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Abstract The Air Quality Health Index (AQHI) is an
aggregate indicator of air pollution used to communicate
to Canadians the health impact of short-term exposure to
current air pollutant levels. Understanding the stochastic
behaviour of the AQHI can aid public health officials in
predicting air pollution levels, determining the likeli-
hood and duration of air quality advisories, and planning
for increased strain on the health care system during
periods of higher air pollution. Previous research has
applied discrete-time Markov chains to investigate sto-
chastic behaviour of air pollution indices but only in a
handful of regions and none with the same climatic
characteristics as Canadian regions. In this study, we
investigated the stochastic behaviour of AQHI risk cat-
egories in Ontario (34 air monitoring stations) for 5
years from 2015 to 2019. We employed discrete-time
Markov chains using three of the AQHI risk categories
(Low Risk, Moderate Risk, High Risk) as states to
determine (1) the transition probabilities between these
states, (2) the long-run proportion of time spent in each
state, and (3) the mean persistence time of each state.
These results were then used to assess spatial trends in
the stochastic behaviour of AQHI risk categories and the
likelihood and duration of air quality advisories. Over-
all, the air quality (as characterised by the AQHI) in

Ontario tends to decrease as population density in-
creases. Urban areas spent a greater proportion of time
in higher risk categories, and tended to remain in the
higher risk categories for longer before transitioning.
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1 Introduction

Air pollution is a global concern due to its detrimental
impact on human health. Numerous studies have iden-
tified links between air pollution and increases in mor-
tality and hospital admissions due to respiratory and
cardiovascular disease (Brunekreef & Holgate, 2002).
Predicting air pollution levels can help public health
officials make recommendations to limit outdoor air
exposure and plan for increased strain on the health care
system during periods of higher air pollution.

The Air Quality Health Index (AQHI) was developed
by Health Canada and Environment Canada to commu-
nicate the health impact of short-term exposure to cur-
rent air pollutant levels to Canadians (Environment and
Climate Change Canada, 2019). The AQHI is an aggre-
gate indicator of the average trailing 3-h concentrations
of three pollutants: ozone (O3), nitrogen dioxide (NO2),
and fine particulate matter (PM2.5). The AQHI is report-
ed using 11 values ranging from 1 to 10+. A value of 1
represents the lowest health risk, while a value of 10+
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represents a very high health risk. The AQHI values are
further categorised according to their respective health
risk; Low Risk (1–3), Moderate Risk (4–6), High Risk
(7–10), and Very High Risk (10+). Each risk category
has a recommended action for both the general popula-
tion and the at-risk population (Environment and
Climate Change Canada, 2015). For example, the Low
Risk category recommends continuing all outdoor ac-
tivities, while the Very High Risk category recommends
avoiding all strenuous outdoor activities.

Ontario uses a modified form of the AQHI, where
hourly concentrations of additional pollutants are also
considered when assigning risk categories. In Ontario,
ozone, nitrogen dioxide, sulphur dioxide, carbon mon-
oxide, and total reduced sulphur compounds are the
pollutants that may change the AQHI categories. For
instance, if hourly air concentrations of one or more of
the contaminants mentioned above exceed Ontario’s
Ambient Air Quality Criteria (AAQC), a desirable level
of a contaminant in air, and the AQHI value is currently
considered Low Risk or Moderate Risk, then the AQHI
risk category is adjusted to a High or Very High Risk
category (Ontario Ministry of the Environment,
Conservation and Parks, 2019a).

The discrete-time Markov chain is a probabilistic
model used to analyse stochastic processes. It has been
employed in a wide range of applications such asmodel-
ling precipitation (da Silva et al., 2019; Schoof & Pryor,
2008), infrastructure deterioration (Baik et al., 2006),
and wind speed (Sahin & Sen, 2001). Discrete-time
Markov chains have also been employed to model air
pollution (e.g., Asadollahfardi et al., 2016; Caraka et al.,
2019; Mohamad et al., 2018; Romanof, 1982).
Nebenzal and Fishbain (2018) found that, for forecast-
ing long-term NO2 pollution, Markov chain models
reduce the total error compared to other forecasting
methods (e.g., multiple linear regression, moving aver-
age, exponential smoothing, Holt, and persistence
methods).

Most air pollution studies that used Markov models
focused on modelling specific contaminant concentra-
tions such as particulate matter (Asadollahfardi et al.,
2016; Caraka et al., 2019; Mohamad et al., 2018),
nitrogen dioxide (Nebenzal & Fishbain, 2018), ozone
(Rodrigues et al., 2019), and sulphur dioxide (Romanof,
1982), while few studies have focused on directly
modelling an air pollution index similar to the AQHI
(Alyousifi et al., 2018; Alyousifi et al., 2019; Zakaria
et al., 2019). From a public health standpoint, directly

modelling the AQHI is more informative since the
AQHI categories are directly related to health risks and
outdoor air quality advisories.

