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Abstract Water scarcity is one of the major problems in
the world and millions of people have no access to fresh-
water. Untreated wastewater is widely used for agriculture
inmany countries. This is one of the world-leading serious
environmental and public health concerns. Instead of using
untreated wastewater, treated wastewater has been found
more applicable and ecofriendly option. Moreover, envi-
ronmental toxicity due to solid waste exposures is also one
of the leading health concerns. Therefore, intending to
combat the problems associated with the use of untreated
wastewater, we propose in this review a multidisciplinary
approach to handle wastewater as a potential resource for

use in agriculture. We propose a model showing the
efficient methods for wastewater treatment and the utiliza-
tion of solid wastes in fertilizers. The study also points out
the associated health concern for farmers, who areworking
in wastewater-irrigated fields along with the harmful ef-
fects of untreated wastewater. The consumption of crop
irrigated by wastewater has leading health implications
also discussed in this review paper. This review further
reveals that our current understanding of the wastewater
treatment and use in agriculture with addressing advance-
ments in treatment methods has great future possibilities.
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1 Introduction

Rapidly depleting and elevating the level of freshwater
demand, though wastewater reclamation or reuse is one
of the most important necessities of the current scenario.
Total water consumption worldwide for agriculture ac-
counts 92% (Clemmens et al., 2008; Hoekstra &
Mekonnen, 2012; Tanji & Kielen, 2002). Out of which
about 70% of freshwater is used for irrigation (WRI,
2020), which comes from the rivers and underground
water sources (Pedrero et al., 2010). The statistics shows
serious concern for the countries facing water crisis.
Shen et al. (2014) reported that 40% of the global
population is situated in heavy water–stressed basins,
which represents the water crisis for irrigation. There-
fore, wastewater reuse in agriculture is an ideal resource
to replace freshwater use in agriculture (Contreras et al.,
2017). Treated wastewater is generally applied for non-
potable purposes, like agriculture, land, irrigation,
groundwater recharge, golf course irrigation, vehicle
washing, toilet flushes, firefighting, and building con-
struction activities. It can also be used for cooling pur-
poses in thermal power plants (Katsoyiannis et al., 2017;
Mohsen, 2004; Smith, 1995; Yang et al., 2017). At
global level, treated wastewater irrigation supports agri-
cultural yield and the livelihoods of millions of small-
holder farmers (Sato et al., 2013). Global reuse of treat-
ed wastewater for agricultural purposes shows wide
variability ranging from 1.5 to 6.6% (Sato et al., 2013;
Ungureanu et al., 2018). More than 10% of the global
population consumes agriculture-based products, which
are cultivated by wastewater irrigation (WHO, 2006).
Treated wastewater reuse has experienced very rapid
growth and the volumes have been increased ~10 to
29% per year in Europe, the USA, China, and up to
41% in Australia (Aziz & Farissi, 2014). China stands
out as the leading country in Asia for the reuse of
wastewater with an estimated 1.3 M ha area including
Vietnam, India, and Pakistan (Zhang & Shen, 2017).
Presently, it has been estimated that, only 37.6% of the
urban wastewater in India is getting treated (Singh et al.,
2019). By utilizing 90% of reclaimed water, Israel is the
largest user of treated wastewater for agriculture land
irrigation (Angelakis & Snyder, 2015). The detail

information related to the utilization of freshwater and
treated wastewater is compiled in Table 1.

Many low-income countries in Africa, Asia, and
Latin America use untreated wastewater as a source of
irrigation (Jiménez & Asano, 2008). On the other hand,
middle-income countries, such as Tunisia, Jordan, and
Saudi Arabia, use treated wastewater for irrigation (Al-
Nakshabandi et al., 1997; Balkhair, 2016a; Balkhair,
2016b; Qadir et al., 2010; Sato et al., 2013).

Domestic water and treated wastewater contains var-
ious type of nutrients such as phosphorus, nitrogen,
potassium, and sulfur, but the major amount of nitrogen
and phosphorous available in wastewater can be easily
accumulated by the plants, that’s why it is widely used
for the irrigation (Drechsel et al., 2010; Duncan, 2009;
Poustie et al., 2020; Sengupta et al., 2015). The rich
availability of nutrients in reclaimed wastewater reduces
the use of fertilizers, increases crop productivity, im-
proves soil fertility, and at the same time, it may also
decrease the cost of crop production (Chen et al., 2013a;
Jeong et al., 2016). The data of high nutritional values in
treated wastewater is shown in Fig. 1.

Wastewater reuse for crop irrigation showed several
health concerns (Ungureanu et al., 2020). Irrigation with
the industrial wastewater either directly or mixing with
domestic water showed higher risk (Chen et al., 2013).
Risk factors are higher due to heavy metal and pathogens
contamination because heavy metals are non-
biodegradable and have a long biological half-life
(Chaoua et al., 2019; WHO, 2006). It contains several
toxic elements, i.e., Cu, Cr, Mn, Fe, Pb, Zn, and Ni
(Mahfooz et al., 2020). These heavy metals accumulate
in topsoil (at a depth of 20 cm) and sourcing through
plant roots; they enter the human and animal body
through leafy vegetables consumption and inhalation of
contaminated soils (Mahmood et al., 2014). Therefore,
health risk assessment of such wastewater irrigation is
important especially in adults (Mehmood et al., 2019;
Njuguna et al., 2019; Xiao et al., 2017). For this, an
advanced wastewater treatment method should be ap-
plied before release of wastewater in the river, agriculture
land, and soils. Therefore, this review also proposed an
advance wastewater treatment model, which has been
tasted partially at laboratory scale by Kesari and Behari
(2008), Kesari et al. (2011a, b), and Kumar et al. (2010).

For a decade, reuse of wastewater has also become
one of the global health concerns linking to public
health and the environment (Dang et al., 2019; Narain
et al., 2020). The World Health Organization (WHO)
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drafted guidelines in 1973 to protect the public health by
facilitating the conditions for the use of wastewater and
excreta in agriculture and aquaculture (WHO, 1973).
Later in 2005, the initial guidelines were drafted in the
absence of epidemiological studies with minimal risk
approach (Carr, 2005). Although, Adegoke et al. (2018)
reviewed the epidemiological shreds of evidence and
health risks associated with reuse of wastewater for
irrigation. Wastewater or graywater reuse has adverse
health risks associated with microbial hazards (i.e.,

infectious pathogens) and chemicals or pharmaceuticals
exposures (Adegoke et al., 2016; Adegoke et al., 2017;
Busgang et al., 2018; Marcussen et al., 2007; Panthi
et al., 2019). Researchers have reported that the expo-
sure to wastewater may cause infectious (helminth in-
fection) diseases, which are linked to anemia and im-
paired physical and cognitive development (Amoah
et al., 2018; Bos et al., 2010; Pham-Duc et al., 2014;
WHO, 2006).

