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of these plants are fast-growing, thereby making them 
suitable for use in phytostabilization strategies. Fur-
thermore, they are all easy to grow and propagate and 
are generally self-sustaining. All six plants showed 
accumulation factors below 1, thus revealing them as 
pseudomethallophytes and excluders. However, L. his-
pidus and M. lupulina showed translocation capacity 
and are considered worthy of further study.

Keywords  Phytoremediation · Herbaceous plants · 
Soil pollution · Brownfield · Phytoavailability

Abbreviations   
PTEs�    Potentially Toxic Elements

1  Introduction

Recent decades have witnessed the closure of many 
industrial and mining activities. These brownfields 
pollute soil and (ground)water, causing environmen-
tal and health threats, as well as economic and social 
costs (Schädler et  al., 2011; Zanchi et  al., 2021). In 
particular, soil contamination by potentially toxic 
elements (PTEs) is common in these types of aban-
doned areas (Gallego et  al., 2015). Soil is the basis 
of agriculture and livestock, and the abandonment of 
these industrial activities can lead to bioaccumulation 
and biomagnification over time (Antonkiewicz et al., 
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2018; Fränzle et  al., 2007; Iqbal, 2016; Khan et  al., 
2014; Mani et al., 2016; Padúa et al., 2021).

Traditional physicochemical methods for soil reme-
diation (confinement, thermal desorption, soil wash-
ing, etc.) are often expensive and result in irreversible 
damage to the structure, biology, and fertility of the soil 
(Alkorta et  al., 2010). Phytomanagement approaches 
emerge as potential alternatives as plants and trees play 
key roles in the biogeochemical cycling of nutrients and 
pollutants and can therefore be considered ecosystem 
engineers (Jones et  al., 1994; Robinson et  al., 2009). 
In this context, phytoremediation is a low-cost alterna-
tive to the physico-chemical treatments referred above. 
Phytoremediation is based on the ability of some plants 
(tolerant plants) and the associated microorganisms, 
which can grow in the presence of PTEs levels that are 
toxic for non-adapted plants, to degrade, extract, hold, 
or immobilize PTEs from soils (Khan et al., 2004; Lee, 
2013; Leung et al., 2013; Souza et al., 2021; Wei et al., 
2021). Although not plant micronutrients, PTEs can be 
removed or immobilized by plants by various processes 
in function of their metabolic requirements. In this con-
text, phytostabilization is used to reduce the mobility of 
toxic elements from contaminated soil to the environ-
ment, whereas phytoextraction uses the plants’ ability 
to absorb and remove PTEs from the soil and take them 
up into shoots and leaves (Awa & Hadibarata., 2020; 
Oyuela et al., 2017).

Plant species vary in their capacity to accumulate  
or tolerate PTEs in their vegetative aerial structures  
(leaves and stems) and roots. This capacity is deter-
mined by the level of pollution present in the soil, the  
physiological features of the species, and their selec-
tivity for PTEs (Domínguez et  al., 2012; Kashin &  
Ubugunov, 2012; Kashin, 2014; Mandzhieva et  al.,  
2016; Tapia et al., 2020). In this regard, surveying the  
spontaneous vegetation growing in polluted sites is an  
efficient approach for identifying plants that may be  
useful both for phytostabilization and phytoextraction  
purposes (Bech et  al., 2002; Chapman et  al., 2019;  
Conesa et al., 2006; Freitas & Pacheco, 2004; Ginocchio  
& Baker, 2004; Liu et  al., 2014; Monaci et  al., 2020; 
Moreno-Jiménez et  al., 2009; Poschenrieder et  al.,  
2001; Pratas et al., 2005; Salt et al., 1995).

In fact, spontaneous vegetation is the result of 
strong environmental pressure for the selection of 
tolerance mechanisms that allow these plants to grow 
under the stressful conditions prevailing at polluted 
sites. Several studies have demonstrated that species 

and ecotypes from contaminated areas have either 
higher resistance—by more efficient exclusion—or 
higher accumulation and tolerance to potentially 
harmful concentrations of PTEs than those from 
non-contaminated sites (Macnair, 1993; Schat et  al., 
2000). Examples of plants with remarkable toler-
ance of polluted sites include Noccaea caerulescens 
(Mohtadi et  al., 2012), Silene vulgaris (Pradas del 
Real et  al., 2014), Silene armeria (Llugany et  al., 
2003), Thlaspi arvense (Martin et  al., 2012), Bis-
cutella laevigata (Pošćić et al., 2015), Agrostis canina 
(Bech et  al., 2012a, 2012b), and Agrostis capillaris 
(Teodoro et al., 2020). Within these families, herba-
ceous species are usually predominant.

