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Abstract Forest decline, which occurs in moun-
tainous regions in many countries, may result from 
the effects of acid fog, ozone, or deposition of other 
pollutants. We observed wet deposition of air pol-
lutants at different altitudes on Mt. Oyama, situated 
southwest of Tokyo, for 1994 until 2019. During this 
period, the domestic atmospheric environment was 
improved in Japan. The average concentration of air 
pollutants around all the sampling sites on Mt. Oyama 
decreased by 63.01%, 32.08%, 8.80%, and 39.73% for 
 NH3, HCl,  HNO3, and  SO2, respectively. The volume 
weighted mean (VWM) pH values showed an increas-
ing trend for bulk deposition (+0.70%  y-1), fog water 
(+2.58%  y-1), and throughfall (+2.60%  y-1). Stem-
flow also increased (cedar, +1.17%  y-1; fir, +0.82% 
 y-1), although it included organic acids dissolved 
from the stem and it primarily had a low VWM pH 
value. The overall pH value of the fog water increased 

at the site, although acidic fog was still observed. 
Comparing fog water between winter and summer, 
a significant increase in pH occurred in summer, 
whereas no change occurred in winter. In summer, 
the sources of pollutants at Mt. Oyama are mainly 
from mainland Japan, and the frequency of low-pH 
acidic fog decreased annually. In winter, Mt. Oyama 
was affected by transboundary pollution, and acid fog 
occasionally occurred. Improvements in the domestic 
atmospheric environment and control of transbound-
ary pollution will provide better conditions for moun-
tain ecology that are free from acidic pollutants.
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1 Introduction

Forests cover 32% of the world’s terrestrial ecosys-
tems and provide many ecosystem services, including 
hydrological regulation, soil conservation, climate 
change mitigation, and air quality regulation (Millar 
& Stephenson, 2015; Nowak et al., 2008). However, 
due to the rapid economic growth and inadequate pol-
lution control, human emissions continue to increase, 
resulting in air pollution. Air pollution and acid depo-
sition stem from the same anthropogenic sources. The 
deposition of nitrogen (N) sometimes enhances tree 
growth rates (Horn et  al., 2018; Maes et  al., 2019), 
whereas sulfur dioxide, nitrogen oxides, and ozone 
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adversely affect tree health (Paoletti et al., 2010; Ren 
et al., 2011).

Forest decline has been observed over the past sev-
eral decades, not only in Europe and North America 
(Menz & Seip, 2004; Pitelka & Raynal, 1989; Schutt 
& Cowling, 1985) but also in East Asia, including 
Japan (Sekiguchi et  al., 1986), China (Bian & Yu, 
1992), Korea (Kim & Lee, 1993), and Russia (Kise-
leva, 1996). The decline is caused mainly by air pol-
lutants through dry and wet deposition (Aikawa et al., 
2006; Anderson et  al., 1999; Bussotti & Ferretti, 
1998; Igawa et al., 2002; Johnson & Siccama, 1983; 
Takahashi et al., 2020; Vong et al., 1991).

In the 1970s, fir trees (Abies firma), a typical ever-
green coniferous tree in the middle temperate zone 
of Japan, were wilted and declined on the southeast-
ern slopes of Mt. Oyama in the Tanzawa mountain 
range, 50 km west of Tokyo (Suzuki, 1992). In the 
1980s, a decline in Japanese beech (Fagus crenata), 
a typical temperate deciduous broad-leaved tree in 
Japan, became apparent in the ridgeline between 
Mt. Tonodake and Hirugatake, and around the peak 
of Mt. Hinokiboramaru (Kohno, 2017) in the Tan-
zawa Mountains. This has been noted to be caused 
by the above air pollutants through dry deposition 
(e.g. ozone) (Kohno et  al., 2005; Takeda & Aihara, 
2007; Uno et al., 1996), wet deposition (e.g. acid fog) 
(Igawa et al., 2002; Igawa, Kase, et al., 2002; Shigi-
hara et al., 2008, 2009). Acid deposition often causes 
soil acidification leading to forest decline, but no soil 
acidification was observed in the declining site of the 
Tanzawa Mountains (Ohse et al., 2003). In addition, 
recent forest decline may have occurred in conjunc-
tion with climate change, such as drought, heat, and 
extreme climate events (Takahashi et al., 2020). How-
ever, air pollution is the predominant cause of the 
decline and monitoring air pollution is important to 
determine the causes. Trees in forests can be consid-
ered as the bio-monitor of air pollution by observing 
their health levels (Al-Alawi et al., 2007; Al-Alawi & 
Mandiwana, 2007; Batarseh et al., 2008).

A 30-year observation of soils in the southern 
China in Asia showed that soil acidification is caused 
by atmospheric pollution and that the concentration 
of acid deposition (sulfur) in the soil is higher where 
the source of pollution is close (Dai et al., 1998). On 
the other hand, in North America and Europe, long-
term monitoring of precipitation, soil, and surface 
water chemistry has shown that forest health and 

water quality have been restored by reducing sulfur 
dioxide and nitrogen oxide emissions and associated 
sulfate and nitrate deposition (Likens et  al., 1996; 
Pannatier et al., 2011; Watmough et al., 2016; Wright 
& Hons, 2005). The obvious example of a strik-
ing trend is the recovery in the growth of red spruce 
(Picea rubens Sarg.) in the northeastern United States 
where the deposition of sulfate and nitrate in the for-
est decreases (Kosiba et  al., 2018). However, Law-
rence et  al. (2019) reported that even as the atmos-
pheric deposition of nitrogen decreased, watershed 
nitrogen export in the western Adirondack region 
of New York State has not decreased, and toxic alu-
minum and nitrate continue to be released from the 
soil into streams. The recovery of forest productivity 
and water quality depends on each ecosystem, and 
considerable uncertainty remains regarding the con-
trolling factors. Therefore, there is a need for long-
term monitoring of precipitation, soil, and surface 
water chemistry in the different types of forest eco-
systems in each region.

