Skip to main content
Log in

Efficient Removal of Cr(VI) from Wastewater by Magnetic Biochar Derived from Peanut Hull

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The contamination of chromium (Cr(VI)) in groundwater threatens public health because of the industrial development being historically less supervised. To remove Cr(VI) from groundwater and other surface waters, a new FeCl3-modified magnetic biochar (MBPH550) was prepared from a waste peanut hull. The magnetic potential was to facilitate the separation of absorbent from the water phase. The removal efficiency, adsorption kinetics and isotherm models, and adsorption mechanism of Cr(VI) on MBPH550 were investigated. MBPH550 had a large specific surface of 243.23 m2/g and saturation magnetization of 5.65 emu/g. MBPH550 achieved a removal efficiency of Cr(VI) up to 92.2% ± 2.0%. Low pH favored the adsorption of Cr(VI). At pH 6.0, the adsorption of Cr(VI) on MBPH550 fits the Elovich kinetic model and Freundlich isothermal adsorption model, with an equilibrium adsorption capacity of 6.64 mg/g. In addition to the direct functional group coordination and precipitation on the surface of MBPH550, Cr(VI) was also reduced to Cr3+, Cr(OH)3, Cr2O3, and FeCr2O4, which were all deposited on the surface of MBPH550. MBPH550 could be a widely applied efficient adsorbent for removing Cr(VI) from wastewater, groundwater, and leachate of Cr-contaminated soil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abul, H., Sofia, P., Sadia, M., Anik, H., Shahruk, N., Aminur, R., & Majher, I. (2022). Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach. Water Science and Engineering, 15(4), 328–336.

    Article  Google Scholar 

  • Adeyinka, S., Lekan, T., & Anselm, I. (2022). Response surface modeling and optimization of hexavalent chromium adsorption onto eucalyptus tree bark-derived pristine and chemically-modified biochar. Chemical Engineering Research and Design, 182, 592–603.

    Article  Google Scholar 

  • Al-Ghouti, M., & Da'ana, D. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Zhou, X., Hao, M., & Mei, X. (2021). Removal of Cr(VI) from aqueous solutions using montmorillonite-biochar composites. Desalination and Water Treatment, 215, 98–107.

    Article  CAS  Google Scholar 

  • Chen, G., Han, J., Mu, Y., Yu, H., & Qin, L. (2019). Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. Water Research, 148, 10–18.

    Article  PubMed  CAS  Google Scholar 

  • Değermenci, G., Değermenci, N., Ayvaoğlu, V., Durmaz, E., Çakır, D., & Akan, E. (2019). Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. Journal of Cleaner Production, 225, 1220–1229.

    Article  Google Scholar 

  • Değermenci, G., Değermenci, N., Emin, N., & Aşıkuzun, E. (2022). Characterization of Mg-rich natural serpentine clay mineral and removal of reactive blue 19 from aqueous solutions. EQA - International Journal of Environmental Quality, 47, 40–55.

    Google Scholar 

  • Diao, Z., Xu, X., Chen, H., Jiang, D., Yang, Y., Kong, L., Sun, Y., Hu, Q., Hao, Q., & Liu, L. (2016a). Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism. Journal of Hazardous Materials, 316, 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Diao, Z., Xu, X., Jiang, D., Kong, L., Sun, Y., Hu, Y., Hao, Q., & Chen, H. (2016b). Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions. Chemical Engineering Journal, 2016(302), 213–222.

    Article  Google Scholar 

  • Di Natale, F., Erto, A., Lancia, A., & Musmarra, D. (2015). Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon. Journal of Hazardous Materials, 281, 47–55.

    Article  PubMed  Google Scholar 

  • Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190(1), 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Fasina, O. (2008). Physical properties of peanut hull pellets. Bioresource Technology, 99(5), 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Z., Gao, X., Zhou, B., Li, H., Liu, H., Yuan, R., Wang, X., Chen, Z., Luo, S., & Chen, H. (2023). Influence mechanisms of different stalks on iron species type of magnetic biochar prepared from Fe2O3. Science of the Total Environment, 903, 166790.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Gong, Y., Gai, L., Tang, J., Fu, J., Wang, Q., & Zeng, E. Y. (2017). Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of The Total Environment, 595, 743–751.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Gurav, R., Bhatia, S., Choi, T., Park, Y., Park, J., Han, Y., Vyavahare, G., Jadhav, J., Song, H., Yang, P., Yoon, J., Bhatnagar, A., Choi, Y., & Yang, Y. (2020). Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresource Technology, 297, 122472.

    Article  PubMed  CAS  Google Scholar 

  • Hage, D., & Carr, J. (2010). Analytical chemistry and quantitative analysis. China Machine Press.