Wherever habitat degradation has led to the pres-
ence of tolerant species, mature specimens of such 
species could find application in remediation strate-
gies. In fact, herbaceous species are fast-growing 
plants that produce a high biomass, thus making them 
suitable for use in phytoremediation. In addition, they 
are easy to grow and propagate and are, in general, 
self-sustaining, and many of them are perennial. Fur-
thermore, they have been reported to grow in areas 
with high levels of pollution (Cunningham & Ow, 
1996; Ligenfelter & Hartwig, 2007), although stud-
ies performed on multi-polluted industrial areas are 
scarce (Brunetti et al., 2009; Yoon et al., 2006).

Here, we addressed a paradigmatic brownfield site 
(mainly affected by As and Pb pollution) in which 
local ecotypes spontaneously colonized the soils.

This spontaneous flora could have the potential to 
be used for different phytoremediation strategies to 
rehabilitate these contaminated areas. The objectives 
of this study are as follows: (i) provide a systematic 
geobotanical description of the species growing in the 
highly polluted soils; and (ii) identification and evalu-
ation of the most suitable herbaceous species for phy-
tomanagement strategies.

2 � Material and Methods

2.1 � The Study Area

For decades, Nitrastur was one of the main fertilizer 
plants in Spain. It is located in La Felguera (Fig. 1), 
a district of Langreo (Asturias, 43° 17′ 41″ Lat. N, 
5° 41′ 0″ Long. W. 211  m. asl. Spain), 22  km from 
Oviedo (capital city). In a year, the precipitation is 
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1293 mm. The average annual temperature in Langreo 
is 11.3 °C. Langreo has been one of the most impor-
tant industrial areas in Spain since the nineteenth cen-
tury, hosting activities such as coal mining and coal-
fired power stations, steel and chemical industries 
(Martínez et al., 2014; Martínez-Santos et al., 2010).

Between 1950 and 1954, the Iberian Nitrogen 
Society, later renamed Asturian Nitrates (Nitrastur), 
built a fertilizer plant in a 20-ha plot. The foundations 
of the buildings were constructed on fillers mixed 
with natural soils resting on alluvial quaternary mate-
rials. The factory lost importance and reduced pro-
duction in the late 1980s and was finally abandoned 
in 1997.

Nitrastur is currently in an advanced state of abandon-
ment. It is one of the largest brownfields in Spain and 
was included in the national inventory of polluted areas 
in 2001. A detailed study (Gallego et al., 2016) revealed 
pyrite ashes, resulting from the roasting of pyrites for 
sulfuric acid production, as the main source of pollu-
tion. Now mixed with natural soil, this waste comprises 
mainly iron oxides and hydroxides and PTEs (Fedje 
et al., 2017). An assessment of site-specific human health 
risks has demonstrated the paradigmatic characteristics 
of this site and the need for remediation (Wcislo, 2016).

2.2 � Selection of Plants

Despite the high concentrations of PTEs in the study 
area, various pollution-tolerant plant species have 
grown spontaneously throughout. A comprehensive 
sampling and identification campaign of the species 
was performed in three subsequent steps:

–	 First, the diversity of species with a significant 
presence in the study site were identified and the 
predominant plants were characterized.

–	 Second, a subgroup of the first set of plants was 
sampled in a 1-ha area located approximately in 
the center of the site. This subarea was reported 
in previous studies (Gallego et  al., 2016; Wcislo 
et al., 2016) as the range showing the highest lev-
els of surface pollution, corresponding to high As 
and Pb concentrations (Fig. 2a).