There were many reports on the air pollution in 
mountainous areas, but most of their observation 
periods were short (Abe et  al., 2022; Aikawa et  al., 
2006; Chiwa et  al., 2003; Igawa et  al., 1998; Igawa, 
Matsumura, & Okochi, 2002), which may be due to 
factors such as difficulty of sampling for field obser-
vations, high maintenance costs, time-consuming, 
and laborious. Short-term observations can only indi-
cate changes in the impact on forest during this obser-
vation period, while the decline of trees was formed 
by long term effects. Some papers reported long 
term observational studies, but the observations were 
limited to wet deposition (Avila, 1996; Igawa et  al., 
2015; Tago et al., 2006; Watanabe et al., 2022) or dry 
deposition (Phu Nguyen et al., 2019; Takeuchi et al., 
2004; Tanimoto, 2009) or limited to observations at 
one elevation, while decline of trees would not be 
restricted to one elevation or caused by one effect of 
wet or dry deposition alone. In conclusion, short-term 
observations cannot sufficiently explain the underly-
ing causes of the tree decline, and the cause of the 
tree decline is likewise not clarified well by relying 
on the observation at a single site or a single observa-
tion program under a long-term observation.

In this study, we aimed to assess long-term (26 
y) trends at different altitudes in wet and dry depo-
sition on Mt. Oyama near the Tokyo metropolitan 
area. The altitude dependence of the concentrations 
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and deposition of air pollutants was also determined, 
and transboundary air pollution was examined using 
backward trajectory analyses.

2  Experimental

2.1  Observation sites

The Tanzawa mountains are a mountain range 
of approximately 40 kha in the Kanto District 
of Japan, which is located approximately 50 km 

west–southwest of Tokyo. They were registered as 
Kanagawa Prefectural Natural Park in 1960 and as a 
quasi-national park in 1965. The highest peak is Mt. 
Hirugatake (1673 m a.s.l.), and the other main peaks 
are Hinokiboramaru (1601 m a.s.l.,  4th height), Tan-
zawa-san (1567 m a.s.l.,  7th height), and Tonodake 
(1491 m a.s.l.,  12th height). Figure 1 shows the sam-
pling points on the southern and southeastern slopes 
of Mt. Oyama (1252 m a.s.l.,  36th height, 35°26’N; 
139°13’E), which is an independent mountain at 
the southeastern edge of the Tanzawa Mountains. 
The bulk deposition, throughfall, and stemflow of 

Fig. 1  Map of sampling 
sites at different altitudes in 
Mt. Oyama
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Japanese cedar and fir, and fog water were collected 
monthly at 400, 680, 890, 940, 1062, and 1252 m 
a.s.l. (the summit), on Mt. Oyama from 1994 to 2019.

2.2  Collection and observation methods

Fog water samples were collected using a home-
made passive string fog collector (PFC) with a 60 cm 
disc at its top to prevent rainwater intrusion (Igawa 
et al., 2015) at sampling sites of 680, 940, 1062, and 
1252 m a.s.l. on Mt. Oyama. Briefly, fog water col-
lided with a cylindrical net consisting of 72 Teflon 
tubes (outer diameter:1 mm) and was captured on 
them. It fell owing to its own weight and was filtered 
through a membrane filter (A100A047A: Toyo Filter 
Paper Co., Ltd.) with a pore size of 1.0 μm. It was 
then stored in a 5 L brown propylene bottle for light 
shielding to prevent water quality deterioration.

The bulk deposition and throughfall collector con-
sisted of a funnel with a diameter of 80 mm, a filter 
holder including a membrane filter with a pore size of 
1.0 μm, and a 5 L brown polypropylene bottle. Each 
part was connected to a silicon tube. These collectors 
were placed in open areas to collect bulk deposition 
at altitudes of 400, 940, and 1252 m a.s.l., and under 
cedar and fir trees to collect throughfall at altitudes of 
680, 890, and 1252 m a.s.l., respectively. Stemflow of 
cedar and fir trees was collected using the gauze trap 
method (Sassa et al., 1990) at 890 m a.s.l.

Gases  (SO2,  HNO3, HCl,  NH3, and  O3) were also 
observed using the passive sampling method (Yanagi-
sawa & Nishimura, 1980) with a filter badge for  SO2 
measurement (07810160, Advantec, Co.) (Igawa 
et  al., 2007) at four altitudes of 400, 680, 890, and 
1252 m a.s.l. on Mt. Oyama. The capture area of the 
collector was 42 × 30  mm2(L × B) Acid gases were 
collected by impregnating a cellulose filter with a 
solution of 1%  Na2CO3, 1% glycerol, and  NH3 gas 
and a solution of 5%  H3PO4 and 5% glycerol. For  O3 
measurement, a filter paper was impregnated with 
a solution of 0.1%  Na2NO2, 0.2%  Na2CO3, and 1% 
ethylene glycol, which can oxidize  NO2

- to  NO3
-. 

The specific calculation methods for each gas are 
described in the Supplementary Information S1 and 
S2.

