
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s11270-022-05926-w

Microplastic in Sediments and Ingestion Rates in Three 
Edible Bivalve Mollusc Species in a Southern Philippine 
Estuary

P. S. P. Bonifacio · E. B. Metillo   · 
E. F. Romano Jr

Received: 23 July 2022 / Accepted: 26 October 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

type of microplastic in terms of morphology, while 
black and blue are the dominant colors of microplas-
tic particles. There were 1495 microplastic particles 
(4.15 ± 3.37 particles/clam) present in the clam tis-
sues, of which polypropylene (PP) and rayon (RY) 
polymers are the most common, whereas K. hiantina 
(707 particles) showed the highest amount of micro-
plastics. The number of ATR-FTIR-confirmed poly-
mer types in the wild clams is greater than that in the 
sediments. The study reveals abundant microplastics 
in sediments and in the three species of bivalve indi-
viduals from the wild. All clams ingested low-density 
polyethylene (LDPE) microplastic particles in the 
laboratory. The mean number of LDPE microplas-
tic particles ingested by clams is 4.62 ± 2.40 parti-
cles/clam/7days, with the highest value observed in  
K. hiantina. Additionally, Donax sp., M. meretrix, 
and K. hiantina could ingest high densities of 40–60-
μm microplastic particles.

Keywords  Bivalve mollusc · ATR-FTIR analysis · 
Microplastics · Panguil Bay · Sediments · Ingestion 
rate

1  Introduction

Plastics are widely used in different applications 
because they are lightweight, durable, and economi-
cal. According to PlasticsEurope (2020 as cited in 
Mai et  al., 2022), global plastic production reached 

Abstract  Plastics are now a major environmental 
concern worldwide with their widespread contamina-
tion and accumulation. Microplastic particle (< 5 mm) 
is an emerging pollution issue as it is being detected 
worldwide in aquatic and terrestrial ecosystems, but 
relatively little is known in tropical regions. This 
study determined the (1) abundance of microplas-
tics in sediment and (2) in situ and laboratory inges-
tion rates of microplastics in three scarcely studied 
tropical bivalve mollusc species (Donax sp., Meretrix  
meretrix, and Katelysia hiantina) in Panguil Bay, 
Southern Philippines. A total of 2258 microplastic 
particles (62.72 ± 18.31 items/m2) were found on the 
sediment samples. Filament/fiber is the most abundant 
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368 million tons in 2019. Moreover, due to the market 
demand for plastic products, it is projected that plastic 
production may reach 600 million tonnes by 2025 and 
may exceed 1 billion tonnes by 2050 (FAO, 2017). 
Around 6300 metric tonnes (MT) of plastic waste is 
generated annually, out of which 9% is recycled, 12% 
is incinerated, and the remaining 79% gets accumu-
lated in natural environments and ultimately ends up 
in seas and oceans (Geyer et al., 2017). The COVID-
19 pandemic may have increased microplastic pollu-
tion due to the global production of personal protec-
tive equipment (PPE), gloves, face masks, and face 
shields in billion pieces (Lee and Kim, 2022). The 
common sources of plastic pollution in the terrestrial 
and marine environments come from the packaging 
materials that we use every day, which are made up of 
polyethylene (PE), polypropylene (PP), polystyrene 
(PS), polyethylene terephthalate (PET), polyvinyl 
chloride (PVC), and polyamide (PA) (Andrady, 2011; 
Avio et al., 2016).

Plastic wastes are potential threat to marine organ-
isms. For example, ingestion of plastic debris or 
entanglement has been recorded in 44–50% of all 
seabirds, sea snakes, sea turtles, penguins, seals, sea 
lions, manatees, sea otters, fish, crustaceans, and half 
of all marine mammals (Kühn et  al., 2015). Moreo-
ver, these plastic wastes contribute to the formation of 
a new contaminant called microplastics. Reports indi-
cate a global increase and widespread distribution of 
microplastics in the environment, thereby increasing 
microplastic’s bioavailability to various organisms. 
This scenario suggests that microplastics potentially 
threaten wildlife, natural ecosystems, and human 
health (Endo et al., 2005; Teuten et al., 2009; Rocha-
Santos and Duarte, 2015; Arp et al., 2021).