Table 1 Freshwater and treated wastewater utilization status in different countries

Country Water utilizing sectors Status of water reuse (major sectors
reusing water)

Reference

Europe Agriculture 44% Landscape irrigation 20% EEA CSI, 2018; GWI/PUB Water Reuse
Inventory, 2009Groundwater Recharge 2.2%

Recreational 6.8%

Industry and energy
production

40% Non-potable urban uses 8.3%

Indirect potable uses 2.3%

Agriculture irrigation 32%

Public water supply 16% Industrial 19.3%

Environmental Enhancement 8%

Other 1.5%

South
Africa

Agriculture 60% Landscape and sports field irrigation 9% Adewumia et al., 2010; CoCT, 2007
Domestic 27%

Industrial 3% Industry 48%
Power 4%

Mining 3% Agriculture 43%
Other 3%

USA Freshwater thermoelectric
plants

41% Agricultural irrigation 37% Kenny et al., 2009; SWRCB, 2011

Agricultural irrigation 37% Geothermal energy 2%

Industries 6% Golf course irrigation 7%

Domestic 14% Landscape irrigation 17%

Livestock and aquaculture 3% Groundwater recharge 12%

Seawater intrusion barrier 7%

Recreational impoundment 4%

Wetlands, wildlife habitat 4%

Industrial and commercial 8%

Other 2%

India Agriculture 87% Agricultural irrigation 78% Jindal & Kamat, 2011
Industrial 7% Industrial use 12%

Domestic 4% Thermal power plant 4%

Energy 2% Groundwater recharge and artificial
lakes

6%

Greece Irrigation 83 Agricultural irrigation 58.38 Frontistis et al., 2011; Tsagarakis et al., 2001
Animal husbandry 1.3 Irrigation of forested land and

firefighting
17.7

Industry 2.2 Landscape irrigation 23.92
Public use (potable) 13

Other 1.2
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Owing to an increasing population and a growing
imbalance in the demand and supply of water, the use of
wastewater has been expected to increase in the coming
years (World Bank, 2010). The use of treated wastewa-
ter in developed nations follows strict rules and regula-
tions. However, the direct use of untreated wastewater
without any sound regulatory policies is evident in
developing nations, which leads to serious environmen-
tal and public health concerns (Dickin et al., 2016).
Because of these issues, we present in this review, a
brief discussion on the risk associated with the untreated
wastewater exposures and advanced methods for its
treatment, reuse possibilities of the treated wastewater
in agriculture.

2 Environmental Toxicity of Untreated Wastewater

Treated wastewater carries larger applicability such as
irrigation, groundwater recharge, toilet flushing, and
firefighting. Municipal wastewater treatment plants

(WWTPs) are the major collection point for the different
toxic elements, pathogenic microorganisms, and heavy
metals. It collects wastewater from divergent sources
like household sewage, industrial, clinical or hospital
wastewater, and urban runoff (Soni et al., 2020).
Alghobar et al. (2014) reported that grass and crops
irrigated with sewage and treated wastewater are rich
in heavy metals in comparison with groundwater (GW)
irrigation. Although, heavy metals classified as toxic
elements and listed as cadmium, lead, mercury, copper,
and iron. An exceeding dose or exposures of these
heavy metals could be hazardous for health (Duan
et al., 2017) and ecological risks (Tytła, 2019). The
major sources of these heavymetals come from drinking
water. This might be due to the release of wastewater
into river or through soil contamination reaches to
ground water. Table 2 presenting the permissible limits
of heavy metals presented in drinking water and its
impact on human health after an exceeding the amount
in drinking water, along with the route of exposure of
heavy metals to human body.

Fig. 1 Nutrient concentrations
(mg/L) of freshwater/wastewater
(Yadav et al., 2002)
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Direct release in river or reuse of wastewater for
irrigation purposes may create short-term implications
like heavy metal and microbial contamination and path-
ogenic interaction in soil and crops. It has also long-term
influence like soil salinity, which grows with regular use
of untreated wastewater (Smith, 1995). Improper use of
wastewater for irrigation makes it unsafe and

environment threatening. Irrigation with several differ-
ent types of wastewater, i.e., industrial effluents, munic-
ipal and agricultural wastewaters, and sewage liquid
sludge transfers the heavy metals to the soil, which leads
to accumulation in crops due to improper practices. This
has been identified as a significant route of heavy metals
into aquatic resources (Agoro et al., 2020). Hussain et al.

Table 2 Total permissible limits of heavy metals in drinking water and diseases associated with the surplus amount

Heavy
metals
polluting
the water
quality

Permissible
limits in
drinking water
according to
WHO (mg/L)

Permissible
limits in
effluent water
according to
WHO (mg/L)

Diseases associated with the
excess amount

Exposure routes References

Arsenic 0.01 5.0 Skin, lung, bladder, kidney
cancer, skin manifestations,
gastrointestinal disorders,
neurological effects, hormone
disruption and infertility,
psoriasis

Inhalation and ingestion Kinuthia et al. (2020)
Kumar et al. (2021);
Punshon et al. (2017);
Jyothi (2020)

Cadmium 0.005 0.003 Psychological disorders,
gastrointestinal disorders,
central nervous system
complications, immune system
deficiencies, DNA impairment,
cancer, Itai-itai disease,
osteoporosis, respiratory dis-
ease

Ingestion of contaminated
food and water and, to a
significant extent,
through inhalation and
cigarette smoking

Kinuthia et al. (2020);
Briffa et al. (2020);
Zhang and Reynolds
(2019); Genchi et al.
(2020); Jyothi (2020)

Chromium 0.1 0.05 Gastrointestinal ulceration,
nausea and vomiting, fever,
diarrhea, toxic nephritis, liver
damage, gingivitis, bronchitis,
pneumonia, lung cancer

Inhalation and ingestion Kinuthia et al. (2020);
Briffa et al. (2020);
Jyothi (2020)

Iron 1.0 2.0 Genetic disorder, hemorrhagic
necrosis

Ingestion Yuen and Becker (2020);
Jaishankar et al., 2014;
EPA 2002.

Lead 0.01 0.05 Hypertension, miscarriages,
premature and low births,
renal impairment, brain injury,
abdominal pain

Inhalation through the nose
and ingestion through
drinking water and soil

Wani et al. (2015); Goel
et al. (2005); Kinuthia
et al. (2020); Briffa
et al. (2020);
Jyothi (2020),

Mercury 0.006 0.001 Down’s syndrome, affects the
reproductive system, speech
defects, memory loss, tremors
and muscle incoordination,
deafness, vision complication

Inhalation, ingestion and
dermal contact

Kinuthia et al. (2020);
Briffa et al. (2020);
Jyothi and
Farook (2020).

Copper 2.0 0.25 Insomnia, anxiety, agitation,
restlessness, fatigue, jaundice,
dizziness

Ingestion Sharma et al. (2012);
Briffa et al. (2020);
WHO 2003 Taylor
et al. (2020).
(Agoro et al., 2020)

Nickel 0.07 0.02 Lung embolisms, asthma,
respiratory failure, heart
disorders, dizziness,
increased possibilities of cancer

Inhalation and ingestion Kinuthia et al. (2020);
Briffa et al. (2020);
Jyothi (2020)
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(2019) investigated the concentration of heavy metals
(except for Cd) was higher in the soil irrigated with
treated wastewater (large-scale sewage treatment plant)
than the normal ground water, also reported by
Khaskhoussy et al. (2015).

