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Abstract The present study uses various statisti-
cal tools to understand the behaviour of  PM2.5 and 
 PM10 in the Kanjikode industrial area of Southern 
India. Annual  PM2.5 and  PM10 average concentra-
tions in 2018–2020 were three times more than the 
World Health Organization–specified standards (5 
and 15  µg   m−3). The statistical distribution analysis 
suggested well-fitted lognormal and gamma distri-
butions of 24-h average  PM2.5 concentrations and 
gamma distributions of 24-h average  PM10 concentra-
tions. Trend analysis observed a notable monotonic 
increasing trend for 24-h average  PM2.5 concentra-
tions with an increasing magnitude of 0.43  µg   m−3 
per annum. A downward trend was found for 24-h 
average  PM10 concentrations, with a decreasing mag-
nitude of 0.2 µg  m−3 per year. Extreme event analysis 

of  PM2.5 and  PM10 has provided the highest concen-
tration levels expected in the coming 10  years, 193 
and 165 µg  m−3, respectively, higher than the Indian 
National Ambient Air Quality Standards and consid-
ered a public health threat. The health risk assessment 
by AirQ + emphasized that more than 15, 34, and 27 
premature deaths caused by total mortality in 2018, 
2019, and 2020 could have been prevented if  PM2.5 
concentrations in the Kanjikode industrial area did 
not exceed 10 μg  m−3. Statistical analysis and health 
risk assessment suggested adopting various construc-
tive and multipronged approaches to reduce pollution 
levels and develop a health risk management plan in 
the industrial region.

Keywords Industrial area · Particulate matter · 
Probability distributions · Trend analysis · Extreme 
event analysis · Python; AirQ + 

1 Introduction

Air pollution has been one of India’s persistent envi-
ronmental issues in recent years. Poor air quality is 
a substantial health and environmental concern that 
impacts well-being, hampers development, and incurs 
steep economic costs. As an emerging economic 
country in South Asia, India’s rapid industrialization 
and urbanization have led to extreme air pollution 
in urban and rural areas. The World Health Organi-
zation (WHO) reported that, in India, 14 of the 15 
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cities worldwide have the most severe air pollution. 
Northern India has experienced more severe air pol-
lution episodes than southern India due to spatial 
heterogeneity and diverse meteorological condi-
tions (PHFI, 2017). In 2019, household air pollution 
and particulate matter contributed to 1.67 million 
deaths in India, accounting for 17·8% (Pandey et al., 
2021). Seventy-seven percent of India’s population 
lives in places where the annual  PM2.5 concentration 
is above 40  μg   m−3, the standard set by the Indian 
National Ambient Air Quality Standards (NAAQS) 
(Balakrishnan et al., 2019). No state in India has met 
the annual  PM2.5 standard limit of 10 μg   m−3 set by 
the WHO. India’s ambient air pollution sources are 
classified into vehicular exhaust households; small, 
medium, and large-scale industries; agriculture; 
power plants; waste and biomass burning; and con-
struction and demolition activities. India’s populace 
has been breathing higher levels of toxic air, due to 
which they have experienced increased mortality and 
disease burden (Balakrishnan et al., 2019; Botle et al., 
2020; Dwivedi et  al., 2022; Gangadharan & Nambi, 
2020; Masih et al., 2019; Pandey et al., 2021; Rohra 
et al., 2020).

Central and State Pollution Control Boards (CPCB 
and SPCBs) evaluated 88 industrial clusters and iden-
tified them as polluted areas, illustrating India’s air, 
water, and land pollution (SoE, 2021). The dissemi-
nation of daily levels of air pollutants, particularly in 
industrial areas, is essential for individuals suffering 
from illnesses from air pollution exposure. Knowl-
edge of the statistical distribution of air quality data 
is necessary for predicting high pollutant concen-
trations, so that action can be planned and taken by 
related agencies and governments to tackle high pol-
lutant events in future years. The ambient air pollut-
ant levels varied with emission source strength and 
meteorological conditions. Previous studies have used 
distributions such as normal, lognormal, Weibull, 
gamma, and exponential distributions to fit the ambi-
ent air quality parameters (Giavis et al., 2009; Gulia 
et  al., 2017; Lu & Fang, 2002; Mishra et  al., 2021; 
Yang et al., 2012). Trend analysis is a helpful method 
for assessing variations in pollutant concentrations 
over time and may also be used to demonstrate the 
effectiveness of policy initiatives (Pandolfi et  al., 
2016; Sicard et  al., 2021). The most common com-
ponent of many statistical approaches researchers use 
is analyzing and correlating trends in pollutant data 

and meteorological parameters. Site-specific moni-
toring and source apportionment techniques can act 
as management and decision-making tools. Extreme 
event analysis (EVA) provides a statistical model to 
quantify the probability of extreme events, such as air 
pollution and the highest concentration of air pollut-
ants, using return value analysis in a time of interest 
(Martins et al., 2017; Masseran et al., 2016). Extreme 
concentrations of air pollutants affect air quality and 
cause health hazards.