Microplastics, typically defined as plastic pieces 
that are < 5 mm in size (Barnes et al., 2009), although 
a recent definition suggests to consider fragments 
smaller than 1 mm (Browne et  al., 2015), have been 
documented in aquatic systems on all seven conti-
nents, in both freshwater and marine environments 
(Barnes et  al., 2010), along beaches (Browne et  al., 
2011, Yabanlı et  al., 2019), in sediments (Claessens 
et al., 2011; Reed et al., 2018), in biota (bivalve mol-
luscs, zooplankton, and fish) (Rashid et  al., 2021; 
Ding et  al., 2021; Wootton et  al., 2021), and in the 
water column itself (Eriksen et al., 2013). Microplas-
tics are barely visible microlitter in the form of small 
fragments, fibers, and granules (Desforges et  al., 

2015), and their small dimension makes them availa-
ble for ingestion by a wide range of marine organisms. 
Besides entanglement and ingestion of macro debris 
by large vertebrates, microplastics are accumulated 
by planktonic and invertebrate organisms, being trans-
ferred along food chains through the consumption of 
lower trophic level prey (Avio et al., 2016; Farrell and 
Nelson, 2013). Primary sources of microparticle-sized 
plastics refer to the pellet form of plastics used as 
feedstock in the plastic industry and/or personal care 
products. In contrast, microplastics derived from sec-
ondary sources are a result of fragmentation and deg-
radation of larger plastic materials (Cole et al., 2011; 
Arp et al., 2021). The majority of microplastics in the 
oceans are secondary products derived from the deg-
radation and fragmentation of mesoplastics or larger 
fragments (Gregory and Andrady, 2003).

In general, the bioavailability of microplastics 
and nanoplastics 0.001 to 0.1 μm (FAO, 2017) may 
depend on their size, density, shape, and surface 
charges which will affect their behavior in seawater, 
leading to agglomeration, resuspension, and settling. 
Moreover, their uptake, disposal, and bioaccumula-
tion by marine organisms are influenced by their feed-
ing behavior, with benthic detritivores and suspension 
feeders representing more susceptible target species 
(Wright et  al., 2013). Laboratory studies conducted 
show that microplastics can be ingested by a range 
of marine organisms when particles are mistaken 
for food (Browne et  al., 2008; Boerger et  al., 2010; 
Lusher et al., 2013).

In addition to direct physical impacts from the 
microplastic itself, ingested plastic debris may act 
as a medium to concentrate and transfer chemi-
cals and persistent, bioaccumulative, and toxic sub-
stances (PBTs), such as polychlorinated biphenyls 
(PCBs) to organisms (Eerkes-Medrano et  al., 2015). 
Different particles polymers, like PVC, PE, PP, and 
PS, were shown to have a high sorption capacity for 
dichlorodiphenyltrichloroethane (DDT), polycyclic 
aromatic hydrocarbons (PAHs), hexachlorocyclohex-
anes (HCH), and chlorinated benzenes (Bakir et  al., 
2012; Lee et  al., 2014). This diversity of synthetic 
substances places human beings at high risk for can-
cer and debilitating diseases (Dewailly et  al., 1989; 
Lohman and Muir, 2010).

The estuarine water of Panguil Bay, an important 
fishing ground in Southern Philippines, supports 
three species of exploited bivalve molluscs, namely, 
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the wedge clam, Donax sp., Asian hard clam, Mer-
etrix meretrix, and the surf clam, Katelysia hiantina 
(Jimenez et al., 2009). Microplastic contamination in 
habitats and ingestion in bivalve mollusc food spe-
cies are poorly studied in the tropical region (Espiritu 
et al., 2019). Thus, this study aimed to estimate the 
distribution and abundance of microplastic materi-
als in the sediment habitat of the three bivalve spe-
cies, quantify the abundance of microplastics in 
three bivalve mollusc species (= in  situ ingestion), 
and determine the ingestion rates of the three spe-
cies on low-density polyethylene microplastic in the 
laboratory.

2 � Materials and Methods

2.1 � Sampling Area

Sediment and bivalve mollusc samples were collected 
from four different sites (Baroy [site 1], Tangub [site 
2], Kapatagan [site 3], Cabgan [site 4]) in the estu-
arine Panguil Bay (Fig.  1). Panguil Bay is about 41 
km long and is flanked by 10 municipalities and two 
cities belonging to three provinces (Lanao del Norte, 
Zamboanga del Sur, and Misamis Occidental) and 
three administrative regions (Regions 9, 10, and 12). 
There are 11 towns and 78 coastal barangays sur-
rounding Panguil Bay (Jumawan et al., 2020).