–	 Within this second set of plants, plant population 
frequency was studied monthly for 1 year by the 

quadrat method (1  m × 1  m) at 12 sites located 
in this 1-ha area (Fig.  2b). The importance and 
predominance of each plant was categorized by 
means of a coating index (CoI), ranging from lev-
els 1 to 4 on the basis of the density, frequency, 
and surface covered by each species (Curtis, 1959; 
Finol, 1971; Matteucci & Colma, 1982; Mueller-
Dombois & Ellenberg, 1974). Level 1 was attrib-
uted to abundant individuals but weak coverage (1 
to 10% of the surface), level 2 to coverage between 
10 and 25%, level 3 to coverage between 25 and 
50%, and level 4 to coverage between 50% and 
almost full coverage.

2.3 � Plant Classification

The geobotanical description and identification of the 
species was carried out “in situ,” following the meth-
odology and traditional techniques used in Plant Tax-
onomy; when needed, some specimens were herbo-
rized. The nomenclature of the taxa used followed that 
adopted in Flora Ibérica (Castroviejo, 1986) or in Flora 
Europea (Tutin et al., 1964) and, failing that, it followed 
the criteria established in Fernández Prieto et al. (2014), 
except in the case of the botanical families of Grasses 
(Poaceae) and the Betula genus, for which the criteria 
proposed by Hubbard (1985) and Ashburner and Mc 
Allister (2013) were used, respectively. The plants were 
also classified by strata in vegetation-covered areas 
(Arboreal (> 7  m), arborescent (3–7), shrubby (1–3), 
sub-arbustive (0.5–1), herbaceous (< 0.5), and bryo-
phytes (mosses, lichens, and fungi)).

2.4 � Plant Sampling and Analyses

From the final selection of plants obtained, and based 
on the CoI described above (see results), three repli-
cates of each plant were taken and placed in plastic 
bags. Samples were sorted by hand to separate plant 
structures (leaves and root samples). These were then 
thoroughly washed with tap water several times fol-
lowed by distilled water, then cleaned using an ultra-
sonic bath to remove external contamination, and 
subsequently dried at room temperature for 2 weeks.

Samples were ground in a universal rotor and vari-
able speed Ultra Centrifugal Mill ZM 200 (Retsch) 
(from 6.000 to 20.000 rpm). The milled samples were 
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collected in stainless steel containers, homogenized, 
and screened to a size less of than 50 µm.

In order to determine the concentration of PTEs 
in the different plant organs, 0.2 g of powdered sam-
ples was digested with 8 ml of 50% nitric acid using 
a microwave at 800 W (Multiwave3000, Anton Paar) 
for 15 min. The solutions were diluted to 50 mL with 
ultrapure water and passed through 0.45-μm PTFE 
filters before analysis. The elements of interest were 
measured using an Inductive Coupled Plasma Mass 
Spectrometer (ICP-MS 7700, Agilent Technologies) 
and IDA (Isotopic Dilution Analysis); Standard Refer-
ence Material 1515 Apple leaves from NIST (National 
Institute of Standards and Technology) was used.

2.5 � Soil Sampling and Analyses

In the sampling stations of the 1-ha zone, composite soil 
samples (0 to 30 cm depth) were collected using a Dutch 
auger, with three replicates for each sampling point. 
Soils were homogenized and dried at room temperature, 
then sieved to 2 mm, and the fraction less than 2 mm 
crushed (400 rpm, RS100 Retsch mill) to approximately 
150  µm. Representative subsamples were leached by 
means of an “aqua regia” digestion (HCl + HNO3) in 
an Anton Paar 3000 microwave. The samples were then 
diluted and filtered. Elements were quantified by IDA-
ICP-MS as referred above. Reference materials ERM-
CC141 and ERM-CC018 were used.

To determine the distribution of PTEs in the dif-
ferent soil fractions, a simplified sequential extraction 
procedure based on the first two fractions (exchange-
able and carbonate-bound) of the Tessier method 
(Tessier et  al., 1979) was carried out. Both extracts 
were passed through 0.45-µm PTFE filters and diluted 
1:10 prior to analysis by ICPMS.