Studies have reported the adverse health effects 
of air pollution, focusing on long-term (chronic) and 
short-term (acute) exposures. The health of vulner-
able and susceptible individuals (e.g., the elderly, 
women, and children) can be affected even on days 
with low levels of air pollution. Air pollution has 
many health effects, including respiratory and cardio-
vascular disorders, cancer, premature death, hyper-
tension, and cognitive impairment. Many researchers 
worldwide have used the AirQ + model developed by 
the WHO to evaluate the long- and short-term health 
impacts of ambient air pollutants (Amoatey et  al., 
2020; Manojkumar & Srimuruganandam, 2021; Miri 
et al., 2016; Omidi Khaniabadi et al., 2019).

The present study investigates the statistical distri-
butions and trends in the 24-h  PM2.5 and  PM10 con-
centrations measured in an industrial area of southern 
India. The Python-based pyMannKendall package 
was used to identify the trend in PM concentrations 
over the monitoring period. Additionally, we com-
puted the return value of PM concentrations in a 
period of interest by applying threshold modelling, a 
Python package for modelling excesses over a thresh-
old using the Generalized Pareto Distribution. More-
over, we explored the influence of meteorological 
parameters on pollutant concentrations. Furthermore, 
we estimated long-term health impacts such as total 
mortality and mortality due to chronic obstructive 
pulmonary disease (COPD), ischemic heart disease 
(IHD), lung cancer (LC), and stroke due to  PM2.5.

2  Methodology

2.1  Study Area

Kanjikode, with an area of 16.88  km2 and a popula-
tion of more than 50,000 people, is located 13  km 
east of Palakkad town, one of the major industrial 
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areas in Kerala, India. Kanjikode is an industrial 
hub in the Palakkad District of Kerala, India. Due 
to many electric furnace–based industries, air qual-
ity degradation in the Kanjikode area has been 
observed (MOEF 2022). Various companies, such 
as PPS Steel (Kerala) Pvt. Ltd., Pepsi, Indian Tel-
ephone Industries Limited (ITI), Patspin India Ltd., 
United Breweries, Rubfila International Ltd., Bharat 
Earth Movers Limited (BEML), and Saint-Gobain 
India Pvt. Ltd. (SEFPRO), are located in this region 
(Fig. 1). There are nearly 48 industries in this region, 

including manufacturing units for steel, cement, paint 
color, distilleries, fertilizers, textiles, and chemicals. 
Industrial emissions in Kanjikode vary based on the 
activities carried out in various industries (Table S3). 
High-volume samplers, such as APM 460BL, were 
used to collect 24-h  PM10 samples, and fine-volume 
samplers (APM 550) were used to collect 24-h  PM2.5. 
 PM10 and  PM2.5 sampling was conducted on the roof-
top of a building with a height of 20  m located in 
SEPR Refractories (SEFPRO). The monitoring sta-
tion located in the study area was at least 250–300 m 

Fig. 1  Layout of monitoring location in Kanjikode industrial area
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away from the major polluting sources (stacks, roads). 
SEFPRO is a 100% subsidiary of Saint-Gobain SEF-
PRO and one of the leading manufacturers of fused 
cast and sintered refractories for glass furnaces. The 
two main processes in this industry are sintering 
and fusion. A total of 232 samples were collected 
during 2018 (winter—16, summer—24, southwest 
monsoon—33, northeast monsoon—27), 2019 (win-
ter—19, summer—18, southwest monsoon—21, 
northeast monsoon—14), and 2020 (winter—18, 
summer—15, southwest monsoon—18, northeast 
monsoon—9).

2.2  Statistical Distribution Analysis

Characterizing the probability distribution of PM 
data is necessary for predicting the average concen-
tration and probability of exceeding the standard limit 
set by the Indian NAAQS. The present study evalu-
ated normal, lognormal, Weibull, gamma, and expo-
nential distributions of the measured 24-h  PM2.5 and 
 PM10 concentrations. These distribution parameters 
(scale, shape, and location) were computed using the 
maximum likelihood estimation (MLE) method. The 
goodness-of-fit tests used to assess the best fit in the 
present study were the Kolmogorov–Smirnov (K-S), 
modified Kolmogorov–Smirnov, and Anderson–Dar-
ling (A-D) tests. A probability plot was used to iden-
tify the best fit of a dataset that followed a given 
distribution. After identifying the best distribution 
model, we used the cumulative distribution function 
to calculate the exceeding probabilities. The algo-
rithms for parameter estimation by MLE and good-
ness of fit tests are provided in the supplementary 
information (S1).

2.3  Trend Analysis

The Mann–Kendall (M–K) test (Kendall, 1970; 
Mann, 1945) is a nonparametric test that is exten-
sively used to find notable trends in temporal data 
(Bari et  al., 2016). The slope estimator method was 
proposed by Theil (1992) and Sen (1968) to assess the 
magnitude of monotonic trends. Theil-Sen trend esti-
mator is suitable for nonparametric data because of 
its insensitivity to anomalies, and it might be applied 
in severely skewed datasets. The test produced a 
p-value for the significance level and a slope value 
with a 95% confidence interval. The python-based 

pyMannKendall package was used for trend analysis 
in the present study (Hussain and Mahmud 2019).