Panguil Bay description, hydrography, and water 
circulation were reported by Canini et al. (2013) and 
Metillo et al. (2015). As reported, “Panguil Bay is a 
south-western inlet of the greater Iligan Bay, and with 
an average of 5 m, the depth gradually decreases from 
the mouth to the inner portion, but a narrow and deep 
lengthwise channel in the middle occupies three-
quarters of the total length of the bay. The volume of 
exchanged water daily is about 22 % of the total vol-
ume of 1.1 km3. The remaining mangrove forest has 
an area of 27.3 km2, mostly concentrated in the inner 
parts of the bay. Rainfall on the catchment area brings 
runoff into Panguil Bay via 29 major rivers and 46 
minor tributaries. Variation of hydrographic param-
eters is primarily influenced by monsoon. Strong 
north-east (NE) monsoon winds prevail over Panguil 
Bay from November to March but are strongest from 
January to February. Weak, variable winds typify the 
intermonsoon months of April and May. Salinity is 
generally higher (10–31.7) in the cooler (24–32 °C) 

NE monsoon months (from October to March), but 
lower (3.3–29.7) in the warmer (30–32 °C) south-west 
(SW) monsoon months of June through to September. 
Higher mean dissolved oxygen values (7.1–7.9 mg 
L–1) occur in November and August, compared with 
those (6.5–6.6 mg L–1) in February and May. The pH 
(8.8–9.2) is typical of normal seawater in February, 
but slightly acidic, typical of a mangrove estuary, in 
other months. Dissolved nitrate was generally lower 
(0.4–0.7 mg L–1) in rainy SW monsoon months com-
pared with the warmer months of February through to 
May (0.4–0.9 mg L–1). The lowest concentrations of 
dissolved orthophosphate were recorded in November 
(0.1–0.2 mg L–1), but higher in rainy months during 
SW monsoon (0.1–0.4mg L–1). Heavy rainfall and 
strong winds during NW monsoon coincided with 
highest concentrations (0.8–2.9 x 102 mg L–1) of 
total suspended solids throughout the bay.” The most 
abundant commercially exploited species in the bay 
are invertebrates with molluscs contributing to 10% 
(Jumawan et al., 2021).

Plastic materials like fishing net, rope, plastic bag, 
adhesive tape, styrofoam, tire cord, wire, and cable 
insulation, and food and drink wrappers were found 
in the sampling area which could be some of the 
possible sources of plastic pollutants in Panguil Bay 
(Bonifacio, 2021).

2.2 � Collection and Quantification of Microplastics in 
Sediments

Sampling of sediments was conducted at three tran-
sect lines with three quadrats located 10 m away from 
each other for each area, specifically in the intertidal 
zone. The sampling quadrat was 1 × 1 m. A metallic 
shovel was used to collect sediments at 5 cm depth. 
The sediments were sealed in a plastic container 
which was rinsed in the laboratory with seawater 
before use. Sediments were transported back to the 
laboratory, dried, and kept at room temperature until 
extraction (Barasarathi et  al., 2014; Besley et  al., 
2016). Dried sediment samples were sieved through 
0.45 mm mesh to separate macroplastics. Microplas-
tics in 2 kg sediment samples were extracted using 
the method adapted from Besley et  al. (2016) with 
minor modifications and additional changes. A fully 
saturated salt solution was prepared by dissolving 
358.9 g of sodium chloride (NaCl) in 1 L of deminer-
alized water. The salt solution was filtered to remove 
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impurities. Microplastic was extracted by density 
separation, where dry sand was combined with a satu-
rated salt solution. One hundred (100) g of dried sand 
was added to 400 mL of fully saturated salt solution 
and was stirred for 5–10 min. The sediments were 
then allowed to settle for not less than 3 days or until 
the water became clear. The supernatant was poured 
into a vacuum filtration system and filtered through 
Whatman filter paper grade 1 (11 μm pore size). Pro-
cedures were repeated two times for each sample. 
Collected particles in the filter paper were examined 
using a stereo microscope, compound microscope, 
and ATR-FTIR spectroscopy. Blanks consisting of 
salt solution only were handled the same way as sam-
ples to assess laboratory contamination.

2.3 � Source of Polyethylene Microplastic

Low-density polyethylene (LDPE) particles were 
obtained from Beijing Yan Lin Fu Chemical Sales 
Center (China) and were processed and size-sorted 
into 40–60-μm microplastics through grinding and 
sieving by milling machine, blender, and metallic 
sieves. LDPE microplastic sizes were verified under a 
compound microscope.