In addition, representative soil subsamples (before 
grinding) were analyzed to determine edaphic prop-
erties: soil texture (pipette method) was determined 
after particle dispersion with sodium hexametaphos-
phate and sodium carbonate (Gee & Bauder, 1996); 
pH was measured in a 1:2.5 suspension of soil and 
distilled water with a glass electrode (Thomas, 1996), 
and electrical conductivity (EC) was measured in a 
1:5 suspension of soil and water using a conductivity 
meter; organic matter was measured by weight loss 
at 450  °C (loss on ignition method, LOI) (Schulte 
& Hopkins, 1996); total N was determined by Kjel-
dahl digestion (Klute, 1996), whereas available P was 

determined using the Mehlich 3 reagent (Mehlich, 
1995); finally, exchangeable cations (Ca2+, K+, 
Mg2+, and Na+) were extracted with 1 M NH4Cl, and 
exchangeable Al3+ was extracted with 1 M KCl and 
both were then analyzed by atomic absorption spec-
trophotometry (AAS) in an AA200 Perkin Elmer sys-
tem (Pansu & Gautheyrou, 2006).

2.6 � Accumulation of Metal(loid)s in Plant Tissues

To study the behavior of the PTEs in the soil–plant sys-
tem, various factors were examined (Mesa et al., 2017). 
The bioconcentration factor (BCF) was calculated as 
the ratio of PTE concentration in roots to that in soil 
(BCF = Croot/Csoil), with BCF values > 1 indicating the 
accumulation of a particular PTE in roots. The mobility 
ratio (MR) was calculated as the ratio of PTE in vegeta-
tive aerial structures (leaves and stems) to those in soil 
(MR = Cabove ground/Csoil), with MR values > 1 indicat-
ing enrichment of the plant structures (accumulators). 
Finally, the translocation factor (TF) was calculated as the 
ratio of PTE concentration in vegetative aerial structures 
(leaves and stems) to those in roots (TF = Cabove ground/
Croot), with TF values > 1 indicating that the plants trans-
locate metals effectively from roots to aerial parts. Plants 
with a BCF and TF above 1 are appropriate for phytoex-
traction purposes, whereas when only the BCF exceeds 1 
they show phytostabilization potential (Nazli et al., 2020; 
Pandey et al., 2021; Wahsha et al., 2012).

3 � Results and Discussion

3.1 � Geobotanical Study

In the first phase of this study, covering the total 
20  ha of the site, 60 taxa belonging to 23 botanical 
families were identified. Of these taxa, 26 were peren-
nial herbaceous plants (43.3%), 24 annual herbaceous 
plants (40%), 5 shrubs and bushes (8.3%), 4 trees 
(6.7%), and 1 lichen (1.7%) (Supplementary Material, 
Table SM1). These results revealed the predominance 
of herbaceous species.

The second phase of the study was performed in 
the 1-ha zone with the highest soil PTE concentrations 
(the species identified in this specific area are shown in 
Table  1). Interestingly, plants showed one of the three 
following distribution patterns: (i) areas with disperse 
vegetation at a low soil-cover rate (plants grew isolated 
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from each other); (ii) areas with high density patches of 
“fertility islands,” comprising individuals of a range of 
plant species; and (iii) average levels of soil-cover rate 
(Fig. 3). For all of these plants, the quadrat methodology 
and the subsequent calculation of the CoI revealed six 
herbaceous plants as the most interesting for the purpose 
of this study (CoI = 4, as shown in Table 1).

3.2 � Edaphological Characterization

The results of the analyses of the soil properties corre-
spond with the range of values characteristic of humid 
temperate climate zones (Trueba et al., 1998). The edaph-
ological characteristics of the soil showed notable hetero-
geneity (Table 2). Soil ranged from extremely acidic to 

Table 1   Distribution of 
vegetation taking into 
account coating index 
(abundance, coverage, 
density, and frequency)

Identified species Botanical family Coating 
index 
(CoI)

Dysphania botrys (L.) Mosyakin & Clemants Amaranthaceae 4
Lotus corniculatus L Fabaceae 4
Lotus hispidus Desf. ex DC Fabaceae 4
Medicago lupulina L Fabaceae 4
Trifolium repens L Fabaceae 4
Plantago lanceolata L Plantaginaceae 4
Daucus carota L Apiaceae 3
Hirschfeldia incana (L.) Lagr.-Foss Brassicaceae 3
Mentha suaveolens Ehrh Lamiaceae 3
Pastinaca sativa L. subsp. sylvestris (Mill.) Rouy y 