2.4  Extreme Value Analysis

Generalized Pareto distribution (GPD) is commonly 
used in extreme event analysis (EVA). This approach 
uses the data above a predetermined threshold value 
and evaluates all data over the threshold without 
selecting a set of minimum or maximum values. The 
likelihood of the return level of the adverse envi-
ronmental state was calculated using the fitted GPD 
model represented in Eq.  (1). The probability of the 
return level is an essential measure of the likelihood 
of air pollution occurrences for a specific period.

x denotes the excess over a given threshold value. The 
maximum-likelihood approach was used to estimate 
the shape (ξ) and scale parameters (β), which deter-
mine the distribution. The threshold provides a sim-
ple but essential component for a correct fit; it defines 
the point at which an occurrence is excessive (Mar-
tins et  al., 2017). A recurrence interval, also known 
as a return period, can be used to estimate the prob-
ability of an event with an extreme level of pollutants. 
The danger of an air pollution event can be inferred 
from this indicator based on the return level over a 
considerable amount of time. In this study, threshold 
modelling, a Python package, was used to choose, fit 
the threshold, and estimate the return value of PM 
concentrations at a time of interest (Lemos et  al., 
2020; Masseran et al., 2016).

2.5  Health Risk Estimation

The WHO developed AirQ + , which quantifies the 
health impact of ambient PM concentrations (WHO, 
2018). The burden of diseases, such as mortality, 
morbidity, and risk assessment, can be studied using 
AirQ + . The long-term impacts of ambient  PM2.5 
were assessed in this study using AirQ + software 
(Version 2.1.1). This study used the values of input 
factors such as pollution concentration and popula-
tion. In addition, to execute the AirQ + programme, 
relative risk, disease-specific or health endpoint 
incidence, and cut-off values should be known. A 

(1)G�,�(x) = 1 −

(

1 +
�x

�

)
−1

�
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log-linear methodology was used in AirQ + to gener-
ate relative risk levels. The baseline incidence values 
(per 100,000 individuals) for each health outcome 
derived from previous studies were as follows: Total 
mortality = 1013, lung cancer = 22, COPD mortal-
ity = 106, and stroke mortality, 70 (Amoatey et  al., 
2020; Maji et  al., 2017; Manojkumar & Srimuruga-
nandam, 2021). The attributable proportions, number 
of attributable excess cases, and number of attribut-
able cases (per 1 lakh population) were calculated 
using a 95% confidence interval. The mathematical 
expressions used for calculating health risk estima-
tion are given in the supplementary information (S2).

3  Results and Discussion

3.1  Seasonal Characteristics of PM in the Kanjikode 
Industrial Area

The boxplot of  PM2.5 for 2018–2020 showed that 75% 
of the data were within the standard limit prescribed 
by Indian NAAQS (60  µg   m−3). Twenty-four-hour 
average  PM2.5 concentrations for 1  day in 2018 and 
4  days in 2019 exceeded 60  µg   m−3. Annual  PM2.5 
concentrations of the Kanjikode industrial area were 

3, 4.8, and 3.5 times more than the WHO-specified 
limit (5  µg   m−3) in 2018, 2019, and 2020, respec-
tively. The dataset showed that 50% of the  PM2.5 
concentration followed the range of 5–18  µg   m−3, 
10–28 µg  m−3, and 9–40 µg   m−3 in 2018, 2019, and 
2020, respectively (Fig.  2). The maximum 24-h 
average  PM2.5 concentration was observed to be 
73 µg  m−3, 167 µg  m−3, and 55 µg  m−3 in 2018, 2019, 
and 2020, respectively. The distribution of the time-
series data exhibited high kurtosis (K) and skewness 
(S), which are considered frequency distribution 
moves away from a normal distribution (Hair et  al., 
2017). The high K, high S, and less interquartile range 
(IQR) of the  PM2.5 dataset in the winter season of 
2019 (K = 2.2; S = 4.3; IQR = 27.8), summer seasons 
in 2018 (K = 1.5; S = 2; IQR = 15.1), 2019 (K = 5.8; 
S = 2; IQR = 14), southwest monsoon seasons in 2018 
(K = 12.9; S = 3.2; IQR = 7.4), 2020 (K = 6.2; S = 2.1; 
IQR = 6.7), and northeast monsoon season in 2018 
(K = 1.5; S = 1.5; IQR = 14) indicated the  PM2.5 data 
has heavy tails. Also, this dataset was character-
ized by larger mean values than the median, indicat-
ing the occurrence of extreme quantities during this 
period. Previous studies observed a similar trend (He 
et  al., 2020; Liu et  al., 2019; Zhai & Chen, 2018). 
The 24-h average  PM2.5 concentration was higher in 

Fig. 2  Seasonal varia-
tion of 24-h average  PM2.5 
concentration during 
2018–2020
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the southwest monsoon and winter. The 24-h aver-
age  PM2.5 dataset demonstrated significant differ-
ences regarding the kurtosis and skewness of the data 
reflected in seasonal  PM2.5 level variations.