2.4 � Collection and Laboratory Maintenance of 
Samples

A total of 840 bivalve mollusc individuals were col-
lected in Panguil Bay. The three bivalve mollusc spe-
cies (the wedge clam, Donax sp.; Asian hard clam, 
Meretrix meretrix; and the surf clam, Katelysia hian-
tina) were collected in the same four sampling sites 
of the Panguil Bay. After collection, 360 mollusc 
individuals for acid digestion were refrigerated, and 
480 mollusc individuals intended for polyethylene 
ingestion rate study were transferred to the laboratory, 
where they were acclimatized in filtered seawater for 
7 days at constant aeration, with a photoperiod of 12 
h light and 12 h darkness.

2.5 � Laboratory Feeding

Live individuals were scrubbed to remove any 
organisms from their shells. The laboratory expo-
sure method was adapted from Avio et  al. (2015) 
and Ribeiro et  al. (2017) with minor modifications. 

Individuals of three species were randomly placed in 
individual and identical 500-mL glass beakers with 
400 mL of the microplastic-seawater mixture fol-
lowing a setup of three bivalve mollusc species × 10 
replicate individuals of each species. Microplastic-
seawater mixture was prepared by mixing 1.5 g of 
40–60-μm LDPE microplastics and 1 L of filtered 
seawater. No sediments were added, and portable 
oxygen pumps were used to provide aeration. The use 
of plastic material was avoided while experimenting. 
The exposure ran for 7 days. The water was changed 
in each glass beaker every 24 h with LDPE micro-
plastics. Clams were not fed to avoid any interaction 
of microplastics and food, but animals remained alive 
through the microplastic exposure period. After 7 
days, ingestion rates of clams were measured using 
the same acid digestion protocol for the wild-based 
clams. Usually, whole organisms (Lusher et  al., 
2017b) are digested or analyzed in laboratory studies.

2.6 � Acid Digestion of Clams from the Wild and 
Laboratory Experiment

Microplastics from wild clams and LDPE synthetic 
microplastics from clams in the laboratory experi-
ment were determined using the digestion protocol 
adapted from Claessens et  al. (2013) with minor 
modifications. Clams were refrigerated (1 °C) 
before and during preliminary processing and were 
frozen until acid digestion could take place. Dur-
ing freezing, clams gape, creating a potential route 
for contamination. Clams were bound with elas-
tic bands while in the freezer to maintain pressure 
on both sides of the shell to avoid contamination 
(Davidson and Dudas, 2016). Clams were not depu-
rated in order to include microplastics that had been 
both recently ingested and possibly translocated to 
tissues (Mathalon and Hill, 2014; Li et  al., 2015). 
Clamshells were thoroughly rinsed with water and 
then removed using a scalpel and forceps. The soft 
tissues were weighed separately. Clam tissues were 
digested in 10–15 mL of 69% nitric acid overnight 
at room temperature in a beaker/flask, followed by 
⁓2 h of boiling (⁓100 °C). Digestions were com-
plete when there was no visible organic material 
remaining, and the solution was clear and yel-
low. The resulting mixture was diluted (1:10 v/v) 
with warm (⁓80 °C) deionized water and vacuum 
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filtered over 3-µm pore-sized filter paper immedi-
ately after dilution. All beakers and Buchner fun-
nels were rinsed with deionized water before diges-
tion and throughout to reduce the amount of sample 
lost during transfer stages. Filter papers were then 
examined under a stereomicroscope (10–40× mag-
nification) for microplastic particles. Individual 
microplastic samples were further examined under 
a compound microscope (10–100× magnification) 
when necessary.

2.7 � Microplastic Identification

The simplest method in the identification of micro-
plastics is visual identification, a time-consuming but 
the most appropriate technique when dealing with a 
high volume of samples and limited resources (Craw-
ford and Quinn, 2017). Microplastics were identified 
by color, structure, and type after clearing from debris, 
salt crystals, and sand grains. Most microplastics 
were flexible, will not break, and often spring back 
when prodded. A fine tweezer was used when prod-
ding without damaging the microplastics. Microplas-
tics could be covered by debris, salt crystals, and sand 
grains, making them difficult to see and identify. The 
chemical composition of microplastic samples from 
sediments and bivalves was determined using Fourier-
transform infrared spectroscopy (Perkin Elmer Spec-
trum Two, USA) attenuated total reflectance mode (8 
to 14 scans, 4 cm−1 resolution, 4000 cm−1 to 450 cm−1 
wave  number range), a standard analytical technique 
for identifying the chemical composition of samples 
larger than 0.5 mm (Biginagwa et al., 2015). The fol-
lowing criteria were used to define a plastic particle 
through visual examination (Noren, 2007):

a.	 No cellular or organic structures are visible in the 
plastic particle/fiber.

b.	 If the particle is a fiber, it should be equally thick, 
not taper towards the ends, and have a three-
dimensional bending (not entirely straight fibers, 
which indicates a biological origin).

c.	 Clear and homogeneously colored particles (blue, 
red, black, and yellow).

d.	 If it is not obvious that the particle/fiber is 
colored, i.e., if it is transparent or whitish, it shall 
be examined with extra care in a microscope 
under high magnification.