    Google Scholar 

  • Han, Y., Cao, X., Ouyang, X., Sohi, S., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Huang, M., Mishra, S., & Liu, S. (2017). Waste glass fiber fabric as a support for facile synthesis of microporous carbon to adsorb Cr(VI) from wastewater. ACS Sustainable Chemistry & Engineering, 5(9), 8127–8136.

    Article  CAS  Google Scholar 

  • Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., Zhou, Y., Zhang, M., Wang, S., & Zheng, B. (2016). Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. Rsc Advances, 6(1), 94–104.

    Article  ADS  CAS  Google Scholar 

  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.

    Article  CAS  Google Scholar 

  • Jiang, B., Gong, Y., Gao, J., Sun, T., Liu, Y., Oturan, N., & Oturan, M. (2019). The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives. Journal of Hazardous Materials, 365, 205–226.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Kim, J., Cho, T., & Choi, J. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 118, 158–162.

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz, C., Değermenci, G. D., & Değermenci, N. (2023). Removal of phosphate from aqueous solution using anion exchange resin: Equilibrium isotherms and kinetics. Fibers and Polymers, 24, 3753–3760.

    Article  CAS  Google Scholar 

  • Krea, N., Bhaumik, M., Pillay, K., Ray, S., & Maity, A. (2017). Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. Journal of Colloid and Interface Science, 503, 214–228.

    Article  ADS  Google Scholar 

  • Li, H., Dong, X., da Silva, E., de Oliveira, L., Chen, Y., & Ma, L. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Li, N., Yue, Q., Gao, B., Xu, X., Su, R., & Yu, B. (2019). One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. Journal of Cleaner Production, 207, 764–771.

    Article  CAS  Google Scholar 

  • Liu, N., Zhang, Y., Xu, C., Liu, P., Lv, J., Liu, Y., & Wang, Q. (2020a). Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. Journal of Hazardous Materials, 384, 121371.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Liu, X., Wang, D., Lin, H., & Huang, L. (2020b). Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge. Journal of Cleaner Production, 257, 120562.

    Article  CAS  Google Scholar 

  • Liu, Q., Liu, F., & Chen, H. (2017). Removal of Cr(VI) from aqueous solutions by low-temperature biochars from crop residues: Role of redox reactions. Desalination and Water Treatment, 75, 94–106.

    Article  CAS  Google Scholar 

  • Lu, A., Zhong, S., Chen, J., Shi, J., Tang, J., & Lu, X. (2006). Removal of Cr (VI) and Cr (III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environmental Science & Technology, 40(9), 3064–3069.

    Article  ADS  CAS  Google Scholar 

  • Luo, L., Xu, C., Chen, Z., & Zhang, S. (2015). Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresource Technology, 192, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Lyu, H., Tang, J., Huang, Y., Gai, L., Zeng, E. Y., Liber, K., & Gong, Y. (2017). Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chemical Engineering Journal, 322, 516–524.

    Article  CAS  Google Scholar 

  • Ma, F., Bakunzibake, P., Zhao, B., Diao, J., & Li, J. (2020). Simultaneous adsorption and reduction of hexavalent chromium on biochar-supported nanoscale zero-valent iron (nZVI) in aqueous solution. Water Science & Technology, 82(7), 1339–1349.

    Article  CAS  Google Scholar 

  • Ma, J., & Chen, K. (2020). Designing porous nickel architectures for adsorptive removal of Cr(VI) to achieve drinking water standard. Separation and Purification Technology, 241, 116705.

    Article  CAS  Google Scholar 

  • Mao, Y., Tao, Y., Zhang, X., Chu, Z., Zhang, X., & Huang, H. (2023). Removal of aqueous Cr(VI) by tea stalk biochar supported nanoscale zero-valent iron: Performance and mechanism. Water, Air, Soil Pollution, 234, 149.

    Article  ADS  CAS  Google Scholar 

  • Mohan, D., Rajput, S., Singh, V., Steele, P., & Pittman, C. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1), 319–333.

    Article  PubMed  CAS  Google Scholar 

  • Morsy, F. (2011). Hydrogen production from acid hydrolyzed molasses by the hydrogen overproducing Escherichia coli strain HD701 and subsequent use of the waste bacterial biomass for biosorption of Cd(II) and Zn(II). International Journal of Hydrogen Energy, 36(22), 14381–14390.

    Article  CAS  Google Scholar 

  • Picard, M., Thakur, S., Misra, M., Mielewski, D., & Mohanty, A. (2020). Biocarbon from peanut hulls and their green composites with biobased poly(trimethylene terephthalate) (PTT). Scientific Reports, 10(1), 3310.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Polti, M., Aparicio, J., Benimeli, C., & Amoroso, M. (2014). Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. International Biodeterioration & Biodegradation, 88, 48–55.