This study aims to provide further insight into the
stochastic behaviour of AQHI risk categories measured
in Ontario, which has different climate conditions than
those in the other studies (i.e., Alyousifi et al., 2018;
Alyousifi et al., 2019; Zakaria et al., 2019). A discrete-
time Markov chain was employed using three of the
AQHI risk categories (Low Risk, Moderate Risk, High
Risk) as states to determine (1) the transition probabil-
ities between these states, (2) the long-run proportion of
time spent in each state, and (3) the mean persistence
time of each state. These results were then used to
analyse spatial trends in the AQHI risk categories that
could help public health officials understand the char-
acteristics of air quality advisories, including their like-
lihood and duration.

2 Methodology

2.1 Study Area

Ontario is a province located in Central Canada. It is
Canada’s most populous province and second-largest by
total land area. There are thirty-nine air monitoring
stations in Ontario operated by the Ontario Ministry of
the Environment, Conservation and Parks (MECP).
Most of the thirty-nine air monitoring stations are locat-
ed in populated areas in Southern Ontario, with the
highest number in the Golden Horseshoe area around
Toronto. Five of the thirty-ninemonitoring stations were
excluded from the study due to insufficient data. The
locations of the selected air stations for this study are
shown in Fig. 1. The characteristics of these stations are
illustrated in Table 1.

2.2 Data

Historical Ontario AQHI data is available in hourly
increments for a period of 24 h from the Ontario Min-
istry of the Environment, Conservation & Parks
(MECP) webs i t e (Onta r io Min is t ry of the
Environment, Conservation and Parks, 2019b). Most
air monitoring stations had AQHI data available for
the period from January 1, 2015 to the current date,
despite Ontario replacing their former Air Quality Index
with the AQHI on June 24, 2015.
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The AQHI is an aggregate indicator of the average
trailing 3-h concentrations of three pollutants: ozone
(O3), nitrogen dioxide (NO2), and fine particulate matter
(PM2.5). The AQHI is calculated according to the fol-
l o w i n g f o r m u l a : AQHI ¼ 1000

10:4 �
e0:000537�O3−1þ e0:000871�NO2−1þ e0:000487�PM2:5−1ð Þ
(Szyszkowicz, 2019). Ozone and nitrogen dioxide con-
centrations are inputted as parts per billion, and fine
particulate matter as μg/m3. The AQHI is then rounded
to the nearest integer. Additionally, if hourly air concen-
trations of ozone, nitrogen dioxide, sulphur dioxide,
carbon monoxide, or total reduced sulphur compounds
exceed Ontario’s Ambient Air Quality Criteria
(AAQC), and the AQHI value is currently considered
Low Risk or Moderate Risk, then the AQHI value is
adjusted to a High or Very High Risk category (Ontario
Ministry of the Environment, Conservation and Parks,
2019a).

A Python script was developed to compile the data
from the MECP website by automating the process of
downloading the hourly data for each 24 h. This study
used the available data for each air monitoring station
from January 1, 2015 to December 31, 2019. Five of the
thirty-nine air monitoring stations were excluded from
the study due to insufficient data (missing more than a
year’s worth of data). The total number of observations
in the historical dataset for the air monitoring stations
during the study period was 1,463,652 h. This amount

represents an overall data coverage of 98.3% (i.e. 1.7%
of the data is missing). The data coverage for each air
monitoring station is included in Table 1.

2.3 Discrete-time Markov Chain Model

Markov chains are probabilistic models used to analyse
stochastic processes. The choice of discrete-time or
continuous-time Markov chain depends on the analysed
time series. In this application, the discrete-time Markov
chain is used since the time series consists of discrete hourly
increments. Discrete-time Markov chains are characterised
by the number of states in the state space and the number of
previous states the transition probability is dependent on.

Consider a stochastic process {Xn, n = 1, 2, 3,…}
that takes on a finite or countable number of possible
values defined as the state space, S. If Xn = i, then the
process is said to be in state i at time n. The stochastic
process is a Markov chain if the conditional distribution
of any future state is independent of the past states and
depends only on the present state. This condition is
known as the Markov or memoryless property and can
be expressed as P{Xn + 1 = j| Xn = i, Xn − 1 = in − 1, …,
X2 = i2, X1 = i1} = P{Xn + 1 = j| Xn = i,} = pij for all states
i1, i2, …, in − 1, i, j and all n ≥ 0. The value pij is the
one-step transition probability and represents the prob-
ability of transitioning from state i to state j. pni j is used to
represent the elements of the nth power of the transition

Fig. 1 Locations of air
monitoring stations in Ontario,
Canada
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probability matrix Pn. The transition probability matrix,
P, for a Markov chain with k states is composed of k × k
one-step transition probabilities, pij, where 0 ≤ pij ≤ 1
and the sum of the probabilities in each row is equal to

1 (∑k
j¼1pij ¼ 1).