2.8 � Contamination Control

Contamination control measures were strictly imple-
mented and followed all throughout the experimenta-
tion. The use of plastic materials was minimized and 
all equipment were rinsed with distilled water before 
every test. Container walls were washed frequently 
with distilled water during the extraction of micro-
plastics to avoid losing samples. Laboratory room 
was cleaned before and after daily experimentation. 
Cotton coats were worn and the number of people 
was minimized inside the laboratory. Control samples 
were constantly checked for contamination.

2.9 � Statistical Analysis

Plastic particle concentrations were represented as 
mean values ± standard deviation (SD). Kruskal-
Wallis H Test was used to evaluate microplastic 
abundance in sediments and clams among sampling 
sites, and LDPE exposed clams among sampling 
sites and mollusc species since data did not meet the 
assumption of normality (Shapiro-Wilk W Test) and/
or homogeneity of variance (Levene’s Test). Statisti-
cal significance was defined at p < 0.05. All statistical 
data analyses were performed using the IBM SPSS 
Statistics version 23.

3 � Results and Discussion

a.	 Abundance and distribution of microplastics in 
sediments and wild clams

Microplastics found in the sediments and wild 
clams were categorized into fragments, filament/fiber, 
and foam (Fig. 2). A total of 2258 microplastic par-
ticles in the sediments were visually identified under 
the microscope. Filament/fiber (56%) was found to 
be the predominant type of microplastic, followed by 
fragments (42%) and foam (2%) being the lowest. On 
the other hand, a total of 1495 microplastic particles 
were found on clams in which filament/fiber (65%) 
was the predominant type of microplastic particles, 
followed by fragments (35%). No styrofoam was 
found in all the clam samples. Filaments/fibers are the 
most abundant microplastics since apart from plastic 
bags and bottles, packaging straps and fishing lines in 

 455   Page 6 of 16



Water Air Soil Pollut (2022) 233:455

1 3
Vol.: (0123456789)

oceans are the most common plastic pollution items 
(Blettler et  al., 2018). Additionally, polyolefins (PE 
and PP) and nylons are primarily used in fishing gear 
applications and are commonly detected in coastal 
areas (Klust, 1982; Timmers et al., 2005).

Different colored microplastic filaments/fibers 
were found in the sediment and wild clam samples 
(Fig.  S1). Most of the filaments/fibers found were 
≤ 1 mm in size, measuring them along their longest 
dimension. Colors of microplastic particles in sedi-
ments and wild clams were black, blue, brown, green, 
orange, red, transparent, violet, white, and yellow 
(Fig.  3). In sediments, black (28%) and blue (31%) 
particles are the predominant colors. The same domi-
nant colors were found in clams—black (37%) and 
blue (14%). In this study, black and blue accounted 
for more than half of the colors of microplastics in 
both sediment and clams, but color and shape, when 
describing and quantifying microplastics, are still 
in question as they introduce subjectivity due to the 
process of visual sorting with microscopy (Baruah 
et al., 2022). Colored microplastics are the most com-
mon in water, accounting for 50.4–86.9% of the total 
microplastics (Wang et  al., 2017). Studies in China 
indicated that transparent and blue microplastics are 
the most abundant microplastics detected in biota 
(Fu et  al., 2020). Recently, grouping microplastics 
into four obvious colors (transparent, black, white, 
and colored) instead of evaluating other more con-
troversial colors (e.g., yellow, green, blue) has been 
suggested by Jiang et  al. (2019). However, the vari-
ations in size, shape, and color in microplastics are a 

particular concern since they could easily be mistaken 
for food by marine organisms and seabirds (Thomp-
son et al., 2004; Browne et al., 2008; Gregory, 2009).