Twenty-four-hour average  PM10 concentrations 
exceeded 100  µg   m−3 in 29, 2, and 8  days in 2018, 
2019, and 2020, respectively. The annual average 
 PM10 concentrations in the study area were 5.3, 3.6, 
and 3.5 times more than the WHO-specified limits 
(15  µg   m−3) in 2018, 2019, and 2020, respectively. 
The dataset showed that 50% of the  PM10 concentra-
tion followed the concentration range between 49 and 
102 µg  m−3, 32 and 69 µg  m−3, and 25 and 83 µg  m−3 
in 2018, 2019, and 2020, respectively (Fig.  3). The 
24-h average  PM10 concentration was higher in the 
winter, northeast monsoon, and summer seasons. The 
high K, high S, and less IQR of the  PM10 dataset in 
the summer season (K = 3.1; S = 1.6; IQR = 40.5) 
and southwest monsoon seasons (K = 1.1; S = 0.9; 
IQR = 16.7) in 2018, winter season in 2019 (K = 8.5; 
S = 2.5; IQR = 24), and north-east season (K = 2.9; 
S = 1.6; IQR = 8.1) in 2020 indicated the occurrence 
of extreme  PM10 concentrations during this period.

The processes in manufacturing industries includ-
ing crushing, grinding, sieving, and mixing various 

materials to produce monolithic refractories were 
reported to emit elevated levels of PM in the atmos-
phere (Kuenen et  al., 2019; MSME, 2010). Fugi-
tive dust emissions may occur during the handling 
and transportation of raw materials. Industrial stack 
emissions also led to higher particulate matter (PM) 
emissions.

3.2  Statistical Distribution and Trend Analysis of 
PM Concentrations

Statistical distributions of atmospheric concentra-
tions were used to assess the degree of compliance 
of a region with ambient air quality standards. The 
present study performed a statistical distribution 
analysis for the 24-h average  PM2.5 to find the rep-
resentative distributions. Goodness-of-fit tests used 
for assessing the best fit in the present study were 
Kolmogorov–Smirnov (K-S), modified Kolmogo-
rov–Smirnov, and Anderson–Darling (A-D) test. 
Lognormal distributions with a significance level of 
0.05 were better with actual data with lower K-S, 
K-S modified, and A-D test statistics for 2018–2020 
(Table  1).  PM2.5 concentrations followed gamma 
distributions in 2019 and 2020 (Table  1). Smaller 

Fig. 3  Seasonal varia-
tion of 24-h average  PM10 
concentration during 
2018–2020
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K-S, K-S modified, and A-D test statistics signify 
a better fit with the actual data (McHugh, 2013). 
The lognormal distribution analysis of the 24-h 
average  PM2.5 dataset predicted a 2.8%, 7.9%, and 
7.7% probability of 24-h average  PM2.5 concentra-
tion exceeding 60 µg  m−3 in 2018, 2019, and 2020, 
respectively. In 2018, 2019, and 2020, the probabil-
ity of  PM2.5 concentration exceeding the prescribed 
limit (WHO 24-h standard limit: 15  µg   m−3) was 
32.1%, 52%, and 55%, respectively. The estimates 
of the location (µ) and scale (σ) of lognormal dis-
tributions are shown in Table  2. As demonstrated 
in Table 2, the values of σ were similar from 2018 

to 2020, indicating that the meteorological param-
eters remained similar for the 3  years. The prob-
ability distributions of  PM2.5 concentration showed 
a unimodal distribution. Past studies have reported 
well-fitted lognormal and gamma distributions of 
24-h average  PM2.5 concentration in megacities 
across the globe (Gulia et  al., 2017; Lu & Fang, 
2002; Mishra et  al., 2021). The probability-prob-
ability (P-P) plots are provided in supplementary 
Figures (S1-S3) (supplementary information (S3)). 
The analysis results of various modified M–K tests 
and Theil-Sen slope estimation of the 24-h aver-
age  PM2.5 dataset of 2018–2020 are provided in 
Table  S1 (supplementary information (S4)). A 
significant monotonic increasing trend (Seasonal 
M–K test result: tau (τ) = 0.15, p-value = 0.002) was 
found for 24-h average  PM2.5 concentration with 
an increasing magnitude of 0.43 µg  m−3 per annum 
during 2018–2020 (Fig.  4). This increasing trend 
may be attributed to the various industrial activi-
ties in the study area. Industrial operations were not 
restricted during the COVID-19 lockdown in 2020. 
A similar increasing monotonic trend for  PM2.5 was 
observed in an industrial location in Brisbane, Aus-
tralia (Lorelei de Jesus et al., 2020) and urban areas 
of NY, USA (Masiol et al., 2019).