In other words, irrigation with wastewater mitigates
the quality of crops and enhances health risks. Excess
amount of copper causes anemia, liver and kidney dam-
age, vomiting, headache, and nausea in children (Bent &
Bohm, 1995; Madsen et al., 1990; Salem et al., 2000). A
higher concentration of arsenic may lead to bone and
kidney cancer (Jarup, 2003) and results in osteopenia or
osteoporosis (Puzas et al., 2004). Cadmium gives rise to
musculoskeletal diseases (Fukushima et al., 1970),
whereas mercury directly affects the nervous system
(Azevedo et al., 2014).

3 Spread of Antibiotic Resistance

Currently, antibiotics are highly used for human disease
treatment; however, uses in poultries, animal hus-
bandries, biochemical industries, and agriculture are
common practices these days. Extensive use and/or
misuse of antibiotics have given rise to multi-resistant
bacteria, which carry multiple resistance genes (Icgen &
Yilmaz, 2014; Lv et al., 2015; Tripathi & Tripathi,
2017; Xu et al., 2017). These multidrug-resistant bacte-
ria discharged through the sewage network and get
collected into the wastewater treatment plants. There-
fore, it can be inferred that the WWTPs serve as the
hotspot of antibiotic-resistant bacteria (ARB) and anti-
biotic resistance genes (ARGs). Though, these
antibiotic-resistant bacteria can be disseminated to the
different bacterial species through the mobile genetic
elements and horizontal gene transfer (Gupta et al.,
2018). Previous studies indicated that certain pathogens
might survive in wastewater, even during and after the
treatment processes, including methicillin-resistant
Staphylococcus aureus (MRSA) and vancomycin-
resistant enterococci (VRE) (Börjesson et al., 2009;
Caplin et al., 2008). The use of treated wastewater in
irrigation provides favorable conditions for the growth
and persistence of total coliforms and fecal coliforms
(Akponikpe et al., 2011; Sacks & Bernstein, 2011).
Furthermore, few studies have also reported the pres-
ence of various bacterial pathogens, such as Clostridi-
um, Salmonella, Streptococci, Viruses, Protozoa, and
Helminths in crops irrigated with treated wastewater

(Carey et al., 2004; Mañas et al., 2009; Samie et al.,
2009). Goldstein (2013) investigated the survival of
ARB in secondary treated wastewater and proved that
it causes serious health risks to the individuals, who are
exposed to reclaimed water. The U.S. Centers for Dis-
ease Control and Prevention (CDC) and the World
Health Organization (WHO) have already declared the
ARBs as the imminent hazard to human health. Accord-
ing to the list published by WHO, regarding the devel-
opment of new antimicrobial agents, the ESKAPE (En-
terococcus faecium, S. aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) pathogens were designated
to be “priority status” as their occurrence in the food
chain is considered as the potential and major threat for
the human health (Tacconelli et al., 2018).

These ESKAPE pathogens have acquired the multi
drug resistance mechanisms against oxazolidinones,
lipopeptides, macrolides, fluoroquinolones, tetracy-
clines, β-lactams, β-lactam–β-lactamase inhibitor com-
binations, and even those antibiotics that are considered
as the last line of defense, including carbapenems and
glycopeptides (Giddins et al., 2017; Herc et al., 2017;
Iguchi et al., 2016; Naylor et al., 2018; Zaman et al.,
2017), by the means of genetic mutation and mobile
genetic elements. These cluster of ESKAPE pathogens
are mainly responsible for lethal nosocomial infections
(Founou et al., 2017; Santajit & Indrawattana, 2016).

Due to the wide application of antibiotics in animal
husbandry and inefficient capability of wastewater treat-
ment plants, the multidrug-resistant bacteria such as
tetracyclines, sulfonamides, β-lactam, aminoglycoside,
colistin, and vancomycin in major are disseminated in
the receiving water bodies, which ultimately results in
the accumulation of ARGs in the irrigated crops (He
et al., 2020).

4 Toxic Contaminations in Wastewater Impacting
Human Health

The release of untreated wastewater into the river may
pose serious health implications (König et al., 2017;
Odigie, 2014; Westcot, 1997). It has been already
discussed about the household and municipal sewage
which contains a major amount of organic materials and
pathogenic microorganisms and these infectious micro-
organisms are capable of spreading various diseases like
typhoid, dysentery, diarrhea, vomiting, and
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malabsorption (Jia & Zhang, 2020; Numberger et al.,
2019; Soni et al., 2020). Additionally, pharmaceutical
industries also play a key role in the regulation and
discharge of biologically toxic agents. The untreated
wastewater also contains a group of contaminants,
which are toxic to humans. These toxic contaminations
have been classified into two major groups: (i) chemical
contamination and (ii) microbial contamination.

4.1 Chemical Contamination

Mostly, various types of chemical compounds released
from industries, tanneries, workshops, irrigated lands,
and household wastewaters are responsible for several
diseases. These contaminants can be organic materials,
hydrocarbons, volatile compounds, pesticides, and
heavy metals. Exposure to such contaminants may
cause infectious diseases like chronic dermatoses and
skin cancer, lung infection, and eye irritation. Most of
them are non-biodegradable and intractable. Therefore,
they can persist in the water bodies for a very long
period and could be easily accumulated in our food
chain system. Several pharmaceutical personal care
products (PPCPs) and surfactants are available that
may contain toxic compounds like nonylphenol, es-
trone, estradiol, and ethinylestradiol. These compounds
are endocrine-disrupting chemicals (Bolong et al.,
2009), and the existence of these compounds in the
human body even in the trace amounts can be highly
hazardous. Also, the occurrence of perfluorinated com-
pounds (PFCs) in wastewater, which is toxic in nature,
has been significantly reported worldwide (Templeton
et al., 2009). Furthermore, PFCs cause severe health
menaces like pre-eclampsia, birth defects, reduced hu-
man fertility (Webster, 2010), immunotoxicity (Dewitt
et al., 2012), neurotoxicity (Lee & Viberg, 2013), and
carcinogenesis (Bonefeld-Jorgensen et al., 2011).

4.2 Microbial Contamination

Researchers have reported serious health risks associat-
ed with the microbial contaminants in untreated waste-
water. The diverse group of microorganisms causes
severe health implications like campylobacteriosis, di-
arrhea, encephalitis, typhoid, giardiasis, hepatitis A, po-
liomyelitis, salmonellosis, and gastroenteritis (ISDH,
2009; Okoh et al., 2010). Few bacterial species like
P. aeruginosa, Salmonella typhimurium, Vibrio
cholerae, G. intestinales, Legionella spp., E. coli,

Shigella sonnei have been reported for the spreading
of waterborne diseases, and acute illness in human being
(Craun et al., 2006; Craun et al., 2010). These afore-
mentioned microorganisms may release in the environ-
ment from municipal sewage water network, animal
husbandries, or hospitals and enter the food chain via
public water supply systems.

