTs@
CuAl2O4@SiO2. Total chromium was measured in a 
similar manner after oxidizing Cr(III) to Cr (VI). The 
difference between the total chromium and the Cr(VI) 
contents was used to calculate the Cr(III) content. 
The analytical conditions, including pH, amount of 
adsorbent, APDC quantity, and interferent impacts, 
were optimized.

2 � Experimental

2.1 � Instruments

A flame atomic absorption spectrophotometer (model 
contrAA 800) with a xenon arc lamp was utilized, 
and all measurements were performed in an air/acety-
lene flame in this work. The analysis parameters of 
the analyzed element were adjusted as recommended 
by the manufacturer. For shaking the model and 
real sample solutions, a Weightlab (Turkey) ultra-
sonic bath and a Fisons WhirliMixer Vortex Shaker 
Cyclone Mixer model 12,665 were used. The Nüve 
Nf 400 (16 × 15  ml at 4.100  rpm) model centrifuge 
was also used for the separation of solid-phase adsor-
bents from solutions.

2.2 � Chemicals and Solutions

All chemical reagents used in this study are AR-grade 
and were used as-is without any purification. Deion-
ized water (Milli-Q Millipore 18.2  MΩ  cm−1 con-
ductivity) was used for all work. Ammonium pyrro-
lidine dithiocarbamate (APDC) solution (0.5%, w/v) 
was freshly prepared in water with ethanol (3:1, v/v). 
Multiwalled carbon nanotubes (MWCNTs) were pur-
chased from Aldrich, Milwaukee, WI, USA. Potas-
sium permanganate (KMnO4) (Sigma-Aldrich) solu-
tion (0.02 M) was prepared for oxidation purposes.

Fig. 1   Schematic pres-
entation of the presented 
solid-phase microextraction 
method of Cr(VI)
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Chromium standard solutions (Cr(III) and Cr(VI)), 
HNO3, and H2O2 used in this work were prepared and 
diluted from stock solutions (1000 mg L−1) that were pur-
chased from Sigma-Aldrich. Other solutions for elements 
were obtained by preparing high-purity compounds. 
INCT-OBTL-5 Oriental Basma tobacco leaves CRM 
from INCT, Warsaw, Poland, and TMDA-64.3-fortified 
water CRM from NWRIC, Burlington, ON, Canada. 
Phosphate (HPO4

2−/H2PO4
−, H2PO4

−/H3PO4), acetate, 
and ammonium buffer solutions were prepared as pH = 2, 
3, 6, and 7; 4 and 5; and 9 and 10, respectively.

2.3 � Synthesis of MWCNTs@CuAl2O4@SiO2

A total of 20 mL of 10% (v/v) HCl was added to 1 g 
of MWCNTs and stirred for 2 h for their surface acti-
vation. The obtained MWCNTs were separated using 
filter paper and dried at 85  °C for 5 h. Then 0.75 g 
was taken and suspended in 60  mL of concentrated 
H2SO4 and concentrated HNO3 mixture (3:1). The 
mixture solution was also stirred overnight at 80 °C. 
Then, it was washed with deionized water till its pH 
reached 7 then dried at 85 °C for 12 h.

Using the sol–gel method, 0.4 g of Cu(NO3)2⋅3H2O 
and 0.6 g of Al(NO3)3⋅9H2O were dissolved in deion-
ized water. A total of 0.75 g of oxidized MWCNTs was 
added to the above mixture and stirred using a stirrer 
till a light blue-colored solution appeared. Then 0.9 g 
of citric acid was added to the above mixture and 
stirred for 30 min at 70 °C. The pH of the mixture was 
set to 2–3 using an ammonia solution until the solu-
tion color changed to a deep blue. The dark blue gel 
was formed after the solution temperature was adjusted 
to 70 °C. The gel was placed in an oven at 90 °C for 
8 h until it became completely dry and turned into a 
porous gel. The dried porous gel was put in a furnace 
at 400 °C for 4 h (Kwak et al., 2012).