The statistical distributions of the 24-h average 
 PM10 dataset showed that gamma distributions with 
a significance level of 0.05 were a better fit with 
actual data with lower K-S, K-S modified, and A-D 
test statistics for 2018–2020 (Table  3). In compari-
son, no distributions were detected for the 24-h aver-
age  PM10 dataset in 2020. The gamma distribution 
analysis of the 24-h average  PM10 dataset predicted 
24.5%, 5.5%, and 9.3% probabilities of  PM10 con-
centrations exceeding 100 µg  m−3 in 2018 and 2019, 
respectively. The probabilities of  PM10 concentrations 
exceeding the prescribed limit (WHO standard limit: 
45 µg  m−3) in 2018, 2019, and 2020 were 85%, 58%, 
and 51%, respectively. The P-P plots are provided in 
supplementary figures (S4-S6) (supplementary infor-
mation (S3)). The analysis results of various modified 
Mann–Kendall tests and Theil-Sen slope estimation of 
the 24-h average  PM10 dataset of 2018–2020 are pro-
vided in Table S2 (supplementary information (S4)). 
Trend analysis of the  PM10 dataset showed a decreas-
ing trend (Modified M–K Hamed Rao approach test 
result: tau (τ) =  − 0.3, p-value = 0.002) with a low rate 
of 0.2 µg  m−3 per annum during 2018–2020 (Fig. 5). 

Table 1  The goodness of fit test data for the  PM2.5 probability 
distributions

The best fitted distribution was indicated by lower values of the 
K-S, K-S modified, and A-D test statistics (highlighted in bold)

Year Probability distributions Goodness-of-fit tests

K-S test K-S 
modified 
test

A-D test

2018 Normal 0.23 0.23 7.82
Lognormal 0.06 0.06 0.45
Weibull 0.12 1.74
Exponential 0.11 0.10 1.82
Gamma 0.10 0.12 1.72

2019 Normal 0.20 0.20 5.81
Lognormal 0.08 0.07 0.62
Weibull 0.08 0.79
Exponential 0.10 0.08 1.26
Gamma 0.14 0.08 0.57

2020 Normal 0.2 0.2 2.3
Lognormal 0.1 0.1 0.9
Weibull 0.1 0.9
Exponential 0.1 0.1 1.7
Gamma 0.1 0.1 0.8

Table 2  The estimates of the location (µ) and scale (σ) of log-
normal distributions of  PM2.5

Year Parameter Estimate Lower 95% Upper 95%

2018 Location (µ) 2.26 2.08 2.45
Scale (σ) 0.96 0.83 1.10

2019 Location (µ) 2.75 2.53 2.98
Scale (σ) 0.96 0.81 1.13

2018 Location (µ) 2.82 2.59 3.04
Scale (σ) 0.90 0.75 1.07
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The downward trend may be attributed to the reduc-
tion in road resuspension brought on by COVID-19’s 
restrictions on vehicle mobility in the study area.

3.3  Extreme Value Analysis and Return Level of PM 
Concentrations

This study applied extreme value analysis (EVA) to 
estimate the probability of exceedance and return val-
ues of  PM10 and  PM2.5, which can be anticipated in 
the coming years. Threshold selection is the basis for 
performing EVA using the peak-over-threshold (POT) 
method based on GPD. Mean residual life (MRL), 
parameter stability, and return level plots were used in 
the present study to establish the threshold.

The MRL plot in Fig.  6 indicates the thresh-
old region between 40 and 45, where the linearity 
condition is required for threshold selection. The 
parameter stability plot in Fig.  7 indicates that the 
stability region appears to be confined between 40 
and 45. The distribution became unstable after a 
threshold value of 45, indicating a lack of sufficient 
exceedances. The return value stability plot (Fig. 8) 
can be used as an additional check to investigate the 

Fig. 4  Increasing trend of 
24-h average  PM2.5 concen-
trations during 2018–2020

Table 3  The goodness of fit test data for the  PM10 probability 
distributions

The best fitted distribution was indicated by lower values of the 
K-S, K-S modified, and A-D test statistics (highlighted in bold)

Year Probability distribution Goodness-of-fit tests

K-S test K-S 
modified 
test

A-D test

2018 Normal 0.10 0.10 1.37
Lognormal 0.08 0.07 0.76
Weibull 0.08 0.85
Exponential 0.33 0.32 14.79
Gamma 0.07 0.07 0.72

2019 Normal 0.07 0.07 0.40
Lognormal 0.12 0.11 1.23
Weibull 0.06 0.33
Exponential 0.26 0.24 9.47
Gamma 0.09 0.08 0.66

2020 Normal 0.19 0.19 2.99
Lognormal 0.17 0.16 1.50
Weibull 0.14 1.96
Exponential 0.22 0.20 4.02
Gamma 0.16 0.15 1.88
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sensitivity and stability of the GPD model to the 
threshold value. The return level plot showed the 
return value for the given return period (100 years) 
and thresholds (40 to 42). The return value between 

threshold values of 40.25 to 41.25 appeared to be 
constant for both Gen Pareto and exponential dis-
tributions. Based on these analyses, the threshold 
value for  PM2.5 data was 41 in the present study. 