The samples of fog water, bulk deposition, 
throughfall, stemflow, and gases mentioned above 

were collected every month, although the samples 
of wet deposition couldn’t be collected for freezing 
during January to March.

2.3  Analytical method

Samples of bulk deposition, throughfall, stemflow, 
and fog water were filtered through a 0.45 μm pore 
size membrane filter (A045A025A; Advantec, Co.) 
immediately after arrival in the laboratory. The elec-
trical conductivity and pH were measured as soon 
as possible using electric conductivity (LAQUA 
DS-72; Horiba Ltd.) and pH meters (HM-42X; 
DKK-TOA Corp.), respectively. The concentrations 
of major inorganic ions  (NH4

+,  Na+,  K+,  Mg2+, 
 Ca2+,  Cl−,  NO3

−, and  SO4
2−) were determined using 

an ion chromatograph (Dionex Corp., DX-120 with 
a column from Dionex Corp., IonPac CS12A) for 
cations and an ion chromatograph (Dionex Corp., 
DX-120 with a column of Dionex Corp., IonPac 
AS12A) for anions. The concentrations of dissolved 
organic carbon (DOC) and dissolved inorganic 
carbon (DIC) were measured using a TOC ana-
lyzer (TOC-VCPH; Shimadzu Corp.) combined with 
an automatic sample injector (ASI-V; Shimadzu 
Corp.). Data with a cation:anion ratio greater than 
1.5 or less than two thirds were excluded from the 
subsequent data analysis. The excluded data were 
16.7% of the total data. However, even if the above 
conditions were not met, stemflow data were used 
because they contain unidentified organic acids that 
are difficult to analyze (Sato & Takahashi, 1996).

Each filter used to collect gaseous components, 
such as  NH3,  HNO3, HCl,  SO2, and  O3, was placed 
in a 200 mL Teflon beaker, and ultrapure water 
(10 mL for acid and ammonia gases and 15 mL for 
ozone sampling) was added. Then, the beaker was 
sealed with parafilm (PM996; Bemis Mfg. Co.) to 
prevent contamination by ambient pollutants. The 
sample in the Teflon beaker was irradiated with an 
ultrasonic wave for 20 min to dissolve the water sol-
uble components. Subsequently, it was filtered using 
a 0.45 μm pore size membrane filter (A045A025A; 
Advantec Toyo Kaisha Ltd.). The filtrate was ana-
lyzed for  NH4

+,  Cl−,  NO2
−,  NO3

−, and  SO4
2− using 

ion chromatography, as mentioned above.
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2.4  Collecting data on air pollution in East Asia

To show the air pollution indices, we used the  SO2 
concentration data provided by the Beijing Munici-
pal Ecology Environment Bureau (http:// sthjj. Beiji ng. 
gov. cn) for Beijing, the Shanghai Municipal Bureau 
of Ecology and Environment (http:// sthj. sh. gov. cn) for 
Shanghai; Ministry of Ecology and Environment of 
the Republic of China (http:// mee. gov. cn) for Henan 
and Liaoning prefectures, Seoul Air Environment 
Information (http:// clean air. Seoul. or. kr) for Seoul, 
and the Japanese Ministry of the Environment (http:// 
soram ame. taikei. go. jp) for the Japanese region. Air 
pollution data for total concentration of NO and  NO2 
(NOx), oxidant (Ox),  SO2, and suspended particle 
matter (SPM) at Isehara were provided by National 
Institute for Environmental Studies (https:// www. nies. 
go. jp/ igreen/ td_ disp. html).

2.5  Backward trajectory analysis

The 3 d backward trajectories of air parcels reaching 
the summit of Mt. Oyama were calculated using the 
NOAA HYSPLT 4 model. A meteorological dataset 
was used for the GDAS, and model vertical velocity 
data were used for vertical motion. The initial eleva-
tion reading of the trajectory analysis was 1252 m.

3  Results and Discussion

3.1  Long term change of air pollution at the base of 
Mt. Oyama

In Japan, air pollution was most severe in the 1960s, 
and the highly polluted state persisted until the 1970s 
(Kawamura, 1985; Uno et al., 1996) causing acid rain 
(Tamaki, 1988) and photochemical smog (Kawa-
mura, 1972; Wakamatsu et al., 1981). Sulfur dioxide 
concentrations decreased to below 5 ppb after the 
1990s, but  NO2 concentrations fluctuated around 15 
ppb from the 1980s to the 2000s. Although air quality 
improved in the 2000s, oxidant concentrations have 
continued to increase from the 1980s to the present 
(Akimoto, 2003; Yoshikado, 2004).

Figure 2 shows the long term changes in air pol-
lutant concentrations (NOx, SPM, Ox, and  SO2) from 
1994 to 2019 in Isehara, which is located at the foot 
of Mt. Oyama. The NOx concentrations gradually 
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Fig. 2  Long term changes in the concentration of NOx, SPM,  O3, 
and  SO2 at Isehara, the base of Mt. Oyama, from 1994 to 2019 
(The data from the National Institute for Environmental Studies 
(https:// www. nies. go. jp/ igreen/ td_ disp. html). The measurement of 
 SO2 at Isehara was stopped in 2013
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decreased from 55 ppb in 1994 to 45 ppb in 2005. 
The value declined further from 2005 to 2010, reach-
ing 15 ppb by 2019. Suspended particulate matter 
(SPM) of less than 10 μm gradually decreased from 
40 μg  m3 in 1995 to 16 μg  m3 in 2019. In the Tokyo 
metropolitan area, the "Automobile NOx Law" was 
enacted in 1992 to address NOx pollution problems 
caused by existing vehicles in heavily populated 
urban areas. This regulation was amended in 2001 to 
strengthen existing NOx regulations and add provi-
sions for PM regulations, this came into effect in 2002 
as the "Automobile NOx and PM Law". The decrease 
in NOx emission can be attributed to this regula-
tion. In contrast, the oxidant concentration gradually 
increased from 29 ppb in 1994 to 35 ppb in 2019.