Camus
Apiaceae 3

Sonchus asper (L.) Hill Asteraceae 3
Sonchus oleraceus L Asteraceae 3
Agrostis capillaris L Poaceae 2
Betula celtiberica Rothm. & Vasc Betulaceae 2
Cirsium arvense (L.) Scop Asteraceae 2
Conyza canadensis (L.) Cronquist Asteraceae 2
Dactylis glomerata L Poaceae 2
Holcus lanatus L Poaceae 2
Hypericum pulchrum L Hypericaceae 2
Hypochaeris glabra L Asteraceae 2
Lolium perenne L Poaceae 2
Poa annua L Poaceae 2
Prunella vulgaris L Lamiaceae 2
Pteridium aquilinum (L.) Kuhn Dennstaedtiaceae 2
Rubus gr. fruticosus L Rosaceae 2
Stellaria media L Caryophyllaceae 2
Trifolium dubium Sibth Fabaceae 2
Trifolium pretense L Fabaceae 2
Verbena officinalis L Verbenaceae 2
Verbascum pulverulentum Vill Scrophulariaceae 2
Betula pubescens Ehrh Betulaceae 1
Blechnum spicant (L.) Roth Blechnaceae 1
Chenopodium polyspermum L Amaranthaceae 1
Rubus ulmifolius Schott Rosaceae 1
Verbascum virgatum Stokes Scrophulariaceae 1
Vulpia bromoides (L.) Gray Poaceae 1
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neutral, with an average value that was slightly acidic. 
Soils did not show salinity, and organic matter content 

was normal while total nitrogen content and the average 
values of C/N relations were also normal (Nicolardot 
et al., 2001). In general terms, soil showed an excess of 
calcium and deficiency of phosphorus, magnesium, and 
sodium, and normal values of potassium (Tomasic et al., 
2013). Exchangeable aluminum was not detected. On the 
basis of the particle size distribution data, samples were 
classified mostly as highly heterogeneous sandy loam 
soils with a high degree of compaction.

3.3 � PTEs in the plant/soil system

As shown in Table 3, as concentration in aerial parts 
of the plants ranged from 33 mg kg−1 to 303 mg kg−1 
(Lotus hispidus > Medicago lupulina > Plantago lan-
ceolata > Dysphania botrys > Trifolium repens > Lotus 
corniculatus), whereas the internal structure of the 
roots revealed significantly higher contents of this 
pollutant, ranging from 152 to 247  mg·kg−1. Similar 
results (Table 3) were obtained for Pb concentrations 
for various plant parts; i.e., the concentration of Pb 
in leaves varied between 105 and 719  mg·kg−1 and 
in roots between 582 and 1805  mg·kg−1. In general, 
despite the very high concentrations found for As and 
Pb, plant samples did not show any signs of toxicity.

The phytoremediation potential of the six species 
of interest was studied by analyzing the concentration 
of As and Pb in soils vs. the plant concentrations and 
the accumulation factors (Table 3).

All the plant species sampled can be classified as 
pseudometallophytes since BCF values were below 1 

Table 2   Soil parameters in the 1-ha study area

1 C.E, electrical conductivity; 2D.A, bulk density; 3O.M, 
organic matter; 4F.C, field capacity; 5C/N, carbon vs. nitrogen 
ratio; 6PM3, P by Mehlich method; 7C.E.C, cation exchange 
capacity (bases); 8,9Total As and Pb are 761 and 2817 mg kg−1 
as indicated in Fig. 2

Parameter Units Average Typical deviation

pH 6.46 ± 0.16 0.82
C.E1 dS m−1 0.01 ± 0.0001 0.01
Sand % 64.61 ± 2.91 15.13
Silt % 21.15 ± 2.81 14.60
Clay % 14.24 ± 1.06 5.52
D.A2 g cm−3 1.52 ± 0.013 0.07
O.M3 % 11.00 ± 0.41 2.34
F.C4 % 9.36 ± 0.5 2.13
C (SOC) % 5.43 ± 0.23 1.24
N (TOTAL) % 0.43 ± 0.05 0.27
C/N5 18.36 ± 2.33 12.13
Fe g kg−1 9.00 ± 0.87 4.56
PM36 mg kg−1 3.82 ± 0.52 2.69
Ex Ca cmol+ kg−1 15.01 ± 0.85 4.44
Ex Mg cmol+ kg−1 0.56 ± 0.01 0.08
Ex K cmol+ kg−1 0.57 ± 0.05 0.3
Ex Na cmol+ kg−1 1.85 ± 0.06 0.3
C.E.C7 cmol+ kg−1 17.99 ± 0.88 4.61
Available As8 % 4.03 ± 0.42 1.91
Available Pb9 % 11.01 ± 0.95 4.26