Fig. 5  The decreasing 
trend of 24-h average  PM10 
concentrations during 
2018–2020

Fig. 6  MRL plot for 24-h 
 PM2.5 concentrations during 
2018–2020
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Maximum likelihood estimated the GPD parame-
ters-shape (ξ) = 0.47 and scale (β) = 8 based on the 
threshold value of 41 with standard errors of 0.2 and 
2.3, respectively. The diagnostic plots of the fitted 
GPD are shown in Fig. 9. The goodness-of-fit in the 

probability, quantile, and probability density plots 
seems convincing, though not perfect, as accurate. 
Thus, the fitted GPD model is reliable for estimat-
ing the return levels of  PM2.5, for different return 
periods and predicting extreme events exceeding 

Fig. 7  Parameter estimates against the threshold for 24-h  PM2.5 concentrations during 2018–2020

Fig. 8  Return value plot for 
the threshold stability for 
24-h  PM2.5 concentrations 
during 2018–2020
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the prescribed standards and the risk of exposure 
to such extreme events. The return values estimated 
for the return periods (1–1000  years) with 95% 
confidence intervals (Fig.  10). Since shape (ξ) > 0, 
the distribution is unbounded with a concave shape 
(Coles, 2001), as depicted in Fig.  10. The return 
value of the  PM2.5 concentration in the 100th year 
was 602  µg   m−3. The return value of  PM2.5 in the 
10th year will be 193 µg  m−3, with  PM2.5 concentra-
tions ranging from 71 to 650 µg  m−3.

EVA was also performed for the  PM10 data, as pre-
viously explained. The MRL parameter stability and 
return level plots are shown in Figs.  11, 12 and 13. 
Based on these plots, a threshold value of 122 was 
selected for  PM10 in this study. The diagnostic plots 
of the fitted GPD shown in Fig. 14 indicate the reli-
ability of the model in estimating the return levels. 
The maximum likelihood estimated the distribution 
parameters-shape (ξ) =  − 1.13 and scale (β) = 49.71 
with standard errors of 0.5 and 0.03, respectively. 

Fig. 9  Diagnostic plots for threshold excess model fitted to 24-h  PM2.5 concentrations during 2018–2020
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The return level plot indicates that the plotted curve 
asymptotes to infinity because of the negative value of 
the shape parameter corresponding to the distribution 
with a short bounded upper tail (Coles, 2001). The 
return value of  PM10 concentration in the 100th year 
was 144–223 µg   m−3. The return value of the  PM10 
concentration in the 100th year was 166 µg  m−3. The 
return value of  PM10 in the 10th year was 165 µg  m−3, 
and the  PM10 concentration varied between 144 and 
180 µg  m−3 (Fig. 15).

EVA analysis of  PM2.5 and  PM10 has provided the 
highest concentration levels expected in the coming 
years, higher than the NAAQS and considered a public 

health threat. A similar trend and extreme episodes were 
observed for  PM2.5 and  PM10 concentrations meas-
ured in the metropolitan areas of São Paulo and Rio de 
Janeiro, Southern America (Martins et al., 2017).

3.4  Meteorology Dynamics on PM Concentrations

Meteorological parameters influence the ambi-
ent PM concentration, including wind direction, 
speed, relative humidity, and temperature. The 
wind is an essential meteorological parameter that 
can transport and disperse pollutants in the ambi-
ent atmosphere. Previous studies have highlighted 

Fig. 10  Return level plots 
for 24-h  PM2.5 concentra-
tions in future

Fig. 11  MRL plot for 24-h 
 PM10 concentrations during 
2018–2020
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that low wind speeds cause stagnation of pollutants 
near the emission source, and higher wind speeds 
transport pollutants away from the emission source 
(Ji et al., 2012; Kim Oanh & Leelasakultum, 2011; 
Peter & Nagendra, 2021). According to the Beau-
fort scale, light air (0.5–1.5   ms−1), light breeze 
(1.6–3.3   ms−1), gentle breeze (3.4–5.5   ms−1), and 
moderate breeze (5.5–7.9   ms−1) were observed 
during the study period. The analysis in Table  4 
showed the elevated levels of both 24-h  PM2.5 and 
 PM10 during the wind speed of 1.6–3.3   ms−1. The 
predominant wind direction in the industrial area 

ranged from SSW-W (210°–270°) from March to 
September (Fig.  S7-S9 in Supplementary Informa-
tion (S5)). The wind direction at the monitoring site 
was ENE-SSE (90°–150°) from November to Feb-
ruary (Fig.  S7–S9). The data showed elevated lev-
els of both 24-h  PM2.5 and  PM10 in the wind direc-
tion of ESE (120°), impacting the air quality of the 
nearby residential area. Spearman correlation analy-
sis showed that wind speed was negatively corre-
lated with  PM10 (− 0.34) and a very weak correla-
tion with  PM2.5 (0.06) (Fig. 16).

Fig. 12  Parameter esti-
mates against the threshold 
for 24-h  PM10 concentra-
tions during 2018–2020

Fig. 13  Return value plot 
for the threshold stability 
for 24-h  PM10 concentra-
tions during 2018–2020
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The hygroscopic growth of PM is affected by ambi-
ent relative humidity (RH) and tends to result in the 
amalgamation, accumulation, and dry deposition of 
PM. The maximum RH was observed during the post-
monsoon period, during the southwest monsoon, and 
low RH was observed during the summer in the study 
area. Relative humidity in this study is categorized in 
the ranges between 35 and 60%, 61 and 70%, 71 and 
80%, and 81 and 94%. The data analysis indicated 
that both  PM10 and  PM2.5 had higher concentrations 

during RH, ranging between 35 and 71% (Table  5). 
Mcmurry and Stolzenburg (1989) observed that par-
ticle diameter increased (4–7%) even as RH increased 
to 85–90%, resulting in dry deposition of PM. Spear-
man correlation analysis showed that RH had a strong 
negative correlation with  PM10 (− 0.6) and a moder-
ate negative correlation with  PM2.5 (− 0.3) (Fig. 16).