The  SO2 concentrations decreased gradually from 
6 ppb in 1994 but rose in 2000 and decreased to 
the same level in 2004, as in 1999. In August 2000, 
a large-scale eruption occurred at the valley on 
Miyakejima Island (139°31’34 "E, 34°05’27 "N, 775 
m a.s.l.), 150 km south of Mt. Oyama in the Tanzawa 
Mountains. In December 2000, the average monthly 
 SO2 emission rate peaked at 54 kt  day-1, exponentially 
decreased to 7 kt  day-1 by the end of 2002, and then 
remained constant until December 2003 (Kazahaya 
et al., 2004). The cumulative  SO2 emission from the 
eruption from December 2000 to August 2003 was 
approximately 18 Mt, which is comparable to the 
emission of a large explosive eruption, such as Pina-
tubo in 1991. This is comparable to the anthropo-
genic  SO2 emissions from China (20.4 Mt) in 2000 
and approximately 20 times higher than the annual 
anthropogenic  SO2 emissions from Japan (0.801 Mt) 
in 2000. Since 2001,  SO2 emissions have exhibited a 
downward trend, with daily emissions falling below 
400 t  day-1 since 2013, and below ten of t  day-1 since 
2017 (Supplementary Information S3).

The abundance of NOx and volatile organic com-
pounds (VOCs), the precursors of Ox, in urban cities 
allows to produce large amounts of Ox. Although the 
enactment of the "Automobile NOx Law" has led to 
a reduction in precursor emissions, the concentration 
of Ox is increasing, probably due to large amounts of 
precursor emissions from ships on the ocean (Cooper, 

2001, 2003; Corbett, 2002), as well as transboundary 
air pollution from Ox generated in large foreign cities 
across the ocean (Akimoto et al., 1996; Hatakeyama 
et al., 2004).

3.2  Elevational variation of gaseous air pollutants in 
Mt. Oyama

Figure 3 shows elevational variations in the concen-
trations of  NH3, acidic gases (HCl,  HNO3, and  SO2), 
and  O3 in Mt. Oyama from 1994 to 1998 (hereinafter 
referred to as the 1990s) and 2015 to 2019 (hereinaf-
ter referred to as the 2010s). In the 1990s and 2010s, 
 NH3 concentrations decreased with altitude, suggest-
ing the influence of agricultural and urban emissions 
(Sakurai & Fujita, 2002; Yamamoto et  al., 1995) at 
lower altitudes in Mt. Oyama. For acid gases, no ele-
vation dependence was observed in both the 1990s 
and 2010s, but  SO2 increased with elevation in the 
2010s. The emission of domestic primary pollution 
sources has been controlled, and the concentration of 
 SO2 has shown a decreasing trend at all altitudes in 
2010 compared to the 1990s. However, the summit 
has remained at roughly the same level, because the 
summit is affected not only by domestic pollution but 
by transboundary pollution, see “Frequency and pol-
lution sources of acid fog in Mt. Oyama” section for 
a detailed explanation. The  SO2 concentration shown 
in Fig. 3 was much lower than that shown in Fig. 2. 
The  SO2 data was obtained by the solution electri-
cal conductivity method, which always has positive 
deviation and has a large relative error in a low con-
centration (Yoshinari, 2015). The  SO2 concentration 
measured by the ultraviolet fluorescence method at 
Hadano, 9 km far from Isehara, was reported to be the 
level of 1ppb in 2010s (https:// www. nies. go. jp/ igreen/ 
td_ disp. html).

O3 concentration increased with the altitude in 
Mt. Oyama as reported earlier (Hatakeyama et  al., 
2004; Nguyen et  al., 2017).  O3 concentration distri-
bution is influenced not only by meteorological fac-
tors (e.g., temperature, wind speed, and pressure), but 
also by processes in which the photochemical reac-
tion of ozone production from the emitted NOx and 
VOCs (Atkinson, 2000). The photochemical reaction 
proceeds during transportation from urban areas, and 
high elevation sites get more intense solar radiation 
that can accelerate photochemical reactions to pro-
duce more ozone from precursor elements (Moore & 

Fig. 3  Elevational variations in the concentration of  NH3, 
acidic gases of HCl,  HNO3, and  SO2, and  O3 in Mt. Oyama 
during the former periods of 1994 to 1998 and the late period 
of 2015 to 2019

◂
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Semple, 2009; Semple et al., 2016). Therefore, ozone 
concentration becomes higher with altitude.

The mean concentrations of  NH3, HCl,  HNO3, and 
 SO2 in the air at all elevations of Mt. Oyama were 
2.08 ± 0.33, 0.42 ± 0.10, 0.30 ± 0.01, and 0.87 ± 
0.05 ppb, respectively, during the 1990s. The mean 
concentrations of  NH3, HCl,  HNO3,  SO2, and  O3 in 
the air were 0.77 ± 0.13, 0.29 ± 0.03, 0.27 ± 0.03, 
0.52 ± 0.08, and 18.54 ± 3.33 ppb, respectively, dur-
ing the 2010s. Both  NH3 and acid gas concentrations 

showed a decreasing trend, with the highest reduc-
tion observed in  NH3 (–63.01%) followed by  SO2 
(–39.73%).