5 Wastewater Impact on Agriculture

The agriculture sector is well known for the largest user
of water, accounting for nearly 70% of global water
usage (Winpenny et al., 2010). The fact that an estimated
20 million hectares worldwide are irrigated with waste-
water suggests a major source for irrigation (Ecosse,
2001). However, maximum wastewater that is used for
irrigation is untreated (Jiménez & Asano, 2008; Scott
et al., 2004). Mostly in developing countries, partially
treated or untreated wastewater is used for irrigation
purpose (Scott et al., 2009). Untreated wastewater often
contains a large range of chemical contaminants from
waste sites, chemical wastes from industrial discharges,
heavy metals, fertilizers, textile, leather, paper, sewage
waste, food processing waste, and pesticides. World
Health Organization (WHO) has warned significant
health implications due to the direct use of wastewater
for irrigation purposes (WHO, 2006). These contami-
nants pose health risks to communities (farmers, agricul-
tural workers, their families, and the consumers of
wastewater-irrigated crops) living in the proximity of
wastewater sources and areas irrigated with untreated
wastewater (Qadir et al., 2010).Wastewater also contains
a wide variety of organic compounds. Some of them are
toxic or cancer-causing and have harmful effects on an
embryo (Jarup, 2003; Shakir et al., 2016). The pathway
of untreated wastewater used in irrigation and associated
health effects are shown in Fig. 2.

Alternatively, in developing countries, due to the
limited availability of treatment facilities, untreated
wastewater is discharged into the existing waterbodies
(Qadir et al., 2010). The direct use of wastewater in
agriculture or irrigation obstructs the growth of natural
plants and grasses, which in turn causes the loss of
biodiversity. Shuval et al. (1985) reported one of the
earliest evidences connecting to agricultural wastewater
reuse with the occurrence of diseases. Application of
untreated wastewater in irrigation increases soil salinity,
land sealing followed by sodium accumulation, which
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results in soil erosion. Increased soil salinity and sodium
accumulation deteriorates the soil and decreases the soil
permeability, which inhibits the nutrients intake of crops
from the soil. These causes have been considered the
long-term impact of wastewater reuse in agriculture
(Halliwell et al., 2001). Moreover, wastewater contam-
inated soils are a major source of intestinal parasites
(helminths—nematodes and tapeworms) that are trans-
mitted through the fecal–oral route (Toze, 1997).

Already known, the helminth infections are linked to
blood deficiency and behavioral or cognitive develop-
ment (Bos et al., 2010). One of the major sources of
helminth infections around the world is the use of raw or
partially treated sewage effluent and sludge for the
irrigation of food crops (WHO, 1989). Wastewater-
irrigated crops contain heavy metal contamination,
which originates from mining, foundries, and metal-
based industries (Fazeli et al., 1998). Exposure to heavy

Fig. 2 Exposure pathway representing serious health concerns from wastewater-irrigated crops
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metals including arsenic, cadmium, lead, and mercury in
wastewater-irrigated crops is a cause for various health
problems. For example, the consumption of high
amounts of cadmium causes osteoporosis in humans
(Dickin et al., 2016). The uptake of heavy metals by
the rice crop irrigated with untreated effluent from a
paper mill has been reported to cause serious health
concerns (Fazeli et al., 1998). Irrigating rice paddies
with highly contaminated water containing heavy
metals leads to the outbreak of Itai-itai disease in Japan
(Jarup, 2003).

Owing to these widespread health risks, the WHO
published the third edition of its guidelines for the safe
use of wastewater in irrigating crops (WHO, 2006) and
made recommendations for threshold contaminant
levels in wastewater. The quality of wastewater for
agricultural reuse have been classified based on the
availability of nutrients, trace elements, microorgan-
isms, and chemicals contamination levels. The level of
contamination differs widely depending on the type of
source, household sewage, pharmaceutical, chemical,
paper, or textile industries effluents. The standard mea-
sures of water quality for irrigation are internationally
reported (CCREM, 1987; FAO, 1985; FEPA, 1991; US
EPA, 2004, 2012; WHO, 2006), where the recommend-
ed levels of trace elements, metals, COD, BOD, nitro-
gen, and phosphorus are set at certain limits. Re-
searchers reviewed the status of wastewater reuse for
agriculture, based on its standards and guidelines for
water quality (Angelakis et al., 1999; Brissaud, 2008;
Kalavrouziotis et al., 2015). Based on these recommen-
dations and guidelines, it is evident that greater aware-
ness is required for the treatment of wastewater safely.

6 Wastewater Treatment Techniques

6.1 Primary Treatment

This initial step is designed to remove gross, suspended
and floating solids from raw wastewater. It includes
screening to trap solid objects and sedimentation by
gravity to remove suspended solids. This physical
solid/liquid separation is a mechanical process, although
chemicals can be used sometimes to accelerate the sed-
imentation process. This phase of the treatment reduces
the BOD of the incoming wastewater by 20–30% and
the total suspended solids by nearly 50–60%.

6.2 Secondary (Biological) Treatment

This stage helps eliminate the dissolved organic matter
that escapes primary treatment. Microbes consume the
organic matter as food, and converting it to
carbondioxide, water, and energy for their own growth.
Additional settling to remove more of the suspended
solids then follows the biological process. Nearly 85%
of the suspended solids and biological oxygen demand
(BOD) can be removed with secondary treatment. This
process also removes carbonaceous pollutants that settle
down in the secondary settling tank, thus separating the
biological sludge from the clear water. This sludge can
be fed as a co-substrate with other wastes in a biogas
plant to obtain biogas, a mixture of CH4 and CO2. It
generates heat and electricity for further energy distri-
bution. The leftover, clear water is then processed for
nitrification or denitrification for the removal of carbon
and nitrogen. Furthermore, the water is passed through a
sedimentation basin for treatment with chlorine. At this
stage, the water may still contain several types of mi-
crobial, chemical, and metal contaminations. Therefore,
to make the water reusable, e.g., for irrigation, it further
needs to pass through filtration and then into a disinfec-
tion tank. Here, sodium hypochlorite is used to disinfect
the wastewater. After this process, the treated water is
considered safe to use for irrigation purposes. Solid
wastes generated during primary and secondary treat-
ment processes are processed further in the gravity-
thickening tank under a continuous supply of air. The
solid waste is then passed into a centrifuge dewatering
tank and finally to a lime stabilization tank. Treated
solid waste is obtained at this stage and it can be proc-
essed further for several uses such as landfilling, fertil-
izers and as a building.

Other than the activated sludge process of wastewater
treatment, there are several other methods developed
and being used in full-scale reactors such as ponds
(aerobic, anaerobic, facultative, and maturation), trick-
ling filters, anaerobic treatments like up-flow anaerobic
sludge blanket (UASB) reactors, artificial wetlands, mi-
crobial fuel cells, and methanogenic reactors.

UASB reactors are being applied for wastewater
treatment from a very long period. Behling et al.
(1996) examined the performance of the UASB reactor
without any external heat supply. In their study, the
COD loading rate was maintained at 1.21 kg COD/m3/
day, after 200 days of trial. They achieved an average of
85% of COD removal. Von-Sperling and Chernicharo
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(2005) presented a combined model consisted of an Up-
flow Anaerobic Sludge Blanket-Activated Sludge reac-
tor (UASB–AS system), using the low strength domes-
tic wastewater with a BOD5 amounting to 340 mg/l.
Outcomes of their experiment have shown a 60% re-
duction in sludge construction and a 40% reduction in
aeration energy consumption. In another experiment,
Rizvi et al. (2015) seeded UASB reactor with cow
manure dung to treat domestic wastewater; they ob-
served 81%, 75%, and 76% reduction in COD, TSS,
and total sulfate removal, respectively, in their results.