The highest number of microplastics in sediments 
was found in site 4 (75.89 ± 22.88 items/m2), fol-
lowed by site 1 (63.78 ± 10.65 items/m2), and site 2 
(61.67 ± 17.19 items/m2) while site 3 (49.56 ± 11.93 
items/m2) had the lowest number (Fig.  4A). The 
abundance of microplastic particles observed in sedi-
ments was similar within and among sampling sites. 
Hence, we can assume that the abundance of micro-
plastic particles in sediments in the sampled areas 
and perhaps the entire Panguil Bay is homogenous. 
While prevailing currents and waves may cause dif-
ferences in the distribution of macroplastics, pro-
cesses involved in microplastic distribution are less 
well-known. Still, they can be influenced by particle 
distribution in the water column, settling rate, parti-
cle redistribution via hydrodynamics, and particle 
aggregation or animal activities (Browne et al., 2010). 
The mean abundance of sediment microplastics in 
the sampling sites is 62.72 ± 18.31 items/m2. This is 
higher compared to that reported in a Brazil estuary 
with 60 items/m2 (Ivar do Sul et al., 2009) but lower 
compared to those in Portugal with 133.3 items/m2 
(Martins and Sobral, 2011); South Korea with 913 
items/m2 (Heo et al., 2013); St. Lawrence River, Can-
ada with 13,832 ± 13,677 items/m2 (Castañeda et al., 
2014); and Pearl River, Hongkong with 5595 items/
m2 (Fok and Cheung, 2015).

Microplastic particles present in wild clams (N 
= 30 of each of the species of clams: Donax sp. ≤ 

Fig. 2   Microplastic cat-
egory in sediments and wild 
clams
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1 g, Meretrix meretrix 3–5 g, and Katelysia hinatina 
3–7 g per site) are presented in Fig. 4B. The highest 
total number of microplastic particles per individual 
clam was observed in K. hiantina (707), followed by 
M. meretrix (499), and the lowest in Donax sp. (289). 
Meanwhile, sites 2 and 3 showed the highest number 
of microplastic particles ingested by one individual of 
M. meretrix (19) and K. hiantina (21), respectively. 
The lowest number of microplastics was found in 
Donax sp. (8) from site 4. All bivalve mollusc species 
have samples that have zero microplastics found after 
digestion. Comparison of mean values of microplastic 

particles per clam (Fig.  4C) reveals that the high-
est mean value was recorded in K. hiantina (5.89 ± 
4.23), followed by M. meretrix (4.16 ± 2.86) and, 
lastly, Donax sp. (2.41 ± 1.47). Considering all the 
clam species (N = 360), the grand mean of particles 
per clam is 4.15 ± 3.37, with filament/fiber being the 
most abundant shape. The abundance of microplas-
tic particles observed in clams was statistically sig-
nificant within and among sampling sites and mollusc 
species. Hence, we can assume that the abundance 
of microplastic particles among bivalve mollusc spe-
cies varies, which could be attributed to contrasting 

Fig. 3   Abundance of 
microplastic particles in 
sediments (A) and wild 
clams (B) from Panguil 
Bay, Southern Philippines. 
The number of microplas-
tic particles from each 
sampling site (N = 30 
per species) was visu-
ally determined. (C) The 
number of microplastics per 
clam ranged from 0 to 21 
particles (Table S1)
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feeding mechanisms and rates (ability to reject inedi-
ble particles) among species (Van Cauwenberghe and 
Janssen, 2014).

Out of the 2258 visually identified particles from 
the four sediment sampling sites, 56 particles (14 par-
ticles × 4 sites) were randomly selected and further 
validated via FTIR spectroscopy (Fig. 5A). The iden-
tified polymer types include acrylonitrile butadiene 
styrene (ABS), cellulose acetate (CA), polyethylene 
(PE), polyethylene terephthalate (PET), polypropylene 
(PP), polystyrene (PS), and polyvinyl chloride (PVC) 
(Fig.  S2). The top three polymers are PP (23), PVC 
(12), and PE (10). A total of 175 particles were suc-
cessfully identified as plastic polymers from the three 

wild clam species (Fig.  5B). The number of FTIR-
confirmed polymers is greater in the wild clams than 
in sediments. These polymers are azlon (AZ), ethyl-
ene vinyl acetate (EVA), nylon-6 (PA6), polyethylene 
(PE), polyethylene terephthalate (PET), polypropylene 
(PP), phenoxy resin (PR), polystyrene (PS), polyvinyl 
chloride (PVC), and rayon (RY). The top three poly-
mers found in clams are RY (62), PET (37), and PP 
(21), while PS (1), and PVC (1) are present in the 
smallest amount. Of the 175 samples, 22 were unclas-
sified polymers due to poor correlation values.