3.3  Long term trend of bulk deposition and fog water 
in Mt. Oyama

Figure  4 represents the volume weighted mean 
(VWM) pH, total ion concentration (TIC), and its 
composition of bulk deposition and precipitation 
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at 400, 940, and 1252 m a.s.l. on Mt. Oyama from 
1994 to 2019. There was no clear interannual 
change in precipitation at any altitude, and the TIC 
at each altitude also showed no clear trend. How-
ever, the VWM pH increased from 1994 to 1999, 
decreased sharply in 2002, and then remained low 
at each altitude, especially at 940 m, until at least 
2013. The sudden decrease in pH after 2001 was 
probably due to the eruption of the Miyakajima 
volcano. The increase in pH after the eruption was 
1.34%, 2.66%, and 1.92% per y at 400, 940, and 
1252 m a.s.l., respectively. Moreover, the acid domi-
nance factor of bulk deposition was compared to the 
mean ratio of N / S, that is the concentration ratio 
of  NO3

- to non-sea-salt sulfate (nss-SO4
2-), over the 

study period, and it was 0.58, 0.56., and 0.53 at 400, 
940, and 1252 m a.s.l, respectively. As shown in 
Fig. 3, the concentration of  SO2 increased gradually 
with elevation, whereas the concentration of  HNO3 
did not significantly change with elevation. There-
fore, the N/S ratio in the bulk deposition gradually 
decreased with increasing altitude. This indicates 
that sulfuric acid has a greater acidifying effect on 
bulk deposition than nitric acid at high altitudes on 
Mt. Oyama, especially in recent periods.

Figure  5 shows the collected sample volume, 
VWM pH, total ion concentration (TIC), and com-
position of fog water at 680, 940, 1062, and 1252 m 
a.s.l. on Mt. Oyama from 1994 to 2019. Fog water 
has a lower liquid water content, smaller particle size, 
and longer residence time than rainwater (Seinfeld, 
1986). Moreover, the ion concentration of fog water 
is 5–20 times higher than that of rainwater (Beider-
wieden et al., 2007) and is highly acidic. In this study, 
a sample of fog water was collected using a PFC. The 
sample collected by the PFC contained not only fog, 
but also drizzle and rain (Wang et  al., 2021). Simi-
lar to bulk deposition, VWM fog water pH increased 
from 1994 to 1999, but decreased at all altitudes in 
some years after 2000 due to the Miyakejima erup-
tion. The collected sample volume at 680 m a.s.l. 
was much smaller than that at other elevation sites; 
however, the dry deposition or evaporation of depos-
ited fog water on the PFC cannot be ignored at 680 
m a.s.l. The TIC decreased with increasing altitude 
because the pollutant concentration in the fog water 
was diluted by the freshly formed fog droplets during 
the movement of air mass in the case of upslope fog 
(Igawa et al., 1998).

Thus, with the improvement in air quality, VWM 
pH of bulk deposition and fog water increased sig-
nificantly at all altitudes, with an overall increase of 
0.70% and 2.58% per y for bulk deposition and fog 
water, respectively, at Mt. Oyama. Additionally, we 
observed the fastest increase in bulk deposition and 
fogwater at 400 m a.s.l. (+1.01% per y) and 940 m 
a.s.l. (+4.4% per y), respectively.

3.4  Elevational variation of bulk and net throughfall 
deposition fluxes of  NO3

- and nss–SO4
2- in Mt. 

Oyama

Figure  6 shows the elevational changes in the bulk 
and net throughfall deposition of  NO3

- and nss–SO4
2- 

on Mt. Oyama from 1994 to 2019. The long-term 
changes in the throughfall are shown in Supplemen-
tary Information S4. The VWM pH values of the bulk 
deposition and fog water are also shown in Fig. 6. The 
difference in VWM pH between bulk deposition and 
fog water increased with altitude because the depend-
ence on altitude differed between bulk deposition and 
fog water, as shown in Figs. 4 and 5.

Bulk deposition fluxes of  NO3
- and nss–SO4

2- on 
average was 54.8 (range:27.4 to 108.4 meq  m-2  y-1) 
and 53.6 meq  m-2  y-1 (range:12.1 to 127.6 meq  m-2 
 y-1), respectively. Maruyama et  al. (2010) reported 
bulk deposition fluxes of  NO3

- and nss–SO4
2- of 38.0 

and 65.1 meq  m-2  y-1, respectively, for the 3 y period 
of 2006–2008 at the southeast foot of Mt. Fuji (1300 
m a.s.l.), with an average precipitation of 3477 mm 
 y-1. The deposition fluxes of  NO3

- and nss–SO4
2- at 

the foot of Mt. Fuji were 1.33 and 1.70 times higher 
than those at the summit of Mt. Oyama (1252 m 
a.s.l.), respectively. For the 1994–2019 period at the 
summit of Mt. Oyama, the average precipitation was 
1843 mm  y-1, whereas the precipitation at the south-
east foot of Mt. Fuji was approximately twice as high, 
suggesting that the higher deposition at the southeast 
foot of Mt. Fuji mainly reflects the differences in pre-
cipitation. Comparing the bulk deposition fluxes in 
other mountainous areas in Japan (Seto et al., 2007), 
the average deposition fluxes from 2000 to 2002 were 
20.7 and 50.1 meq  m-2  y-1 for  NO3