MWCNTs@CuAl2O4 nanoparticles obtained in 
the above step were coated on their surfaces by SiO2 
nanoparticles using the Stöber method (Habila et  al., 
2016). A total of 1 g of prepared MWCNTs@CuAl2O4 
nanoparticles were used as cores and dispersed in 
10 mL ethanol then added to a round-bottom flask con-
taining 200  mL ethanol and 50  mL deionized water. 
The mixture was stirred for 20 min, and then 5 mL of 
ammonia solution (25%) was added drop by drop. The 
mixture was placed in the stirrer for 15 min, and 3 mL 
of TEOS was added drop by drop using a burette for 
5 min. The round-bottom flask content was stirred for 

8 h to carry out the silica coating. The prepared MWC-
NTs@CuAl2O4@SiO2 nanoparticles were centrifuged 
to separate the solution phase, washed using deionized 
water and ethanol, and dried in an oven at 85  °C for 
12 h (Saravanan & Dubey, 2020).

2.4 � Test Procedure for Cr(VI)

A total of 2 mL of buffer solution (pH = 5) and 0.75 mL 
of APDC solution were added to 5  mL of solution 
in a centrifuge tube that contains 25  µg of Cr(VI). 
Deionized water was used to bring the final volume 
to 50 mL, and 20 mg of sorbent was added. The tube 
content was put in an ultrasonic bath for 5 min, shaken 
on a vortex for 2 min, and then centrifuged for 5 min. 
After decantation, 3 mL of HNO3 (3 M) dissolved in 
10% acetone was added to the remaining solid phase 
in the tube and shaken well using the vortex for 5 min 
and then put again in the centrifuge for 5 min. The elu-
ent was separated into another tube for measurement of 
Cr(VI) concentrations via FAAS.

2.5 � Oxidation of Cr(III) to Cr(VI) and Determination 
of Total Chromium

The oxidation step had been carried out using the pro-
cedures described in the previous studies (Ghosh et al., 
2013; Tarigh et  al., 2020). The Cr(III) quantity in the 
10-ml model solution was 25  mg. Four to five drops 
of (0.02 M) KMnO4 solution and 1 mL of 2 M H2SO4 
were added to three separate beakers containing 50 mL. 
To finish the oxidation process, the beakers were cov-
ered with watch glasses and heated at 70–80  °C for 
30 min. After cooling the solutions, sodium hydroxide 
solution (2.5% w/v) was added drop by drop to remove 
the excess KMnO4. The pH of the solution was checked 
with a pH meter and set to 5. Each solution was quan-
titatively transferred to a 50-mL volumetric flask, com-
pleted with deionized water, and shaken well. Overall, 
5 mL from each solution was taken to centrifuge tubes 
separately. Then 0.75 mL of 0.5% APDC solution and 
2  mL of acetate buffer solution were added, and the 
final volume was completed with deionized water until 
50  mL and mixed well. A total of 20  mg of sorbent 
was added, and the steps mentioned in Sect.  2.4 were 
applied. FAAS was applied to determine the total chro-
mium in the model and real sample solutions. The level 
of Cr(III) is obtained from the difference between the 
concentrations of total chromium and Cr(VI).
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2.6 � Total Chromium Levels of Certified Reference 
Materials

A 100-mg amount of INCT-OBTL-5 Oriental Basma 
tobacco leaves CRMs sample was added to 10 mL of 
concentrated nitric acid, and the solution was heated 
and  evaporated near dryness. The above process was 
done again with 10 mL of HNO3:H2O2 (1:1). A total 
of 10 ml of distilled water was added to the beaker, and 
the suspension was centrifuged for 5 min. Then, 5 mL 
was taken from the upper layer, and the above enrich-
ment method was applied. The same procedure was 
also performed on the blank solutions. Using FAAS, 
the concentration of total chromium was determined.

The presented extraction procedure was directly 
applied to determine the total chromium of the 
TMDA-64.3-fortified water CRM sample.