6.3 Tertiary or Advanced Treatment Processes

The tertiary treatment process is employed when specif-
ic constituents, substances, or contaminants cannot be
completely removed after the secondary treatment pro-
cess. The tertiary treatment processes, therefore, ensure
that nearly 99% of all impurities are removed from
wastewater. To make the treated water safe for drinking
purposes, water is treated individually or in combination
with advanced methods like the US (ultrasonication),
UV (ultraviolet light treatment), and O3 (exposure to
ozone). This process helps to remove bacteria and heavy
metal contaminations remaining in the treated water. For
the purpose, the secondarily treated water is first made
to undergo ultrasonication and it is subsequently ex-
posed to UV light and passed through an ozone chamber
for the complete removal of contaminations. The possi-
ble mechanisms by which cells are rendered inviable
during the US include free-radical attack and physical
disruption of cell membranes (Phull et al., 1997;
Scherba et al., 1991). The combined treatment of US +
UV + O3 produces free radicals, which are attached to
cell membranes of the biological contaminants. Once
the cell membrane is sheared, chemical oxidants can
enter the cell and attack internal structures. Thus, the
US alone or in combinat ion faci l i ta tes the
deagglomeration of microorganisms and increases the
efficiency of other chemical disinfectants (Hua &
Thompson, 2000; Kesari et al., 2011a, b; Petrier et al.,
1992; Phull et al., 1997; Scherba et al., 1991). A com-
bined treatment method was also considered by
Pesoutova et al. (2011) and reported a very effective
method for textile wastewater treatment. The effective-
ness of ultrasound application as a pre-treatment step in
combination with ultraviolet rays (Blume & Neis, 2004;
Naddeo et al., 2009), or also compared it with various
other combinations of both ultrasound and UV radiation

with TiO2 photocatalysis (Paleologou et al., 2007), and
ozone (Jyoti & Pandit, 2004) to optimize wastewater
disinfection process.

An important aspect of our wastewater treatment
model (Fig. 3) is that at each step of the treatment
process, we recommend the measurement of the quality
of treated water. After ensuring that the proper purifica-
tion standards are met, the treated water can be made
available for irrigation, drinking or other domestic uses.

6.4 Nanotechnology as Tertiary Treatment
of Wastewater Converting Drinking Water Alike

Considering the emerging trends of nanotechnology,
nanofillers can be used as a viable method for the
tertiary treatment of wastewater. Due to the very small
pore size, 1–5-nm nanofillers may eliminate the
organic–inorganic pollutants, heavy metals, as well as
pathogenic microorganisms and pharmaceutically ac-
tive compounds (PhACs) (Mohammad et al., 2015;
Vergili, 2013). Over the recent years, nanofillers have
been largely accepted in the textile industry for the
treatment of pulp bleaching pharmaceutical industry,
dairy industry, microbial elimination, and removal of
heavy metals from wastewater (Abdel-Fatah, 2018).
Srivastava et al. (2004) synthesized very efficient and
reusable water filters from carbon nanotubes, which
exhibited effective elimination of bacterial pathogens
(E. coli and S. aureus), and Poliovirus sabin-1 from
wastewater.

Nanofiltration requires lower operating pressure and
lesser energy consumption in comparison of RO and
higher rejection of organic compounds compared to UF.
Therefore, it can be applied as the tertiary treatment of
wastewater (Abdel-Fatah, 2018). Apart from
nanofilters, there are various kinds of nanoparticles like
metal nanoparticles, metal oxide nanoparticles, carbon
nanotubes, graphene nanosheets, and polymer-based
nanosorbents, which may play a different role in waste-
water treatment based on their properties. Kocabas et al.
(2012) analyzed the potential of different metal oxide
nanoparticles and observed that nanopowders of TiO2,
FeO3, ZnO2, and NiO can exhibit the exceeding amount
of removal of arsenate from wastewater. Cadmium con-
tamination in wastewater, which poses a serious health
risk, can be overcome by using ZnO nanoparticles
(Kumar & Chawla, 2014). Latterly, Vélez et al. (2016)
investigated that the 70% removal of mercury from
wastewater through iron oxide nanoparticles
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successfully performed. Sheet et al. (2014) used graph-
ite oxide nanoparticles for the removal of nickel from
wastewater. An exceeding amount of copper causes
liver cirrhosis, anemia, liver, and kidney damage, which
can be removed by carbon nanotubes, pyromellitic acid
dianhydride (PMDA) and phenyl aminomethyl
trimethoxysilane (PAMTMS) (Liu et al., 2010).

Nanomaterials are efficiently being used for micro-
bial purification from wastewater. Carbon nanotubes
(CNTs) are broadly applied for the treatment of waste-
water contaminated with E. coli, Salmonella, and a wide
range of microorganisms (Akasaka & Watari, 2009). In
addition, silver nanoparticles reveal very effective re-
sults against the microorganisms present in wastewater.

Fig. 3 Awastewater treatment schematic highlighting the various methods that result in a progressively improved quality of the wastewater
from the source to the intended use of the treated wastewater for irrigation purposes
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Hence, it is extensively being used for microbial elimi-
nation from wastewater (Inoue et al., 2002). Moreover,
CNTs exhibit high binding affinity to bacterial cells and
possess magnetic properties (Pan & Xing, 2008).
Melanta (2008) confirmed and recommended the
applicability of CNTs for the removal of E. coli
contamination from wastewater. Mostafaii et al. (2017)
suggested that the ZnO nanoparticles could be the po-
tential antibacterial agent for the removal of total coli-
form bacteria from municipal wastewater. Apart from
the previously mentioned, applicability of the nanotech-
nology, the related drawbacks and challenges cannot be
neglected. Most of the nanoengineered techniques are
currently either in research scale or pilot scale
performing well (Gehrke et al., 2015). Nevertheless, as
discussed above, nanotechnology and nanomaterials ex-
hibit exceptional properties for the removal of contam-
inants and purification of water. Therefore, it can be
adapted as the prominent solution for the wastewater
treatment (Zekić et al., 2018) and further use for drink-
ing purposes.