Chemical composition is the most basic criterion 
for defining microplastic pollution (Zhang et  al., 
2020). Plastics are synthetic polymers made from 

Fig. 4   Types of micro-
plastic polymer found in 
sediments (A) and wild 
clams (B) of Panguil Bay, 
Southern Philippines. 
Polymer types: acryloni-
trile butadiene styrene 
(ABS), cellulose acetate 
(CA), polyethylene (PE), 
polyethylene terephthalate 
(PET), polypropylene (PP), 
polystyrene (PS), polyvi-
nyl chloride (PVC), azlon 
(AZ), ethylene vinyl acetate 
(EVA), nylon-6 (PA6), phe-
noxy resin (PR), polysty-
rene (PS), and rayon (RY). 
Unclassified particles have 
a correlation of < 0.7
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various compounds with different characteristics, 
and FTIR and Raman spectroscopy are the highly 
recommended equipment to identify them (Hidalgo-
Ruz et  al., 2012). Larger microplastic particles (> 
500 μm) can be analyzed by ATR-FTIR (Tagg et al., 
2015; Ivleva et al., 2017). For smaller particles, FTIR 
must be combined with an optical microscope, the 
so-called micro-FTIR technique (Imhof et  al. 2012; 
Zhang L. et al. 2020), which can analyze 10 μm sizes 
via reflection and transmission mode (Simon et  al., 
2018). In this study, background scans were done 
before analysis, and each spectrum was evaluated 
manually based on the peaks’ position. Samples with 
low correlation (< 0.6) were excluded from the inter-
pretation of the final results (Bucol et  al., 2020). In 
the present study, a total of 12 plastic polymers were 
identified via ATR-FTIR spectroscopy: ABS, AZ, 
CA, EVA, PA6, PR, PE, PET, PP, PS, PVC, and RY, 
half of which is included in the most common types 
of polymers found in the marine environment. These 
plastic polymers are commonly used in food packag-
ing and fishing activities. The most common plastic 
polymers in the marine environment are PE, PP, PS, 
PVC, PA, PVA, and PET (Hidalgo-Ruz et al., 2012; 
Avio et al., 2016; Lusher et al., 2017a).

Comparisons of microplastics have been difficult 
and limited to a few studies due to the difference in 
units used in other reports, a drawback observed in 
current microplastic research (Wright et  al., 2013; 
Van Cauwenberghe et  al., 2015), as well as plas-
tics in general. Some units cannot be transformed 
between each other as they are measured in differ-
ent dimensions (Yu et  al., 2020). Additionally, there 
are no universally accepted methods for quantifying 

microplastic contamination since the widely used 
microscopy, photography, and spectroscopy may still 
result in unrealistic contamination estimates (Kroon 
et  al., 2018). In fact, not all microplastics were sent 
for FTIR analyses since some were too small in size 
for FTIR-ATR analysis. If not careful, the number 
identified and the number analyzed may have discrep-
ancy due to the particles being lost during the inspec-
tion, microscopic photography, and transferring of the 
microplastics to containers for spectroscopy. There is 
always an element of subjectivity and potential bias 
during visual identification. The effectiveness of vis-
ual identification is dependent on the size of the item 
being scrutinized and becomes more considerably dif-
ficult as the size of the item decreases. Microscopy 
techniques though, which were done in this study, can 
confirm the absence or presence of cellular structures 
and improve visual identification skills (Crawford and 
Quinn, 2017).

b.	 Laboratory feeding experiment

All individuals (100%) of Donax sp., Meretrix 
meretrix, and Katelysia hiantina had ingested low-
density polyethylene (LDPE) microplastics after 7 
days of exposure period (Table 1). The highest num-
ber of LDPE microplastics ingested by Donax sp., 
M. meretrix, and K. hiantina after 7 days were 6, 
14, and 13, respectively. The highest total number 
of LDPE microplastics was ingested by K. hiantina 
(740) followed by M. meretrix (608), and the lowest 
in Donax sp. (316). The mean LDPE microplastic 
particle ingested by the three clam species was 4.62 
± 2.40 particles/clam/7days. A total of 1664 LDPE 

Fig. 5   Proportion of 
microplastics in terms of 
color in sediments (A) and 
wild clams (B) found in the 
habitat of the three bivalve 
mollusc species in Panguil 
Bay, Southern Philippines
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microplastic particles were ingested by 360 bivalve 
mollusc individuals. Meanwhile, the mean number 
of LDPE microplastic particles ingested by the three 
clam species was 4.62 ± 2.40 beads/clam/7days. The 
study revealed that Donax sp., Meretrix meretrix, and 
Katelysia hiantina could ingest 40–60-μm microplas-
tic particles. In the study of Van Cauwenberghe et al. 
(2015), the mussel Mytilus edulis can retain in their 
tissues particles ranging from 10 to 30 μm. It means 
that organisms will most likely ingest when micro-
plastic particles are readily available in their present 
environment, especially in high amounts. Results 
showed a significant difference within and among 
sampling sites and mollusc species exposed to LDPE 
microplastic particles for 7 days. Such difference rein-
forces our main finding on the differences in micro-
plastic accumulation among the three clam species, 
invoking a similar explanation of contrasting feeding 
behavior among bivalve filter-feeding species.