2.7 � Applications to Real Samples

Water samples, including wastewater, Erciyes Uni-
versity tap water, and mineral water, were filtered 
through cellulose filter paper. The same method given 
above was applied, and Cr(VI) concentrations in the 

samples were measured by FAAS. After the oxidation 
process was applied to Cr(III), the total chromium 
levels in water samples were measured.

3 � Results and Discussion

3.1 � Characterization

To characterize the synthesized MWCNTs, MWC-
NTs@CuAl2O4, and MWCNTs@CuAl2O4@SiO2 
nanocomposite, FTIR analysis was carried out in the 
range of 4000–400  cm−1 (Fig.  2a, b, and c, respec-
tively). In Fig. 2, bands at 3430 cm−1 belong to the OH 
stretching vibrations (Saravanan & Dubey, 2020). Spec-
trum bands at 2810 and 2790 cm−1 are the alkyl chains 
cleaved from the nanotube surface (Jalbani & Soylak, 
2015). Furthermore, bands at 1270 and 1190  cm−1 
could be attributed to CH-CH3 and C-O peaks (Soy-
lak et  al., 1993). Moreover, the bands from 1090 to 
850  cm−1 can belong to C–C and C = O groups. The 
broad band at 550  cm−1 is attributed to metal–oxygen 
stretching frequencies associated with the symmet-
ric and asymmetric Si–O–Si stretching and vibration 

Fig. 2   IR spectra of (a) MWCNTs, (b) MWCNTs@CuAl2O4, and (c) MWCNTs@CuAl2O4@SiO2
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bonds and Cu–O, Al–O, and Cu–O–Al vibration bonds 
(Gholami & Maddahfar, 2016; Jalbani & Soylak, 2015; 
Saravanan & Dubey, 2020; Soylak et al., 1993).

The typical XRD profiles of oxidized MWCNTs, 
MWCNTs@CuAl2O4, and MWCNTs@CuAl2O4@
SiO2 are given in Fig. 3. In (a), according to Miller indi-
ces, typical (002) and (110) peaks of oxidized MWCNTs 
were gotten and observed at diffraction angles (2θ) of 
26°, 43.8°, and 45°, respectively, which are acceptable 
and related to the literature values (Gholami & Maddah-
far, 2016). The XRD pattern of MWCNTs@CuAl2O4@
SiO2 nanocomposite, as given in (b), collects reflection 
peaks of (220), (311), (400), (422), (511), (440), (420), 
and (533) for CuAl2O4 and (002) diffraction lines for 
MWCNTs with a space group of Fd3m (JCPDS card no. 
44–0160) (Lee et al., 2005). MWCNTs@CuAl2O4@SiO2 
diffraction peaks show a clear difference from the MWC-
NTs@CuAl2O4 peaks (c) (Khomenkova et al., 2011).

Figure  4A, B, and C shows the SEM images of 
magnetic MWCNTs, MWCNTs@CuAl2O4, and 
MWCNTs@CuAl2O4@SiO2 nanocomposites, respec-
tively. These characterizations show that all nano-
composites have a different morphology from each 
other. Homogenous formation of CuAl2O4 nanopar-
ticles on the MWCNTs and homogenous formation 
of SiO2 on the MWCNTs@CuAl2O4 nanocomposite 
surface were obtained (Saleh, 2016).