Table 3   Average soil content (3 samples per plant) and accumulation factors obtained for the six selected species

Species Element Soil concentrations (mg 
kg−1Distribution Center, 1–28. 
Retrieved July)

Aerial part 
concentrations
(mg kg−1)

Root con-
centrations
(mg kg−1)

BCF TF MR

Dysphania botrys As 1505.4 81.9 191.1 0.13 0.43 0.05
Pb 3738.1 354.8 726.8 0.19 0.49 0.09

Lotus corniculatus As 811.7 32.7 198.8 0.25 0.16 0.04
Pb 2713.5 105.2 904.2 0.33 0.12 0.04

Lotus hispidus As 8552.7 303.1 209.5 0.02 1.45 0.04
Pb 12,239.5 479.86 581.7 0.05 0.82 0.04

Medicago lupulina As 4600.5 226.1 151.5 0.03 1.49 0.05
Pb 11,973.2 719.2 793.7 0.07 0.91 0.06

Plantago lanceolata As 1098 95.3 246.8 0.22 0.39 0.09
Pb 7071.4 419 1804.8 0.26 0.23 0.06

Trifolium repens As 634.4 73.4 195.1 0.31 0.38 0.12
Pb 2776.2 270.4 878.6 0.32 0.31 0.10
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in all cases, probably conditioned by the low bioavail-
ability of the PTEs (Fedje et  al., 2016; Mesa et  al., 
2017), and none of them registered an accumulation 

factor exceeding the limits established for hyperac-
cumulative plants (1000  mg  kg−1 for As) (Kabata-
Pendias, 2011; Sun et al., 2008). These plants showed 

Fig. 1   Location of study 
area (top) and aerial view 
(bottom) of the site (red 
contour)
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some differences with respect to the exclusion strat-
egy. In this regard, Lotus corniculatus and Lotus his-
pidus were those with the highest ability to reduce 
As and Pb transport (very low MR) from roots to the 
aerial parts.

Therefore, and consistent with the findings of other 
studies, PTE accumulation occurred more frequently 
in roots than in the aerial parts of herbaceous plants 
under study (Bidar et al., 2007; Marques et al., 2009). 
However, Lotus hispidus and Medicago lupulina, 
classified as As and Pb excluders on the basis of a 
very low BCF ratio (Table  3), showed a TF higher 
than 1 for As and very close to 1 for Pb. The concen-
trations of As in Lotus hispidus biomass were higher 
than in those of Medicago lupulina, in agreement 
with As concentrations in soils. However, according 
to the BCF and TF, both species showed similar abil-
ity with regard to As translocation and uptake. On the 
contrary, Pb concentration in Medicago lupulina was 
higher than in those of Lotus hispidus, regardless of 
the soil concentration of this element. Based on our 
observations, these two plants emerge as potentially 
useful as bioindicators of As and/or Pb pollution 
because of their ability to translocate these pollutants. 
Furthermore, they might show accumulation potential 

in their vegetative aerial structures (leaves and stems) 
in different conditions to those of the study site 
(higher PTE availability would be required).

Overall, the main interest of these herbaceous spe-
cies could be their application in phytostabilization 
techniques. The phytostabilization capacity of the 
herbaceous plants studied herein has been reported 
and discussed elsewhere and the results of those stud-
ies also support the conclusions of this work.

For instance, plant species belonging to the Legu-
minosae family, such as Medicago lupulina, Lotus 
corniculatus, and Trifolium repens, were reported 
to make major contribution to phytostabilization 
(Amer et  al., 2013; Bert et  al., 2000; Bidar et  al., 
2007), whereas only Medicago lupulina showed 
some Pb translocation ability to aerial parts (Amer 
et  al., 2013). The tolerance of Trifolium repens to 
contaminated sites should also be noted, with the 
roots being the main organ of Pb accumulation 
(Bidar et al., 2007; Oleńska et al., 2020). In another 
study, Lotus corniculatus showed the bioaccumula-
tion of PTEs not exceeding current legal limits for 
Cd, Cr, and Pb. On the basis of this finding, this 
plant was proposed for use in the phytostabilization 
of a soil contaminated with organic and inorganic 