- and nss–SO4
2-

, respectively, at Happo (1850 m a.s.l). At Yusuhara 
(870 m a.s.l),  NO3

- and nss–SO4
2- deposition were 

17.1 and 44.2 meq  m-2  y-1, respectively. At the summit 
of Mt. Oyama,  NO3

- deposition fluxes were 1.37 and 
1.67 times higher than those at Happo and Yusuhara, 
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respectively. This may be because Mt Oyama is close 
to the Tokyo metropolitan area and is susceptible to 
air pollution, whereas Happo and Yusuhara are far 
from urban areas. In contrast, nss–SO4

2- deposition at 
Happo and Yusuhara were 1.31 and 1.15 times higher 

than that at Mt. Oyama. Although the two sites are 
remote, the two sites are closer to the mainland than 
Mt. Oyama. Therefore, the impact of transboundary 
pollution was stronger and nss–SO4

2- deposition was 
higher than that of Mt. Oyama.
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Fig. 5  Long term changes in volume weighted mean pH, total ion concentration (TIC), and its composition of fog water and col-
lected volume at 680, 940, 1062, and 1252 m a.s.l. on Mt. Oyama from 1994 to 2019 [Blank is no data]
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The net throughfall deposition (NTD) flux is esti-
mated by subtracting the bulk deposition flux from 
the throughfall deposition flux. NTD consists of 
dry and fog deposition, although small amounts of 
atmospheric deposition components, such as rain-
water, dry deposition, including gases and aerosols, 
and fog deposition are absorbed or exchanged into 
the canopy, and canopy leaching occurs (Balestrini & 
Tagliaferri, 2001; Lovett & Lindberg, 1984; Lu et al., 
2020; Zhang et al., 2007). NTDs of Japanese cedar at 
680 m a.s.l. were 143.7 and 101.7 meq  m-2  year-1 for 
 NO3

- and nss–SO4
2-, at 940 m a.s.l. were 344.6 and 

139.6 meq  m-2  year-1 for  NO3
- and nss–SO4

2-, at 1252 
m a.s.l. were 427.0 and 275.5 meq  m-2  year-1 for  NO3

- 
and nss–SO4

2-, respectively.
There was little change in the bulk deposition 

fluxes of  NO3
-and nss–SO4

2-with altitude, while their 
NTD increased with altitude. Wang et  al. (2021) 
reported that the frequency of fog at the summit of 
Mt. Oyama (1252 m a.s.l.) was 32%, but 13% at 680 
m a.s.l. This increase in the NTD with altitude is 
contributed by fog deposition onto the forest canopy 
because there was little change in acidic gases with 
altitude, as shown in Fig. 3.

3.5  Long term changes in stemflow of cedar and fir 
at Mt. Oyama

Beneath the forest canopy, wet deposition falls not 
only via throughfall, but also stemflow on the forest 
floor. Figure 7 shows the long term changes in the 
composition, pH, TIC, and dissolved organic car-
bon (DOC) in the stemflows of cedar and fir at 890 
m a.s.l. on Mt. Oyama from 1996 to 2019. Similar 
to throughfall, stemflow is affected by dry deposi-
tion and leaching from the tree itself, as well as by 
wet deposition on the canopy. Furthermore, stem-
flow has a higher concentration than throughfall 
because it has a longer contact time with the leaves, 
branches, and stems. Therefore, stemflow not only 
has high concentrations of inorganic ions, but also 
dissolved organic carbon. The pH value of stem-
flow was lower than that of other samples, and the 
pH of cedar trees was much lower than that of fir 
trees. The stemflow pH value were 3.7 and 4.6 for 
cedar and fir, respectively, and were similar to the 
reported values of 2.87–3.46 for cedar (Sato, 1996) 
and 4.2–4.8 for fir (Sassa, 1991). The average DOC 
were 43.5 mg  L-1 and 55.5 mg  L-1 for cedar and 
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fir, respectively, and were both within the ranges 
reported for stemflow, 6–322 mg  L-1 (Stubbins 
et  al., 2017; Van Stan & Stubbins, 2018). The pH 
values showed an increasing trend in recent years 

with the improvement of the atmospheric environ-
ment and reduction of acid deposition (+1.17% 
 y-1 and +0.82%  y-1 for cedar and fir, respectively), 
although they were generally low. To investigate 

Fig. 7  Long term changes 
in the concentration of 
hydrogen and ammonium 
ions (a), the concentra-
tion of ammonium ion (b), 
and the concentration of 
hydrogen ion (c) for bulk 
deposition, fog water, and 
throughfall under the cedar 
at the summit of Mt. Oyama
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the acid components, the correlation between DOC 
and the difference between the total anion and cat-
ion concentrations was examined for the stemflow 
samples. This difference may correspond to the con-
centration of unanalyzed organic acid components. 
The sample numbers of cedar (Japanese cedar) and 
fir (Abies firma) were 556 and 360, respectively, 
and DOC was highly correlated with the difference 
(r = 0.25 for cedar; and r = 0.42 for fir). It can be 
inferred from the slope that the molar ratio of acidic 
functional groups to carbon atoms in stemflow was 
3:20 for cedar and 1:10 for fir. The acid concentra-
tions in the stemflow samples were estimated using 
the Gran plot method (Henriksen & Seip, 1980; 
Krupa et  al., 1976; Molværsmyr & Lund, 1983). 
The stemflow of cedar and fir trees were found to 
contain approximately 4 meq  L-1 and 1 meq  L-1 
organic acids, respectively. Organic acids were not 
detected using this plot method for throughfall, bulk 
deposition, or fog water. Identifying organic acids 
in stemflow may be a very important subject to 
tackle in the future.