6.5 Wastewater Treatment by Using Plant Species

Some of the naturally growing plants can be a poten-
tial source for wastewater treatment as they remove
pollutants and contaminants by utilizing them as a
nutrient source (Zimmels et al., 2004). Application of

plant species in wastewater treatment may be cost-
effective, energy-saving, and provides ease of opera-
tion. At the same time, it can be used as in situ, where
the wastewater is being produced (Vogelmann et al.,
2016 ) . N i zam e t a l . ( 2020 ) ana lyzed the
phytoremediation efficiency of five plant species
(Centella asiatica, Ipomoea aquatica, Salvinia
molesta, Eichhornia crassipes, and Pistia stratiotes)
and achieved the drastic decrease in the amount of
three pollutants viz. total suspended solids (TSS),
ammoniacal nitrogen (NH3-N), and phosphate levels.
All the five species found to be efficient removal of
the level of 63.9-98% of NH3-N, TSS, and
phosphate. Coleman et al. (2001) examined the phys-
iological effects of domestic wastewater treatment by
three common Appalachian plant species: common
rush or soft rush (Juncus effuses L.), gray club-rush
(Scirpus Validus L.), and broadleaf cattail or bulrush
(Typha latifolia L.). They observed in their experi-
ments about 70% of reduction in total suspended
solids (TSS) and biochemical oxygen demand
(BOD), 50% to 60% of reduction in nitrogen,
ammonia, and phosphate levels, and a significant
reduction in feacal coliform populations. Whereas,
Zamora et al. (2019) found the removal efficiency
of chemical oxygen demand (COD), total solids
suspended (TSS), nitrogen as ammonium (N-NH4)
and nitrate (N-NO3), and phosphate (P-PO4) up to

Table 3 Various plant species applied for the wastewater remediation and their effects

S.N. Plant species Common name Effects References

1. Juncus
effusus L.

Common rush or soft rush Reduction of BOD, COD, TSS,
nitrogen, phosphate, and fecal coliforms

Coleman et al. (2001)

2. Scirpus
validus L.

Grey club-rush

3. Typha
latifolia
L.

Broadleaf cattail or bulrush

4. Azolla
californi-
ana

Fairy moss Reduction of turbidity BOD, COD, and TSS Jacquez and Walner
(1985)

5. Oenanthe
javanica

Chinese celery, Indian
pennywort, Japanese
parsley,

Influences dissolved oxygen, pH, and temperature
wastewater purification and nutrient uptake

Zhou and Wang (2010);
Zhu et al. (2011)

6. Hydrocotyle
vulgaris

marsh pennywort Removal of total nitrogen and NH4
− nitrogen Duan et al. (2016).

7. Ipomoea
aquatica

Swamp morning or water
spinach

8. Eichornia
crassipes

Water hyacinth Reduction of ammonia, nitrate BOD, COD, TSS,
turbidity, and heavy metals

Brumer (2000); Jacquez
and Walner (1985)
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20–60% higher using the three ornamental species of
plants viz. Canna indica, Cyperus papyrus, and
Hedychium coronarium. The list of various plant
species applied for the wastewater treatment is shown
in Table 3.

6.6 Wastewater Treatment by Using Microorganisms

There is a diverse group of bacteria like Pseudomo-
nas fluorescens, Pseudomonas putida, and different
Bacillus strains, which are capable to use in biolog-
ical wastewater systems. These bacteria work in the
cluster forms as a floc, biofilm, or granule during the
wastewater treatment. Furthermore, after the recog-
nition of bacterial exopolysaccharides (EPS) as an
efficient adsorption material, it may be applied in a
revolutionary manner for the heavy metal elimination
(Gupta & Diwan, 2017). There are few examples of
EPS, which are commercially available, i.e., alginate
(P. aeruginosa, Azotobacter vinelandii), gellan
(Sphingomonas paucimobilis), hyaluronan ( .
aeruginosa, Pasteurella multocida, Streptococci at-
t enua ted s t ra in s ) , xan than (Xan thomonas
campestr is ) , and galac topol (Pseudomonas
oleovorans) (Freitas et al., 2009; Freitas, Alves, &
Reis, 2011a; Freitas, Alves, Torres, et al., 2011b).
Similarly, Hesnawi et al. (2014) experimented bio-
degradation of municipal wastewater using local and
commercial bacteria (Sludge Hammer), where they
achieved a significant decrease in synthetic wastewa-
ter, i.e., 70%, 54%, 52%, 42% for the Sludge Ham-
mer, B. subtilis, B. laterosponus, and P. aeruginosa,
respectively. Therefore, based on the above studies, it
can be concluded that bioaugmentation of wastewater
treatment reactor with selective and mixed strains can
ameliorate the treatment. During recent years,
microalgae have attracted the attention of researchers
as an alternative system, due to their applicability in
wastewater treatment. Algae are the unicellular or
multicellular photosynthetic microorganism that
grows on water surfaces, salt water, or moist soil.
They utilize the exceeding amount of nutrients like
nitrogen, phosphorus, and carbon for their growth
and metabolism process through their anaerobic sys-
tem. This property of algae also inhibits eutrophica-
tion; that is to avoid over-deposit of nutrients in water
bodies. During the nutrient digestion process, algae
produce oxygen that is constructive for the heterotro-
phic aerobic bacteria, which may further be utilized

to degrade the organic and inorganic pollutants. Kim
et al. (2014) observed a total decrease in the levels of
COD (86%), total nitrogen (93%), and total phospho-
rus (83%) after using algae in the municipal waste-
water consortium. Nmaya et al. (2017) reported the
heavy metal removal efficiency of microalga
Scenedesmus sp. from contaminated river water in
the Melaka River, Malaysia. They observed the ef-
fective removal of Zn (97-99%) on the 3rd and 7th day
of the experiment. The categorized list of microor-
ganisms used for wastewater treatment is presented in
Table 4.

7 The Computational Approach in Wastewater
Treatment

7.1 Bioinformatics and Genome Sequencing

A computational approach is accessible in wastewater
treatment. Several tools and techniques are in use such
as, sequencing platforms (Hall, 2007; Marsh, 2007),
metagenome sequencing strategies (Schloss &
Handelsman, 2005; Schmeisser et al., 2007; Tringe
et al., 2005), bioinformatics tools and techniques
(Chen & Pachter, 2005; Foerstner et al., 2006; Raes
et al., 2007), and the genome analysis of complex mi-
crobial communities (Fig. 4). Most of the biological
database contains microorganisms and taxonomical in-
formation. Thus, these can provide extensive details and
supports for further utilization in wastewater treatment–
related research and development (Siezen & Galardini,
2008). Balcom et al. (2016) explored that the microbial
population residing in the plant roots immersed in the
wastewater of an ecological WWTP and showed the
evidence of the capacity for micro-pollutant biodegra-
dation using whole metagenome sequencing (WMS).
Similarly, Kumar et al. (2016) revealed that bioremedi-
ation of highly polluted wastewater from textile dyes by
two novel strains were found to highly decolorize Joyfix
Red. They were identified as Lysinibacillus sphaericus
(KF032717) and Aeromonas hydrophila (KF032718)
through 16S rDNA analysis. More recently, Leddy
et al. (2018) reported that research scientists are making
strides to advance the safety and application of potable
water reuse with metagenomics for water quality analy-
sis. The application of the bio-computational approach
has also been implemented in the advancements of
wastewater treatment and disease detection.
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7.2 Computational Fluid Dynamics in Wastewater
Treatment

In recent years, computational fluid dynamics (CFD), a
broadly used method, has been applied to biological
wastewater treatment. It has exposed the inner flow state
that is the hydraulic condition of a biological reactor
(Peng et al., 2014). CFD is the application of powerful
predictive modeling and simulation tools. It may calcu-
late the multiple interactions between all the water quality
and process design parameters. CFDmodeling tools have
already been widely used in other industries, but their
application in the water industry is quite recent. CFD
modeling has great applications in water and wastewater

treatment, where it mechanically works by using hydro-
dynamic and mass transfer performance of single or two-
phase flow reactors (Do-Quang et al., 1998). The level of
CFD’s capability varies between different process units.
It has a high frequency of application in the areas of final
sedimentation, activated sludge basin modeling, disinfec-
tion, and greater needs in primary sedimentation and
anaerobic digestion (Samstag et al., 2016). Now, re-
searchers are enhancing the CFD modeling with a devel-
oped 3D model of the anoxic zone to evaluate further
hydrodynamic performance (Elshaw et al., 2016). The
overall conceptual framework and the applications of the
computational approach in wastewater treatment are pre-
sented in Fig. 4.