Each element, pij, of the transition probability matrix
was calculated for a given state i, where nij is the
observed frequency of one-step transitions in the

historical data from state i to state j, using:

pij ¼
nij

∑k
j¼1nij

ð1Þ

The validity of fitting a Markov chain k states to
observed data can be investigated using the Chi-square
(χ2) test statistic

Table 1 Ontario AQHI air monitoring station details

Number Name Latitude Longitude Station type Elevation
ASL (m)

Height of
air intake (m)

No. of
observations

Data coverage

1 Barrie 44.382361 − 79.702306 Urban 226 5 42967 98.2%

2 Belleville 44.150528 − 77.395500 Urban 75 10 42600 97.3%

3 Brantford 43.138611 − 80.292639 Urban 205 5 43332 99.0%

4 Burlington 43.315111 − 79.802639 Urban 78 5 43387 99.1%

5 Chatham 42.403694 − 82.208306 Urban 179 15 42778 97.7%

6 Cornwall 45.017972 -74.735222 Urban 55 4 43340 99.0%

7 Dorset 45.224278 − 78.932944 Rural 318 3 43022 98.3%

8 Grand Bend 43.333083 − 81.742889 Rural 185 5 42804 97.8%

9 Guelph 43.551611 − 80.264167 Urban 330 4 43109 98.5%

10 Hamilton Downtown 43.257778 − 79.861667 Urban 90 4 43155 98.6%

11 Hamilton West 43.257444 − 79.907750 Urban 96 3 42919 98.0%

12 Kingston 44.219722 − 76.521111 Urban 84 5 43267 98.8%

13 Kitchener 43.443833 − 80.503806 Urban 325 5 42768 97.7%

14 London 42.974460 − 81.200858 Urban 244 5 43309 98.9%

15 Mississauga 43.546970 − 79.658690 Urban 105 5 43182 98.6%

16 Newmarket 44.044306 − 79.483250 Urban 268 5 43507 99.4%

17 North Bay 46.322500 − 79.449444 Urban 212 4 43244 98.8%

18 Oakville 43.486917 − 79.702278 Urban 165 12 42844 97.9%

19 Ottawa Downtown 45.434333 − 75.676000 Urban 68 4 43054 98.4%

20 Parry Sound 45.338261 − 80.039269 Urban 176 5 42988 98.2%

21 Petawawa 45.996722 − 77.441194 Rural 174 6 43229 98.8%

22 Peterborough 44.301917 − 78.346222 Urban 226 10 43155 98.6%

23 Port Stanley 42.672083 − 81.162889 Rural 212 5 42443 97.0%

24 Sarnia 42.990263 − 82.395341 Urban 182 5 43203 98.7%

25 Sault Ste Marie 46.533194 − 84.309917 Urban 244 8 42794 97.8%

26 St Catherines 43.160056 − 79.234750 Urban 105 4 42964 98.1%

27 Sudbury 46.491940 -81.003105 Urban 271 5 43032 98.3%

28 Thunder Bay 48.379389 − 89.290167 Urban 192 15 42952 98.1%

29 Tiverton 44.314472 − 81.549722 Rural 226 4 42818 97.8%

30 Toronto Downtown 43.662972 -79.388111 Urban 105 10 42624 97.4%

31 Toronto East 43.747917 − 79.274056 Urban 168 4 43289 98.9%

32 Toronto West 43.709444 − 79.543500 Urban 141 8 43165 98.6%

33 Windsor Downtown 42.315778 − 83.043667 Urban 176 4 43166 98.6%

34 Windsor West 42.292889 − 83.073139 Urban 180 4 43242 98.8%
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χ2
calc ¼ ∑

k

i¼1
∑
k

j¼1

nij−eij
� �2

eij
ð2Þ

where nij represents the observed transition frequency,
and eij represents the expected transition frequency
(Wilks, 2011). The null hypothesis is that the observed
data is serially independent. The alternative hypothesis
is that the observed data was generated by a Markov
chain. Under the null hypothesis of independence, eij is
calculated as follows:

eij ¼
∑k

i¼1nij
� �

∑k
j¼1nij

� �

∑k
i¼1∑

k
j¼1nij

� � ð3Þ

For a Markov chain with k states, the test statistic
follows the χ2distribution with (k − 1)2 degrees of
freedom.

2.3.1 Stationary Distribution

The stationary distribution shows the long-term propor-
tion of time each air monitoring station spends in a
specific AQHI risk category. The estimated time can
be used to evaluate the air quality at each air monitoring
station by comparing the time spent in the different
AQHI risk categories. For example, a longer portion of
time spent in the Low Risk category would indicate
better air quality.