3.6  Comparison of bulk deposition, throughfall, fog 
water composition, and the long term changes in 
their composition at the summit of Mt. Oyama

Figure 8a shows the total ion concentration, volume 
weighted mean pH, and composition of bulk depo-
sition, fog water, and throughfall under cedar trees 
averaged for all data at the summit of Mt. Oyama 
during 1994–2019. Owing to the fact that through-
fall components are affected by the cleaning effects 
of precipitation on the leaves of plants, rainwater, 
fog water, aerosols, and leaf components adhered to 
the leaf surface would flow down and be collected. 
Thus, the proportions of  K+,  Mg2+, and  Ca2+ in the 
throughfall were greater than those in bulk deposi-
tion or fog water. Among these cations, the through-
fall of calcium and potassium ions were particu-
larly high. Potassium ions are typical components 
of plant leaching whereas calcium ions are a major 
component of the dry deposition. In addition, cal-
cium ions in the leaves are readily exchanged with 

Fig. 8  Comparison of 
volume weighted mean 
pH, total ion concentration 
(TIC), composition of bulk 
deposition, fog water, and 
throughfall under cedar 
trees from 1994 to 2019 at 
the summit of Mt.Oyama 
(a) and Five year mean of 
anion composition in bulk 
deposition, fog water, and 
throughfall under cedar 
trees at the summit of Mt. 
Oyama over three periods: 
before Miyakejima volcano 
eruption (BMVE, 1995-
1999), after Miyakejima 
volcano eruption (AMVE, 
2002-2004), and recent days 
(2015-2019). Due to the 
missing data in 2000 and 
2001, the 3 y average used 
for AMVE was from 2002 
to 2004 (b)
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the acid components of deposition on the canopy 
(Shigihara et al., 2009).
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solver organic carbon (DOC), total ion concentration (TIC), 
and its composition of stemflow of fir and cedar at 890 m a.s.l. 
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Fig. 11  Air mass flow in 
summer (a) and in winter 
(b) in 2019. The star shows 
Mt. Oyama (35°26’N; 
139°37’E). Backward 
trajectories were calculated 
every 4 h from June to 
August for summer and 
from December to April for 
winter
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Figure 8b represents the 5 y mean of anion com-
position (chloride, nitrate, and sulfate ions) in bulk 
deposition, fog water, and throughfall under cedar 
trees at the summit of Mt. Oyama classified for 
three periods, before the Miyakejima volcano erup-
tion (BMVE, 1995-1999), after the Miyakejima 
volcano eruption (AMVE, 2002-2004), and recent 
days (2015-2019). Owing to missing data for 2000 
and 2001, the 3 y average used for AMVE was from 
2002 to 2004. The recent ratios of  NO3

- for all sam-
ples showed a significant decreasing trend compared 
to BMVE, while the ratio of  Cl- increased, with the 
largest increase in fog water (+71.6%), followed 
by throughfall (+38.5%). This was caused by the 
reduction of NOx in the atmosphere, as shown in 
Fig. 2. Comparing AMVE with BMVE,  SO4

2- ions 
significantly increased owing to the effect of the 
Miyakejima volcano eruption, especially for bulk 
deposition. The different trends among these three 
sample sets may be caused by the fact that bulk pre-
cipitation components are affected by air pollution 
over a wide region, while fog water components are 
primarily affected by air pollution in local subsur-
face regions. Throughfall affected not only precipi-
tation, but also fog water.

Figure 9 shows the long term changes in concen-
tration of nonmetallic cations, hydrogen ions, and 
ammonium ions for bulk deposition, fog water, and 
throughfall under the cedar at the summit of Mt. 
Oyama. The total concentration of  [H+] +  [NH4

+] 
decreased linearly annually for bulk deposition, 
throughfall, and fog water. The concentration of  [H+] 
+  [NH4

+] decreased in all samples, with the largest 
decrease in fog water (–0.37%  y-1) and smallest in 
rainwater (–0.06%  y-1). The major metallic cations, 
 Na+,  K+,  Mg2+, and  Ca2+, did not decrease in any of 
the samples. Figure 9b and c show the changes in con-
centration of the respective cations. It is evident that 
the rate of decrease in  [NH4

+] was greater than that 
of  [H+] for all samples. The concentration of ammo-
nium ions in wet deposition was dominated by not 
only the ambient ammonia gas concentration, but also 

the neutralization reaction with the acid in the deposi-
tion. Both the ammonia gas concentration and acidity 
of the wet deposition decreased on Mt. Oyama. The 
slope of  [H+] of the throughfall was much smaller 
than that of  [NH4

+]. This can be explained by the ion 
exchange reaction of  H+ with the leaf components in 
fog (Igawa, Kase, et al., 2002).

3.7  Frequency and pollution sources of acid fog in 
Mt. Oyama

Figure 10a represents the frequency of acid fog clas-
sified into four levels by its pH value at the summit 
of Mt. Oyama from 1994 to 2019 in summer and 
winter. Figure  10b shows the average values of fog 
water concentration and pH in the summer and winter 
from 1994 to 1997 and 2015 to 2019. From January 
to March, the temperature at the top of the moun-
tain was too low, and the water samples were frozen. 
Thus, samples could not be collected. Hence, the 
samples from April and December were used as the 
winter samples in which transboundary pollution was 
highly affected (Inomata et al., 2016). In summer, it is 
apparent that the frequency of acidic fog with low pH 
gradually decreased, as shown in Fig. 10a. As shown 
in Fig. 10b, the summer fog water pH increased from 
4.14 in 1994–1997 to 4.81 in 2015–2019 (+16.2%). 
In contrast, in winter, except for the duration of the 
eruption of the volcano on Miyakejima Island in 2000 
and several small-scale eruptions of Mt. Mitakesan 
volcano in the Nagano prefecture in 2007, there were 
few marked changes. The pH value of fog water in 
summer increased, whereas the pH ratio in winter did 
not change, as shown in Fig. 10a. The changes in total 
ion concentration of fog water in winter (23.68%) was 
smaller than that in summer (45.45%). The pH of fog 
water in winter was 4.43 in 1994–1997 and 4.41 in 
2015–2019. Thus, there was barely any change.