3.2 � Optimization of the Developed SPME Procedure

3.2.1 � Effects of pH

The speciation mechanism by which Cr(III) and Cr(VI) 
interact with APDC is generally dependent on pH-
dependent interactions and complexation reactions. In 
complexation reactions, APDC forms stable complexes 
with metal ions, including Cr(III) and Cr(VI), by react-
ing as a chelating agent. When APDC is present, Cr(III) 
coordinates with the APDC ligand to form a complex as 
Cr(III)-APDC at pH ranging from 4 to 8. Cr(VI) reacts 
with APDC at pH 2.0–6.0 to produce Cr(VI)-APDC 
complexes. MWCNTs@CuAl2O4@SiO2 nanocomposite 
adsorbs Cr(VI)-APDC on its surface. The nanocompos-
ite possesses a high surface area and a variety of func-
tional groups, such as hydroxyl (− OH) and carboxyl 
(− COOH) groups, which can adsorb Cr(VI)-APDC che-
lates through electrostatic attraction, ion exchange, and 
surface complexation. Adsorption of Cr(VI)-APDC che-
lates onto the nanocomposite surface is typically favored 
under acidic conditions (pH < 7) (Salihu & Bakar, 2018; 
Yan et  al., 2023). The impacts of pH (Fig.  5) on both 
Cr(III) and Cr(VI) recovery values were tested in the 
range of 2–10 pH. Related to the results presented in 
Fig. 5, Cr(III) recovery values were below 10% in all pH 
ranges from 2 to 6, so this work was done in the same 

Fig. 3   XRD patterns of MWCNTs (a), MWCNTs@CuAl2O4 (b), and MWCNTs@CuAl2O4@SiO2 (c)
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range. In contrast, Cr(VI) was quantitatively recovered in 
the range of 4.5–5.5 of pH as Cr(VI) chelates. The given 
results prove that the Cr(III) and Cr(VI) speciation is pos-
sible at a pH range of 4.5–5.5, and all remaining works 
were continued at pH 5.0 for chromium speciation.

3.2.2 � Effects of APDC Amount

APDC is a reagent that can react with about 30 min-
eral ions, including Cr (VI), to form stable com-
plexes (Bahadir et  al., 2016; Saber Tehrani et  al., 

2004). APDC is commonly used in preconcentra-
tion-separation works and is preferred by research-
ers because of its properties. The influence of APDC 
on the recovery values of Cr(VI) on the adsorbent 
was also studied, and the results are given in Fig. 6. 
The recovery of Cr(VI) was not quantitative at 0 mg 
APDC, then started increasing with the quantity of 
APDC. The values of recovery became quantita-
tive after using 3.75 mg of APDC, and the remain-
ing work was carried out using this amount of the 
chelating agent.

Fig. 4   SEM images of MWCNTs (A), MWCNTs@CuAl2O4 (B), and MWCNTs@CuAl2O4@SiO2 (C)

Fig. 5   Effects of pH on the recoveries of Cr(III) and Cr(VI), (N = 3)
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3.2.3 � Effects of Adsorbent Quantity

In this step, different amounts of modified adsorbent 
were studied. The range of 5–40 mg of adsorbent was 
tested, and the results are given in Fig.  7. Related 
to the obtained results, all used amounts have given 
quantitative recoveries of Cr(VI) except 5  mg. Fur-
ther work was done using 20 mg of adsorbent.

3.2.4 � Effect of Eluent Type

The type and volume of eluent are also significant 
factors that affect the recovery values. The elution 
condition optimizations were carried out to get the 
best recovery values with a minimal volume of the 
eluent. In this work, different eluents (5  mL) were 
tested, and the results are given in Table 1. As can be 
seen, the Cr(VI) ions were quantitatively eluted from 
the solid phase with 3 M HNO3 in 10% acetone, and 
this eluent was used in all subsequent studies.

3.2.5 � Effect of Sample Volume

The sample volume effect on the recovery values of 
Cr(VI) was tested using different sample volumes of 
10–50 mL. This indicates that Cr(VI) recoveries are 

quantitative in this range (Fig. 8). The lowest eluent 
volume was 3  mL (Fig.  9). So the preconcentration 
factor was calculated as 17.

3.2.6 � Effect of Matrix Components

Different metal cations and anions were added indi-
vidually to the model solutions to test the presented 
method mentioned in Sect.  2. Sequences shown in 
Table 2 indicate that most of these matrices remained 
in the adsorption liquid phase. Some heavy metal ions 
were used in this work, and their levels were low and 
suitable for the Cr(VI) separation–enrichment in the 
real samples tested.