The ambient temperature significantly influ-
enced the vertical air motion. The temperature 
in the study area ranges from 21 to 32  °C. Low 

Fig. 14  Diagnostic plots for threshold excess model fitted to 24-h  PM10 concentrations during 2018–2020
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temperatures were recorded during the mon-
soon season (July–September), and the maximum 
temperature was recorded during the summer 
(March–April). The data analysis showed that the 
temperature did not vary much throughout the 
year, which did not influence the PM concentration 
(Table 6). Correlation analysis showed a weak cor-
relation between temperature and PM concentra-
tions (Fig. 16).

3.5  Health Risk Assessment of PM2.5

The AirQ + software was used to evaluate the health 
risks associated with exposure to  PM2.5. Long-term 
health impacts such as total mortality, mortality due 
to chronic obstructive pulmonary disease (COPD), 
ischemic heart disease (IHD), lung cancer (LC), 
and stroke were evaluated in 2018, 2019, and 2020, 
respectively. The annual  PM2.5 exposure concentra-
tion of 24.34 µg   m−3 in 2019 was higher than that in 

Fig. 15  Return level plots 
for 24-h  PM10 concentra-
tions in future

Table 4  Comparison of 
PM concentrations in the 
study area with change in 
wind speed

Beaufort scale Year PM10 concentration (µg  m−3) PM2.5 concentration (µg 
 m−3)

Min Max Mean Min Max Mean

Light air
(0.5–1.5  ms−1)

2018 30.7 137.0 80.6 1 50 16.1
2019 53.0 58.0 55.5 11.6 27 19.3
2020 10.4 85.0 80.0 2.4 2.4 2.4

Light breeze
(1.6–3.3  ms−1)

2018 16.3 166.3 80.4 2 73 14.4
2019 17.1 144.0 55.8 2.13 136.2 24.0
2020 14.7 110.5 62.9 1.87 55.3 30.3

Gentle breeze
(3.4–5.5  ms−1)

2018 42.0 100.0 63.3 1 30 11.4
2019 11.2 103.2 52.2 1.11 166.9 24.0
2020 10.4 133.5 43.0 3.36 47.9 17.8

Moderate breeze
(5.5–7.9  ms−1)

2018 - - - - - -
2019 13.0 87.0 63.0 1.1 43.5 18.7
2020 66.3 83.0 74.7 33.8 40.3 37.1
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2020 (21.53  µg   m−3) and 2018, (16.26  µg   m−3). The 
annual  PM2.5 average concentrations exceeded the 
WHO annual limit (5 μg  m−3). The estimated propor-
tions and number of attributable cases due to total 
mortality, COPD, IHD, LC, and stroke are depicted 
in Table 7. It was observed that  PM2.5 exposure could 
induce higher mortality due to IHD and COPD. More 
than 15, 34, and 27 premature deaths caused by total 

mortality in 2018, 2019, and 2020, respectively, could 
have been prevented if  PM2.5 concentrations in the 
Kanjikode industrial area did not exceed 10 μg  m−3, as 
suggested by WHO standards in 2005. The authors col-
lected the number of mortality cases due to stroke and 
lung cancer during the study period from the state gov-
ernment’s health centre in the study area (Table  S4). 
Mortality due to ischemic heart disease (IHD) and 

Fig. 16  Correlation 
between PM concentra-
tions and meteorological 
parameters

Table 5  Comparison of 
PM concentrations in the 
study area with change in 
relative humidity

Relative humidity Year PM10 concentration (µg  m−3) PM2.5 concentration (µg 
 m−3)

Min Max Mean Min Max Mean

35–60% 2018 40.7 166.3 106.7 3.2 73 21.8
2019 41 144 69.2 1.1 136.2 24.0
2020 43.6 133.5 91.7 8.4 55.3 38.8

61–70% 2018 68.7 138.7 95.8 4 47 18.9
2019 43 81 57.35 2.55 166.9 32.3
2020 30.6 110.5 73.6 1.9 52.9 27.1

71–80% 2018 30.7 165.3 81.2 0.5 53 12.6
2019 22.9 103.2 52.7 2.7 47.3 22.3
2020 16.3 47.6 31.1 3.8 42.6 17.6

80–94% 2018 16.3 100 56.0 1.4 43 10.9
2019 11.2 93.7 38.0 2.6 42.3 19.2
2020 10.4 43.3 22.9 3.4 40.1 12.3
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chronic obstructive pulmonary disease (COPD) in this 
region has not been documented. Previous studies have 
reported strong relationships between long-term and 
short-term  PM2.5 exposure and increased mortality and 
hospitalization due to respiratory or cardiovascular dis-
eases (Amoatey et al., 2020; Hoek et al., 2013; Omidi 
Khaniabadi et al., 2019; Pala et al., 2021).