To infer the cause of this dependence of the fog 
water pH on the seasons, we used a backward tra-
jectory to verify the air mass source (Fig. 11). Fig-
ure 11a represents the summer of 2019: most of the 
air masses reaching the summit of Mt. Oyama came 
from the Pacific Ocean through mainland Japan, 
although the air mass moved in various directions. 
The trajectories were approximately the same for 
each year. Therefore, in summer, the pollution 
source of Mt. Oyama was mainly mainland Japan. 
Land and sea breezes occur frequently in summer. 

Fig. 12  SO2 concentration at 4 prefectures in China (Beijing, 
Shanghai, Liaoning, Henan), 1 prefecture in Korea (Seoul), 3 
prefectures (Fukuoka, Hyogo, Nagano) and the summit of Mt. 
Oyama in Japan in 2018 winter and the flow of monsoon in 
winter (a); temporal variation of backward trajectory and  SO2 
concentration at different cities (b)

◂
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Sea breezes discharge air pollutants from coastal 
cities and suburbs to inland areas (Bonsang et  al., 
2001). This cycle facilitates the accumulation of 
pollutants and generation of secondary pollutants 
under the influence of photochemistry (Kallos et al., 
1993; Kotroni et  al., 1999; Liu & Chan, 2002). In 
recent years, improvements in the atmospheric envi-
ronment have reduced the number of primary pollut-
ants and mitigated the generation of secondary pol-
lutants (Fig. 2). As shown in Fig. 10a, the frequency 
of acid fog in summer decreased with a decrease in 
acidic pollutants. In winter, it is apparent that air 
masses from the Asian continent account for most 
of the pollutants (Fig. 11b). China uses coal for 70% 
of its total energy needs (Fang et al., 2009), which 
has become a major anthropogenic contributor to 
air pollution in China. This phenomenon is espe-
cially prominent during the winter due to the use of 
central heating (Chen et al., 2017; Shen et al., 2013; 
Wang et al., 2003). A large increase in coal combus-
tion resulted in significant emissions. These pollut-
ants, accompanied by the movement of air masses 
from northern China, northeastern China, and 
northwestern China, through Korea, reach western 
Japan (Takami et al., 2005, 2007), and further affect 
the ambient air around Mt. Oyama.

To prove our hypothesis, we compared the concen-
tration changes of  SO2 in different regions of China, 
Korea, and Japan in winter along a backward trajec-
tory. Figure  12a shows the average concentration 
changes in  SO2 in four prefectures of China (Beijing, 
Shanghai, Henan, Liaoning), one prefecture of South 
Korea (Seoul), three prefectures of Japan (Fukuoka, 
Hyogo, and Nagano), and the top of Mt. Oyama 
(1252 m a. s.l.) in the winter of 2018 (December 
2018 to February 2019). During the monsoon season, 
the average concentration of  SO2 decreased sequen-
tially in the three countries. Pollutants flowed into 
Japan from China, and Mt. Oyama was also affected 
by transboundary pollution in winter. The above in 
Fig.  12b represents the backward trajectories every 
six hours (0:00, 6:00, 12:00, 18:00, and 24:00 JST) 
from Mt. Oyama on February 2, 2019, and the cal-
culation time was 72 h (Meters AGL:1252m). Fig-
ure  12b shows the temporal variation in  SO2 con-
centration detected at different measuring points in 
different countries when the air mass flows through 

them. We found, from the temporal variations, that 
an air mass containing high concentrations of  SO2 
flowed down from mainland China to Japan via 
South Korea. The bottom half of Fig. 12 shows that 
Mt. Oyama was affected by transboundary pollution, 
which lead to an increase in the frequency of acid fog 
in winter.

4  Conclusions

The concentrations of acid pollutants tended to 
decrease with the improvement of the domestic 
atmospheric environment in Japan, and the pH of 
precipitation (including bulk deposition, fog water, 
and throughfall) increased in the quarter century 
until 2019. The bulk deposition flux of acids,  NO3

-, 
and nss-SO4

2- barely changed with altitude, whereas 
the NTD increased with increasing altitude, proba-
bly due to fog water deposition. The pH of stemflow 
was low because of the influence of organic acids 
dissolved from the tree itself, but also increased 
because of the reduction of air pollutants.

In summer, sea breezes transport air pollutants 
generated at coastal urban sites, and fog water is 
prone to be acid. However, the frequency of acid fog 
in summer has been decreasing with improvements 
in the domestic environment. Under the influence of 
monsoons in winter, high concentrations of pollut-
ants from distant areas flowed into Japan, and the 
frequency of acid fog remained almost unchanged. 
Drastic damage on mountain forest will not occur in 
the future for the decreasing severe acid fog events, 
but further improvements in the domestic atmos-
pheric environment and control of transboundary 
pollution are expected to provide better conditions 
for mountain ecology free from acid pollutants.
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