Table 4 Microorganisms applied for wastewater treatment

S.N. Species Effects References

Algae

1. Scenedesmus sp. Removal of heavy metal (Zn) from wastewater Nmaya et al. (2017)

2. Scenedesmus abundans Removal of Cd and Cu, detoxification of cyanide from wastewater. Oilgae (2014)

3. Botryococcus braunii Removal of nitrogen, phosphorus, and other inorganic compounds
from industrial wastewater

Oilgae (2014)

4. Dunaliella salina Eliminates Cu, Cd, Co, and Zn from polluted water,
applied in the treatment of hypersaline wastewater

Oilgae (2014)

5. Sargassum muticum Removes Methylene Blue dye from wastewater. Oilgae (2014)

6. Chlorella sp. Removal of lead (II), N, P,
and detoxification of cyanide from wastewater

Oilgae (2014)

Fungi

1. Bjerkandera adusta MUT 2295, Effective in wastewater decolourisation and detoxification Anastasi et al. (2010);
Spina et al. (2012)

2. Phanerochaete chrysosporium
(white-rot fungi)

Degrade several aromatic compounds Spina et al. (2012)

3. Trametes versicolor Wastewater decolourisation, humic acid removal from industrial
wastewater

Zahmatkesh et al. (2018)

4. Rhizopus arrhizus Biosorption of heavy metals Sağ (2001)

5. Fusarium flocciferum Absorption of Ni(II) and Cd(II) from wastewater Delgado et al. (1998)

6. Penicillium chrysogenum Absorption of Cd(II) from wastewater Volesky (1994)

Bacteria

1. Sphingomonas sp. strain BN6 Degrades naphthalene-2-sulphonate (a building block of azo dyes)
present in contaminated water

Russ et al. (2000)

2. Paenibacillus azoreducens Color removal from wastewater with 98% efficiency Meehan et al. (2001)

3. Pseudomonas luteola Decoloration of wastewater Chang et al. (2001)

4. Bacillus subitlis Reduction of TOC Hesnawi et al. (2014)
5. Bacillus laterosponus

6. Pseudomonas aeruginosa

7. Methylobacterium
organophilum

Removal of Cu and Pb from wastewater Kim et al. (1996)

8. Herminiimonas arsenicoxydans Arsenic absorption in wastewater Marchal et al. (2010)
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7.3 Computational Artificial Intelligence Approach
in Wastewater Treatment

Several studies were obtained by researchers to imple-
ment computer-based artificial techniques, which pro-
vide fast and rapid automated monitoring of water
quality tests such as BOD and COD. Recently,
Nourani et al. (2018) explores the possibility of waste-
water treatment plant by using three different kinds of
artificial intelligence methods, i.e., feedforward neural
network (FFNN), adaptive neuro-fuzzy inference sys-
tem (ANFIS), and support vector machine (SVM). Sev-
eral measurements were done in terms of effluent to tests
BOD, COD, and total nitrogen in the Nicosia wastewa-
ter treatment plant (NWWTP) and reported high-
performance efficiency of artificial intelligence
(Nourani et al., 2018).

7.4 Remote sensing and Geographical Information
System

Since the implementation of satellite technology, the
initiation of new methods and tools became popular
nowadays. The futuristic approach of remote sensing
and GIS technology plays a crucial role in the identifi-
cation and locating of the water polluted area through

satellite imaginary and spatial data. GIS analysis may
provide a quick and reasonable solution to develop
atmospheric correction methods. Moreover, it provides
a user-friendly environment, which may support com-
plex spatial operations to get the best quality informa-
tion on water quality parameters through remote sensing
(Ramadas & Samantaray, 2018).

8 Applications of Treated Wastewater

8.1 Scope in Crop Irrigation

Several studies have assessed the impact of the reuse of
recycled/treated wastewater in major sectors. These are
agriculture, landscapes, public parks, golf course irri-
gation, cooling water for power plants and oil refiner-
ies, processing water for mills, plants, toilet flushing,
dust control, construction activities, concrete mixing,
and artificial lakes (Table 5). Although the treated
wastewater after secondary treatment is adequate for
reuse since the level of heavy metals in the effluent is
similar to that in nature (Ayers & Westcot, 1985),
experimental evidences have been found and evaluated
the effects of irrigation with treated wastewater on soil
fertility and chemical characteristics, where it has been

Fig. 4 A schematic showing the
overall conceptual framework on
which depicting the
computational approach in
wastewater treatment
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concluded that secondary treated wastewater can im-
prove soil fertility parameters (Mohammad &
Mazahreh, 2003). The proposed model (Fig. 3) is test-
ed partially previously at a laboratory scale by treating
the wastewater (from sewage, sugar, and paper indus-
try) in an ultrasonic bath (Kesari et al., 2011a, b; Kesari
& Behari, 2008; Kumar et al., 2010). Advancing it with
ultraviolet and ozone treatment has modified this in the
proposed model. A recent study shows that the treated
water passed quality measures suited for crop irrigation
(Bhatnagar et al., 2016). In Fig. 3, a model is proposed
including all three (UV, US, nanoparticle, and ozone)
techniques, which have been tested individually as
well as in combination (US and nanoparticle) (Kesari
et al., 2011a, b) to obtain the highest water quality
standards acceptable for irrigation and even drinking
purposes.

A wastewater-irrigated field is a major source of
essential and non-essential metals contaminants such
as lead, copper, zinc, boron, cobalt, chromium, arsenic,

molybdenum, and manganese. While crops need some
of these, the others are non-essential metals, toxic to
plants, animals, and humans. Kanwar and Sandha
(2000) reported that heavy metal concentrations in
plants grown in wastewater-irrigated soils were signifi-
cantly higher than in plants grown in the reference soil
in their study. Yaqub et al. (2012) suggest that the use of
US is very effective in removing heavy or toxic metals
and organic pollutants from industrial wastewater. How-
ever, it has been also observed that the metals were
removed efficiently, when UV light was combined with
ozone (Samarghandi et al., 2007). Ozone exposure is a
potent method for the removal of metal or toxic com-
pounds from wastewater as also reported earlier (Park
et al., 2008). Application of US, UV, and O3 in combi-
nation lead to the formation of reactive oxygen species
(ROS) that oxidize certain organics, metal ions and kill
pathogens. In the process of advanced oxidizing process
(AOP) primarily oxidants, electricity, light, catalysts etc.
are implied to produce extremely reactive free radicals