3.3 � Figure of Merits

After the preconcentration-separation method was 
applied to the blank solutions, the limit of detec-
tion (LOD) and the limit of quantification (LOQ) 
were obtained under optimum experimental condi-
tions. LOD and LOQ of Cr(VI) and R2 were 6.2 µg 
L−1 and 20.8  µg L−1 and 0.997, respectively. The 
precision of Cr(VI) determination for this proce-
dure was evaluated, as mentioned above. The pre-
sented method was repeated 10 times for Cr(VI). 

Fig. 6   Effect of chelating agent amount on the recoveries of Cr(III) and Cr(VI), (N = 3)
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At a 95% confidence level, the recovery of Cr(VI) 
was 98 ± 5%.

3.4 � Determination of Total Chromium

Model solutions and natural water samples that con-
tain different quantities of Cr(VI) and Cr(III) were 
prepared to determine total chromium. 0.5  mL of 
H2SO4, and drops of KMnO4 were added to these 
sample solutions to oxidize Cr(III) ions to Cr(VI) 
(Lopez-Garcia et al., 2012; Sereshti et al., 2011). The 

mixture was heated at 70–80 °C for 30 min to achieve 
the oxidation process. To obtain quantitative recovery 
values for Cr(VI), the pH of the solution was adjusted 
to pH = 5 using sodium hydroxide, followed by add-
ing 2  mL of acetate buffer solution at pH = 5. The 
method given in Sect.  2 was applied to these solu-
tions, and the results are presented in Table 3. Total 
chromium recovery in distilled water varied from 89 
to 99% for various spiked concentrations, suggest-
ing high recovery rates. With comparatively small 
standard deviations and observed values that were 
within an acceptable range, the measurement was 
precise. This implies that the technique works well 
for speciating chromium in samples of distilled water. 
Similarly, total chromium recovery varied from 96 to 
107% in Erciyes University tap water and from 94 to 
97% in mineral water samples. These results show 
how dependable and resilient the approach is in a 
variety of water matrices. The method’s accuracy in 
quantifying chromium species in complicated water 
samples is shown by the constant recovery rates seen 
across all tested concentrations. The results indicate 
that the present SPE procedure can be suitable for 
total chromium determination in aqueous solutions.

Fig. 7   Effect of adsorbent quantity on the recoveries of Cr(III) and Cr(VI), (N = 3)

Table 1   Effect of the eluent type on the recoveries of chro-
mium (VI), (N = 3)

a Mean ± standard deviation

Eluent type (5 mL) Recovery (%)a

3 M HCl 53 ± 2
3 M HNO3 63 ± 3
3 M HCl in 5 v% acetone 78 ± 3
3 M HNO3 in 5% acetone 70 ± 2
3 M HCl in 10% acetone 89 ± 3
3 M HNO3 in 10% acetone 97 ± 4
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The presented procedure was also applied to 
TMDA-64.3-fortified water and INCT-OBTL-5 Ori-
ental Basma tobacco leaves CRMs for chromium sepa-
ration and preconcentration. The results in Table  4 
were obtained in three replicates and correspond well 
with the certified chromium values. The analysis of 

TMDA-64.3-fortified water and INCT-OBTL-5 Ori-
ental Basma tobacco leaves has shown recovery rates 
of 96 ± 5% and 94 ± 4%, respectively. These recovery 
rates indicate the method’s effectiveness in accurately 
quantifying total chromium in different sample matri-
ces. The close agreement between the certified and 

Fig. 8   Effects of sample volume on the recoveries of Cr(III) and Cr(VI), (N = 3)

Fig. 9   Effects of eluent volume on the recoveries of Cr(III) and Cr(VI), (N = 3)
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found concentrations demonstrates the reliability and 
accuracy of the presented method. The relative stand-
ard deviation (RSD%) range of CRMs was 4–5%.