    Article  CAS  Google Scholar 

  • Qu, J., Zhang, X., Liu, S., Li, X., Wang, S., Feng, Z., Wu, Z., Wang, L., Jiang, Z., & Zhang, Y. (2022). One-step preparation of Fe/N co-doped porous biochar for chromium(VI) and bisphenol a decontamination in water: Insights to co-activation and adsorption mechanisms. Bioresource Technology, 361, 127718.

    Article  PubMed  CAS  Google Scholar 

  • Rajapaksha, A., Alam, M., Chen, N., Alessi, D., Igalavithana, A., Tsang, D., & Ok, Y. (2018). Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Science of The Total Environment, 625, 1567–1573.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Rama, S., Rakesh, K., Prabhakar, S., Nishi, K., Shang, J., & Tejraj, M. (2022a). Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. Journal of Environmental Management, 317, 115356.

    Google Scholar 

  • Rama, S., Rakesh, K., Kumar, A., Shang, J., Sayan, B., Shubhalakshmi, S., Nishant, K., Jyotirekha, M., Manoranjan, K., & Prabhakar, S. (2022b). Single-step synthesis of activated magnetic biochar derived from rice husk for hexavalent chromium adsorption: Equilibrium mechanism, kinetics, and thermodynamics analysis. Groundwater for Sustainable Development, 18, 100796.

    Article  Google Scholar 

  • Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., & Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health, 17, 5438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, K., Sun, Y., Tang, J., He, J., & Sun, H. (2020). Aqueous Cr(VI) removal by a novel ball milled Fe0-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature. Chemosphere, 241, 125044.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Tang, Y., Li, K., Mo, Y., Li, H., & Gu, Z. (2014). Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology, 174, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Gao, B., Zimmerman, A., Li, Y., Ma, L., Harris, W., & Migliaccio, K. (2015). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wang, S., Zhong, D., Xu, Y., & Zhong, N. (2022). Removal of hexavalent chromium from simulated wastewater by polyethylene glycol–modified D201 resin-supported nanoscale zero-valent iron. Water, Air, Soil Pollution, 233, 446.

    Article  ADS  CAS  Google Scholar 

  • Wei, Y., Zhang, K., Cheng, T., & Zhou, G. (2023). Characteristics and mechanisms of Cr(VI) removal from aqueous solution by FeSm/BC composite. Water, Air, Soil Pollution, 234, 68.

    Article  ADS  CAS  Google Scholar 

  • Wu, F., Tseng, R., & Juang, R. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2), 366–373.

    Article  CAS  Google Scholar 

  • Wu, H., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). Ecotoxicology and Environmental Safety, 188, 109902.

    Article  PubMed  CAS  Google Scholar 

  • Xia, S., Song, Z., Jeyakumar, P., Bolan, N., & Wang, H. (2019). Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 42, 1543–1567.

    Article  PubMed  Google Scholar 

  • Xu, S., Yu, W., Liu, S., Xu, C., Li, J., & Zhang, Y. (2018). Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. Sustainability, 10(11), 4250.

    Article  CAS  Google Scholar 

  • Ye, Z., Yin, X., Chen, L., He, X., Lin, Z., Liu, C., Ning, S., Wang, X., & Wei, Y. (2019). An integrated process for removal and recovery of Cr (VI) from electroplating wastewater by ion exchange and reduction–precipitation based on a silica-supported pyridine resin. Journal of Cleaner Production, 236, 117631.

    Article  CAS  Google Scholar 

  • Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., & Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298, 122468.

    Article  PubMed  CAS  Google Scholar 

  • Yi, Y., Tu, G., Zhao, D., Tsang, P., & Fang, Z. (2019). Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor. Chemical Engineering Journal, 360, 212–220.

    Article  ADS  CAS  Google Scholar 

  • Yin, Z., Xu, S., Liu, S., Xu, S., Li, J., & Zhang, Y. (2020). A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresource Technology, 300, 122680.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., An, Q., Jin, L., Luo, N., Li, Z., & Jiang, J. (2020). Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: Implicit mechanism and application. Bioresource Technology, 297, 122466.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Lv, L., Qin, Y., Xu, M., Jia, X., & Chen, Z. (2018). Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood. Bioresource Technology, 256, 1–10.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Zhang, T., Tian, G., Hu, X., Xie, Y., Zhang, L., & Bian, B. (2021). Intensity analysis of chromium cycling in south Jiangsu region of China. Chemosphere, 263, 128138.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Huang, X., Wang, D., Wang, L., & Ma, F. (2018). Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Chemosphere, 207, 50–59.

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by a Science and Technology Major Special Project of Tianjin Municipal Science and Technology Bureau (No.19ZXSZSN00080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhai.

Ethics declarations

Conflict of Interest

The authors declare Nno competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 391 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liang, Y., Cui, W. et al. Efficient Removal of Cr(VI) from Wastewater by Magnetic Biochar Derived from Peanut Hull. Water Air Soil Pollut 235, 100 (2024). https://doi.org/10.1007/s11270-024-06912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06912-0

Keywords

Navigation