Fi.2   a Location of the 1-ha zone in which the second set of 
plants were sampled within the whole study site. The soil 
of this zone showed an average of 761  mg  kg−1 of As and 
2817 mg kg−1 of Pb, well-above of the soil screening levels for 

industrial uses in the region of Asturias (200 and 800 mg kg−1 
respectively). b Location of the sampling stations for the quad-
rat method.
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pollutants (Obeidy et al., 2016; Souto et al., 2015). 
Regarding Lotus hispidus, to the best of our knowl-
edge, no specific studies related to its potential for 
phytoremediation have been conducted.

The capacity of Dysphania botrys to accumulate 
PTEs was studied (Cheraghi et  al., 2011), obtaining 
low values of the coefficient of bioaccumulation for 
Fe, Zn, and Cu, thereby pointing to its ineffective-
ness in the phytoextraction of PTEs, with the only 

exception of Mn. Nouri et  al. (2009) also indicated 
that the root tissues of this plant accumulate higher 
concentrations of metals than shoots.

Plantago lanceolata has provided good model 
plant for toxicity bioassays (Dimitrova & Yurukova, 
2005; Laffont-Schwob et  al., 2020; Turnau et  al., 
2005). This plant occurs in diverse habitats and is 
resistant to a wide range of stress factors, includ-
ing high levels of As (Baroni et al., 2000; Meharg & 

Fig. 3   (Center) “Nitrastur” 
subarea with the highest 
levels of surface pollution. 
(Top) Quadrats established 
in areas with low plant 
coverage (a), areas with 
medium coverage (b), and 
areas with high coverage 
(c). (Bottom) Illustrative 
images of the herbaceous 
plants with the highest 
CoI: (1) Sticky goosefoot, 
Dysphania botrys (L.) 
Mosyakin & Clemants 
(Dysphaniabotrys L.), (2) 
Bird’s foot trefoil (Lotus 
corniculatus L.), (3) Hairy 
bird’s foot trefoil (Lotus 
hispidus Desf. ex DC.), (4) 
Ribwort plantain (Plantago 
lanceolata L.), (5) White 
clover (Trifolium repens L.), 
(6) Black medick (Med-
icago lupulina L.)
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Hartley-Whitaker, 2002; Pollard, 1980; Schwanitz & 
Hahn, 1954; Wu & Antonovics, 1976). Mycorrhizal 
colonization of this plant was proposed as a useful 
tool for addressing soil quality and effectiveness of 
restoration processes (Orlowska et  al., 2002; Turnau 
et al., 2005).

Trifolium repens is able to reduce the mobility and 
the availability of contaminants through their fixation 
in roots (Bidar et al., 2007; Lambrechts et al., 2014). 
PTE pollution appears to have dramatic effects on the 
physiology of this specie (Bidar et  al., 2008). More 
recently, Lopareva-Pòhu et  al. (2011) studied the 
influence of different amendments on the mobility 
and phytoavailability of the metals, as well as oxida-
tive damage in Trifolium repens.

4 � Conclusions

The study of a paradigmatic brownfield affected by 
high concentrations of PTEs (especially As and Pb) 
revealed the presence of a diverse flora tolerant to the 
PTEs present. The site was active from the 1950s until 
its abandonment more than 20 years ago, thus explain-
ing the presence of rich spontaneous vegetation.

Notably, herbaceous species were predominant in 
the most polluted area of the site, as demonstrated in 
a 1-year study of plant coverage. The most predomi-
nant herbaceous species identified (Lotus hispidus, 
Medicago lupulina, Plantago lanceolata, Dysphania 
botrys, Trifolium repens, and Lotus corniculatus) pre-
sented a methallophyte behavior consistent with their 
potential use for phytostabilization.

According to the results, and regarding site reme-
diation, future studies should focus on the application 
of phytostabilization as a first option. However, some 
of the species identified (Lotus hispidus and Med-
icago lupulina) are also of particular interest because 
of their ability to translocate As and Pb. This capacity 
indicates that they could potentially also be used as 
bioindicators. Furthermore, they might even serve as 
phytoextractors accumulators in different conditions 
(higher availability of the PTEs in soil) to those of the 
study site.
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