Fig. 5 Energy production through wastewater (reproduced from Bhatnagar et al., 2016; Kesari & Jamal, 2017)
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(such as OH) for the breakdown of organic matters
(Oturan &Aaron, 2014). Among the other AOPs, ozone
oxidization process is more promising and effective for
the decomposition of complex organic contaminants
(Xu et al., 2020). Ozone oxidizes the heavy metal to
their higher oxidation state to form metallic oxides or
hydroxides in which they generally form limited soluble
oxides and gets precipitated, which are easy to be fil-
tered by filtration process. Ozone oxidization found to
be efficient for the removal of heavy metals like cadmi-
um, chromium, cobalt, copper, lead, manganese, nickel,
and zinc from the water source (Upadhyay &
Srivastava, 2005). Ultrasonic-treated sludge leads to
the disintegration of biological cells and kills bacteria
in treated wastewater (Kesari, Kumar, et al., 2011a;
Kesari, Verma, & Behari, 2011b). This has been found
that combined treatment with ultrasound and nanoparti-
cles is more effective (Kesari, Kumar, et al., 2011a).
Ultrasonication has the physical effects of cavitation
inactivate and lyse bacteria (Broekman et al., 2010).
The induced effect of US, US, or ozone may destroy
the pathogens and especially during ultrasound irradia-
tion including free-radical attack, hydroxyl radical at-
tack, and physical disruption of cell membranes (Kesari,
Kumar, et al., 2011a; Phull et al., 1997; Scherba et al.,
1991).

8.2 Energy and Economy Management

Municipal wastewater treatment plants play a major role
in wastewater sanitation and public health protection.
However, domestic wastewater has been considered as a
resource or valuable products instead of waste, because
it has been playing a significant role in the recovery of
energy and resource for the plant-fertilizing nutrients
like phosphorus and nitrogen. Use of domestic
wastewater is widely accepted for the crop irrigation in
agriculture and industrial consumption to avoid the
water crisis. It has also been found as a source of
energy through the anaerobic conversion of the
organic content of wastewater into methane gas.
However, most of the wastewater treatment plants are
using traditional technology, as anaerobic sludge
digestion to treat wastewater, which results in more
consumption of energy. Therefore, through these
conventional technologies, only a fraction of the
energy of wastewater has been captured. In order to
solve these issues, the next generation of municipal
wastewater treatment plants is approaching total

retrieval of the energy potential of water and nutrients,
mostly nitrogen and phosphorus. These plants also play
an important role in the removal and recovery of
emerging pollutants and valuable products of different
nature like heavy and radioactive metals, fertilizers
hormones, and pharma compounds. Moreover, there
are still few possibilities of improvement in
wastewater treatment plants to retrieve and reuse of
these compounds. There are several methods under
development to convert the organic matter into
bioenergy such as biohydrogen, biodiesel, bioethanol,
and microbial fuel cell. These methods are capable to
produce electricity from wastewater but still need an
appropriate development. Energy development through
wastewater is a great driver to regulate the wastewater
energy because it produces 10 times more energy than
ch em i c a l , t h e rma l , a nd hyd r au l i c f o rms .
Vermicomposting can be utilized for stabilization of
sludge from the wastewater treatment plant. Kesari and
Jamal (2017) have reported the significant, economical,
and ecofriendly role of the vermicomposting method for
the conversion of solid waste materials into organic
fertilizers as presented in Fig. 5. Solid waste may come
from several sources of municipal and industrial sludge,
for example, textile industry, paper mill, sugarcane, pulp
industry, dairy, and intensively housed livestock. These
solid wastes or sewage sludges have been treated suc-
cessfully by composting and/or vermicomposting
(Contreras-Ramos et al., 2005; Elvira et al., 1998; Fra-
ser-Quick, 2002; Ndegwa & Thompson, 2001; Sinha
et al., 2010) Although collection of solid wastes mate-
rials from sewage or wastewater and further drying is
one of the important concerns, processing of dried mu-
nicipal sewage sludge (Contreras-Ramos et al., 2005)
and management (Ayilara et al . , 2020) for
vermicomposting could be possible way of generating
organic fertilizers for future research. Vermicomposting
of household solid wastes, agriculture wastes, or pulp
and sugarcane industry wastes shows greater potential
as fertilizer for higher crop yielding (Bhatnagar et al.,
2016; Kesari & Jamal, 2017). The higher amount of
solid waste comes from agricultural land and instead
of utilizing it, this biomass is processed by burning,
which causes severe diseases (Kesari & Jamal, 2017).
Figure 3 shows the proper utilization of solid waste after
removal from wastewater; however, Fig. 5 showing
greater possibility in fertilizer conversion which has also
been discussed in detail elsewhere (Bhatnagar et al.,
2016; Nagavallemma et al., 2006)
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9 Conclusions and future perspectives

In this paper, we have reviewed environmental and
public health issues associated with the use of untreated
wastewater in agriculture. We have focused on the cur-
rent state of affairs concerning the wastewater treatment
model and computational approach. Given the dire need
for holistic approaches for cultivation, we proposed the
ideas to tackle the issues related to wastewater treatment
and the reuse potential of the treated water. Water re-
sources are under threat because of the growing popu-
lation. Increasing generation of wastewater (municipal,
industrial, and agricultural) in developing countries es-
pecially in India and other Asian countries has the
potential to serve as an alternative of freshwater re-
sources for reuse in rice agriculture, provide appropriate
treatment, and distribution measures are adopted.
Wastewater treatment is one of the big challenges for
many countries because increasing levels of undesired
or unknown pollutants are very harmful to health as well
as environment. Therefore, this review explores the
ideas based on current and future research. Wastewater
treatment includes very traditional methods by follow-
ing primary, secondary, and tertiary treatment proce-
dures, but the implementation of advanced techniques
is always giving us a big possibility of good water
quality. In this paper, we have proposed combined
methods for the wastewater treatment, where the con-
cept of the proposed model works on the various types
of wastewater effluents. The proposed model not only
useful for wastewater treatment but also for the utiliza-
tion of solid wastes as fertilizer. An appropriate method
for the treatment of wastewater and further utilization
for drinking water is the main futuristic outcome. It is
also highly recommendable to follow the standard
methods and available guidelines provided WHO. In
this paper, the proposed role of the computational mod-
el, i.e., artificial intelligence, fluid dynamics, and GIS, in
wastewater treatment could be useful in future studies.
In this review, health concerns associated with waste-
water irrigation for farmers and irrigated crops con-
sumers have been discussed.

The crisis of freshwater is one of the growing
concerns in the twenty-first century. Globaly, about
330 km3 of municipal wastewater is generated annu-
ally (Hernández-Sancho et al., 2015). This data pro-
vides a better understanding of why the reuse of
treated wastewater is important to solve the issues of
the water crisis. The use of treated wastewater

(industrial or municipal wastewater or Seawater) for
irrigation has a better future for the fulfillment of
water demand. Currently, in developing countries,
farmers are using wastewater directly for irrigation,
which may cause several health issues for both
farmers and consumers (crops or vegetables). There-
fore, it is very imperative to implement standard and
advanced methods for wastewater treatment. A local
assessment of the environmental and health impacts
of wastewater irrigation is required because most of
the developed and developing countries are not using
the proper guidelines. Therefore, it is highly required
to establish concrete policies and practices to encour-
age safe water reuse to take advantage of all its po-
tential benefits in agriculture and for farmers.
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