3.6  Control Measures for Air Pollution in Kanjikode 
Industrial Area—a Way Forward

The Kanjikode industrial area is home to many 
medium- and small-scale factories, including those 
producing steel, cement, paint colors, distilleries, 
fertilizers, textiles, and chemicals, contributing to 

Table 6  Comparison of 
PM concentrations in the 
study area with temperature 
change

Temperature Year PM10 concentration (µg  m−3) PM2.5 concentration (µg 
 m−3)

Min Max Mean Min Max Mean

21–23 (°C) 2018 34 141 77 1 39 14
2019 11 87 44 4 43 17
2020 10 31 29 2 7 9

24–26 (°C) 2018 16 165 79 2 53 15
2019 17 103 54 3 167 30
2020 10 134 40 3 47 16

27–29 (°C) 2018 35 166 81 1 73 16
2019 22 144 57 1 136 22
2020 15 117 62 5 55 33

30–32 (°C) 2018 53 115 81 4 20 11
2019 38 77 56 3 30 15
2020 32 101 70 2 54 25

Table 7  Estimated attributable proportions (AP), number of attributable excess cases, and number of attributable cases (per 1 lakh 
population) from  PM2.5 exposure above 10 μg  m−3 at 95% confidence intervals in the Kanjikode area during 2018–2020

* The values in brackets correspond to the estimates calculated with lower and upper confidence interval limits of the relative risk. 
COPD, chronic obstructive pulmonary disease; LC, lung cancer; IHD, ischemic heart disease

Year Health endpoints Estimated attributable 
proportion (%)

Estimated number of attrib-
utable cases

Estimated number of attribut-
able cases per 100,000 popula-
tion

2018 Total mortality 3.7 (2.4–4.9)* 15 (10–20)* 37 (25–49)*

COPD 5.5 (3.1–8.4) 2 (1–3) 6 (3–8)
LC 4.2 (2.4–6.2) 1 (1–1) 1 (1–1)
IHD 6.9 (4.1–14.1) 6 (3–11) 14 (8–28)
Stroke 5.6 (2.7–8.8) 2 (1–2) 4 (2–6)

2019 Total mortality 8.3 (5.5–10.8) 34 (22–44) 84 (55–109)
COPD 10.6 (6.2–15.6) 5 (3–7) 11 (7–16)
LC 11.6 (5.5–17.1) 1 (0–2) 3 (1–4)
IHD 12.3 (7.6–24.9) 10 (6–20) 24 (15–50)
Stroke 10.4 (5.3–16.2) 3 (2–5) 7 (4–11)

2020 Total mortality 6.7 (4.4–8.8) 27 (18–36) 68 (45–89)
COPD 8.9 (5.2–13.4) 4 (2–6) 10 (5–14)
LC 9.5 (4.4–14) 1 (0–1) 2 (1–3)
IHD 10.7 (6.5–21.8) 9 (5–18) 21 (13–43)
Stroke 8.9 (4.4–13.8) 7 (4–11) 18 (9–28)
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elevated pollutant concentrations in the study area. 
Industrial point sources, such as the power sector, 
industrial boilers, and other industrial processes, indi-
vidually contribute to local source emissions. Despite 
emphasizing industrial emissions, transportation 
sources emitted more pollutants than the power sec-
tor. Kanjikode is situated in a region where a national 
highway road connects two Indian states, where vari-
ous transport operations and large vehicle movements 
are everyday activities. The present research suggests 
the following measures to curb air pollution from 
industrial areas:

• Reducing air pollution using numerous technolo-
gies can destroy hazardous pollutants at the source 
of pollution. These technologies include regen-
erative thermal oxidizers, catalytic oxidizers, and 
rotary concentrators.

• Adopting renewable energy alternatives, such as 
solar power and wind turbines, enables industries 
to be more self-sufficient and energy-sufficient.

• Industries’ existing air pollution control measures 
should be adequately maintained and periodically 
inspected for performance.

• Conventional vehicles should be substituted with 
electric vehicles to eliminate exhaust emissions.

• Pavements and roads should be maintained regu-
larly to reduce vehicle-induced resuspension of 
road dust.

• To contain industrial pollutants, adequate indus-
trial exhaust ventilation and green belts should be 
increased.

• Stringent measures and policies should be imple-
mented to reduce pollution, thus reducing occupa-
tional and environmental exposure to various toxic 
pollutants.

4  Conclusion

Industrial air pollution has long been a significant 
contributor to poor air quality and has been recog-
nized as an exacerbating factor that induces health 
threats. The trend and statistical distribution analy-
sis showed that the probability of exceedance and 
increasing trend of  PM2.5 might be attributed to vari-
ous industrial activities in the study area. Extreme 
event analysis of  PM10 and  PM2.5 has provided the 
highest concentration levels expected to be higher 

than NAAQS in the coming years and is considered 
a public health threat. AirQ + software developed by 
WHO evaluated long-term health impacts such as 
total mortality, chronic obstructive pulmonary dis-
eases, ischemic heart disease, lung cancer, and stroke 
due to  PM2.5 exposure. Increasing adequate green 
belts, improving road transportation, and conducting 
periodic monitoring of the performance of air pollu-
tion control technologies will curtail  PM2.5 levels in 
the study area, thereby safeguarding public health.
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