3.5 � Applications to Wastewater Samples

Using the standard addition method, the presented 
speciation procedure was applied to three different 
samples of wastewater collected from Kayseri Indus-
trial Region in Kayseri City. The reliability of the new 
method was confirmed by spiking experiments. The 
results are shown in Table 5. The findings presented in 
Table 5 indicate that the chromium concentrations of 
the examined samples varied considerably, with Water 
C containing the maximum quantities of both Cr(III) 
and Cr(VI). The significance of speciation analysis in 
clarifying the source and possible toxicity of chromium 
contamination in wastewater is underscored by these 
results. The concentrations that have been observed 
emphasize the critical need for efficient monitoring and 
management approaches to reduce chromium pollu-
tion and the hazards it poses to the environment and 
human health. The efficacy of the method described in 
this study in precisely quantifying chromium species 
within intricate matrices such as effluent reaffirms its 
practicality in the realms of environmental monitoring 
and regulatory compliance.

Table 2   Effect of some foreign ions on the recoveries of chro-
mium (VI), (N = 3)

a Mean ± standard deviation

Ions Salt Concentration 
(ppm)

Recovery (%)a

K+ KCl 5000 94 ± 3
Na+ NaF 5000 98 ± 3
Mg2+ MgCl2 1000 94 ± 3
Ca2+ CaCl2 1000 108 ± 6
Co2+ CoCl2 5 97 ± 3
Mn2+ Mn(NO3)2 5 76 ± 3
Zn2+ ZnCl2 5 95 ± 2
Fe3+ Fe(NO3)3 5 94 ± 1
CO3

2− Na2CO3 1000 96 ± 4
SO4

2− Na2SO4 2000 70 ± 3
Cl− CaCl2 1750 96 ± 2
NO3− NaNO3 2000 95 ± 2
F −  NaF 4000 98 ± 3

Table 3   Speciation 
chromium in spiked test 
solutions, (volume, 50 mL; 
N = 3)

a Mean ± standard deviation

Sample Added (µg) Found (µg)a

Cr(VI) Cr(III) Total chro-
mium

Total chromium Recovery (%)

Distilled water 0 25 25 22.3 ± 2.0 89 ± 6
15 10 25 24.8 ± 1.0 99 ± 5
20 5 25 24.5 ± 0.6 98 ± 2
25 0 25 24.5 ± 0.6 98 ± 2

Tap water from Erci-
yes University

0 25 25 25.5 ± 0.8 102 ± 3
15 10 25 25.3 ± 0.8 101 ± 3
25 0 25 26.7 ± 0.6 107 ± 2

Mineral water 0 25 25 24.0 ± 0.3 96 ± 1
15 10 25 24.3 ± 0.6 97 ± 2
25 0 25 23.5 ± 0.6 94 ± 2

Table 4   The level of total 
chromium in the standard 
reference materials after 
application of the presented 
method, (N = 3)

a Mean ± standard deviation

CRMs Total chromium Recovery (%)

Certified Found

TMDA-64.3-fortified water 0.283 (µg/mL) 0.271 (µg/mL) 96 ± 5a

INCT-OBTL-5 Oriental Basma 
tobacco leaves

6.30 (µg/g) 5.940 (µg/g) 94 ± 4
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4 � Conclusions

Chromium in wastewater samples was speciated 
using a novel, rapid, reliable, and simple procedure. 
The procedure was effectively carried out to 

measure chromium species in different wastewater 
samples. In this method, a new nanocomposite was 
synthesized as multi-walled carbon nanotubes and 
copper (II) aluminate nanoparticles coated by silicon 
dioxide nanoparticles (MWCNTs@CuAl2O4@
SiO2). High recovery rates over a variety of spiking 
concentrations were shown by the total chromium 
recovery in distilled water, which varied from 89 
to 99%. The tap water and mineral water samples 
from Erciyes University showed varying recovery 
rates, ranging from 96 to 107% and 94 to 97%, 
respectively. These steady recovery rates show how 
the technique is resilient and dependable in a variety 
of water matrices. TMDA-64.3-enriched water and 
INCT-OBTL-5 Oriental Basma tobacco leaves 