Other bivalve mollusc studies focus on the micro-
plastic accumulation, translocation, and effects on the 
organisms’ tissues (liver, gut, gills, and brain) by car-
rying out different biological analyses (e.g., Browne 
et al., 2008; von Moos et al., 2012; Avio et al., 2015; 
Sussarellu et  al., 2015; Van Cauwenberghe et  al., 
2015). Additionally, ingestion and egestion in marine 
organisms are important processes that can poten-
tially influence the cycling and transformation of 
secondary pollution by microplastics (Browne et al., 
2011). However, there is still limited knowledge on 

the relationship between plastic uptake and egestion 
up to date (Van Cauwenberghe and Janssen, 2014). 
In the study of Graham et al. (2019), it was reported 
that Pacific oysters showed an efficient egestion rate, 
egesting 84.6 ± 2% of the microplastic particles taken 
up, which is slightly higher compared to the 74.5% 
egestion rate post-depuration in a study conducted 
by Van Cauwenberghe and Janssen (2014), while 
only the 15.4 ± 2% of beads taken up were retained 
within the shell cavity. Ingestion and egestion rates of 
microplastics vary among bivalve mollusc species as 
both are influenced by particle selectivity (Ward et al. 
2019), food or particle abundance, and other environ-
mental conditions (Chae and An, 2020).

4 � Conclusion

The abundance, distribution, and characteristics of 
microplastic particles in the marine environment and 
the aquatic organisms’ ingestion capability are essen-
tial for evaluating microplastics’ potential effects and 
impacts on ecosystems. Sediment and clam sam-
ples obtained from the different sites of Panguil Bay, 
Southern Philippines, were positive for microplastics, 
predominantly black and blue colored filament/fiber 
and fragment particle type. Using ATR-FTIR spectros-
copy, 7 polymer types were identified in sediments—
ABS, CA, PE, PET, PP, PS, and PVC, whereas 10 
polymers were identified in clams—AZ, EVA, PA6, 

Table 1   Amount of 
low-density polyethylene 
(LDPE) microplastic 
particles ingested by 
the four clam species in 
laboratory experiment for a 
duration of 7 days

* The minimum and 
maximum values are 
the numbers of particles 
obtained in each clam 
sample

Mollusc Sampling site N Min Max Number of 
microplas-
tic

Sum Mean ± SD
(particles/clam/7days)

Donax sp. Baroy 30 2 5 89 316 2.63 ± 0.99
Cabgan 30 1 3 63
Kapatagan 30 1 4 77
Tangub 30 1 6 87

Meretrix meretrix Baroy 30 1 9 134 608 5.67 ± 2.37
Cabgan 30 2 7 139
Kapatagan 30 2 13 169
Tangub 30 3 14 166

Katelysia hiantina Baroy 30 4 9 170 740 6.17 ± 2.05
Cabgan 30 3 10 144
Kapatagan 30 4 8 182
Tangub 30 6 13 244

Total 360 1664 4.62 ± 2.40
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PE, PET, PP, PR, PS, PVC, and RY. These polymer 
materials came from  fishing nets, rope materials, and 
food and drink wrappers/packages. All clams exposed 
to low-density polyethylene (LDPE) microplastic par-
ticles were found to have ingested the microplastic. 
The highest number of LDPE microplastic particles 
ingested within 7 days of laboratory exposure is 14, 
while the lowest is 1. Further studies in microplastics, 
especially in the Philippines, are needed to establish 
standardized sampling, extraction, and identification 
techniques. Also, food-related effects from microplas-
tic ingestion are needed, especially for different food 
and microplastic exposure patterns. Bioaccumulation 
and biomagnification processes that might explain 
the pathways of microplastics in organisms’ bodies 
should be of priority. Future research on the ecologi-
cal and physiological impacts of microplastics should 
consider the physical characteristics of microplastics 
because they can significantly modulate how they are 
encountered and processed by biota.
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