Table 5   Chromium speciation in wastewater samples, (vol-
ume, 50 mL; N = 3)

a Mean ± standard deviation

Wastewater 
sample

Cr(III) 
(µg/L)a

Cr(VI) (µg/L) Total Cr (µg/L)

Water A 483 ± 15 106 ± 0 589 ± 18
Water B 625 ± 36 336 ± 14 988 ± 57
Water C 1741 ± 35 520 ± 17 2261 ± 45

Table 6   Comparative data from some recent studies on Cr(III) and Cr(VI) speciation

DPCb diphenylcarbazide, DLLMEc dispersive liquid–liquid microextraction, CCl4d carbon tetrachloride, TXRFe reflection x-ray fluo-
rescence, LLEf liquid–liquid extraction, UA-DLLMEg ultrasound-assisted dispersive liquid–liquid microextraction, TBPh Octakis 
(p-tert-butylphenyl), DDTCi diethyldithiocarbamate, IL-DLLMEj ionic liquid-dispersive liquid–liquid microextraction
h ([C8MIm][NTf2]) 1-methyl-3-octylimidazolium bis[trifluoromethylsulfonyl]imide

Technique System Media Detection system PF DL (µg/L) RSD (%) Ref

SPE Sorption of Cr(III) 
and reduction of 
Cr(VI)

Saccharomyces cer-
evisiae immobi-
lized on sepiolite

FAAS 75 94  < 5 Bağ et al. (2000)

SPE Cr(VI)-DPCb and 
oxidation of 
Cr(III)

Funaria hygromet-
rica immobilized 
in a polysilicate 
matrix

ICP-MS and FAAS 20 0.15 and 145  < 10 Krishna et al. (2004)

SPE Cr(VI)-acetyltrime-
thyl ammonium 
bromide and oxi-
dation of Cr(III)

C-18 bonded-phase 
silica SPE disks

FAAS 45 15–20  < 5 Saber Tehrani et al. 
(2004)

SPE Cr(III)-dithizone 
and reduction of 
Cr(VI)

Chromosorb 108 FAAS 71 0.75  < 9 Tuzen and Soylak 
(2006)

DLLMEc Cr(VI)-DPC and 
oxidation of 
Cr(III)

Methanol and 
CCl4d

TXRFe 200 0.8  < 12 Bahadir et al. (2016)

LLEf Cr(VI)-DPC and 
oxidation of 
Cr(III)

n-pentanol Spectrophotometry 7.5 5 Chen et al. (2005)

UA-DLLMEg Cr(VI)-TBPh and 
oxidation of 
Cr(III)

TBP, HCl, and 
NaCl

ETAAS 240 0.002 5.2–8.6 Dokpikul et al. 
(2018)

DLLME Cr(VI)-Na-DDTCi CCl4 ICP-OES 8 0.27 6.2–9 Sereshti et al. (2011)
IL-DLLMEj Cr(VI)-APDC 

and oxidation of 
Cr(III)

([C8MIm][NTf2])h ETAAS 300 0.002 8 López-García et al. 
(2013)

SPE Cr(VI)-APDC 
and oxidation of 
Cr(III)

Magnetic MWC-
NTs/CuAl2O4/
SiO2

FAAS 17 6.2 5 This work
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showed recovery rates of 96 ± 5% and 94 ± 4%, 
respectively, suggesting that the approach is a good 
fit for precisely measuring total chromium in various 
sample matrices. The considerable differences 
in chromium concentrations found in wastewater 
samples under examination, especially in Water 
C, highlight the significance of speciation analysis 
in determining the level of chromium pollution in 
wastewater. These findings highlight the urgent need 
for effective management and monitoring strategies 
to lower chromium pollution levels and the risks 
they pose. Chromium speciation data from some 
late studies and this work were compared and given 
in Table 6. The optimal conditions of the presented 
method and the chromium speciation detection limit 
were studied. The new synthesized nanocomposite 
speciation method is superior to some of the reported 
methods in terms of detection and quantification 
limits, selectivity, simplicity, amount of adsorbent, 
and used solvents.
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