The stationary distribution of a Markov chain refers
to the long-run probability distribution that remains
unchanged as time progresses. A finite-state Markov
chain that is ergodic will have each row of the limiting
distribution ( lim

n→∞
Pn) converge to the stationary distri-

bution. Let πj represent the long-run proportion of time
spent in a state j. If the finite-state Markov chain is
ergodic, the stationary distribution is unique, and πj
can be calculated with the following equations (Ross,
2014):

π j ¼ ∑
k

i¼1
πipij ð4Þ

∑
k

j¼1
π j ¼ 1 ð5Þ

A finite-state Markov chain is said to be ergodic if it
is aperiodic and irreducible. A finite-state Markov chain

is irreducible if all states communicate with each other.
State i and state j are said to communicate if they are
accessible from each other. State j is said to be accessi-
ble from state i if pnij > 0 for some n time-steps. A

Markov chain is said to be aperiodic if all of its states
are aperiodic. A state is aperiodic if it is not periodic. A
state is said to be periodic if the chain can return to the
state only at multiples of some specific integer larger
than 1.

2.3.2 Mean Persistence Time

The expected amount of time that, after the Markov
chain enters an AQHI risk category, it remains in the
same AQHI risk category before exiting can be referred
to as the mean persistence time. Developing a model to
estimate the mean persistence time of a specific AQHI
risk category can be useful for public health officials to
predict the length of air quality advisories. When public
health officials communicate the health message associ-
ated with each AQHI risk category, additional informa-
tion about the expected duration could be included as
well. This information would allow the concerned pop-
ulation to better plan their activities to comply with the
health message. For example, if, after entering the
AQHI High Risk category, the mean persistence time
is 8 h, then an air quality advisory to reduce or resched-
ule strenuous outdoor activities for at least 8 h can be
issued before requiring a reassessment.

The transition probability matrix can be used to cal-
culate the expected time it takes to enter any set of
absorbing states from a transient state. A transient state
is a non-recurrent state. It means that there is a non-zero
probability that a Markovian process starting in a tran-
sient state will never return to that state. An absorbing
state is defined as a state that cannot be transitioned out
of after it is entered. A state i can be transformed into an
absorbing state by setting pii = 1 and pij = 0 for all j ≠ i.
For an ergodic Markov chain with k states, after
transforming b states into absorbing states, a new matrix
with t = k − b states can be defined as

PT ¼
p11 p12 ⋯ p1t
p21 p22 ⋯ p2t
⋮ ⋮ ⋱ ⋮
pt1 pt2 ⋯ ptt

2

664

3

775 ð6Þ

where the elements of PT are the reordered and
renumbered one-step transition probabilities pij for all
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non-absorbing states (Ross, 2014). Let sij be the expect-
ed amount of time before absorption that a Markov
chain spends in state j, given it started in state i. A t × t
matrix S composed of elements sij can be calculated
using S = (I − PT)

−1 where I is the t × t identity matrix
(Ross, 2014).

By making all states, except for state i, an absorbing
state, it is possible to calculate the mean persistence time
of state i (the expected amount of time that the Markov
chain will remain in state i before transitioning out of
state i). For this case, sii can be calculated using:

sii ¼ 1

1−pii
ð7Þ

3 Results and Discussion

3.1 Discrete-Time Markov Chain Model

We used a discrete-time Markov chain to model the
occurrence of AQHI risk categories at each air monitor-
ing station as a stochastic process. We defined the state
space as S = {1, 2, 3}, where states 1, 2, and 3 represent
the Low Risk, Moderate Risk, and High Risk AQHI
categories, respectively. The Very High Risk AQHI
category was excluded from the study since only one
occurrence was observed during the study period across
all air monitoring stations (i.e. 1 out of 1,463,652 h).
Additionally, the High Risk AQHI state was removed
from the state space of the Markov chain of specific air
monitoring stations if there were no observed occur-
rences during the study period.

A transition probability matrix was determined for
each air monitoring station. The observed frequency
of transitions is contained in Table 2. The transition
probabilities were estimated using Eq. (1). Each ele-
ment of the transition probability matrices is included
in Table 3, and the spatial distribution is shown in
Fig. 2. An example of the average transition proba-
bility matrix observed at air monitoring stations in
Ontario is:

P ¼
0:990 0:010 0:000
0:134 0:865 0:002
0:003 0:443 0:554

2

4

3

5

The validity of fitting aMarkov chain to the observed
data for each individual air monitoring station was

investigated using Eq. (2). The Chi-square test statistic,
χ2

calc, was calculated for each air monitoring station,
and compared to the χ2distribution with (k − 1)2 degrees
of freedom. For this analysis, the significance level was
chosen to be 0.01. The calculated p value and degrees of
freedom for each air monitoring station are contained in
Table 2. The p value for the observed data from each air
monitoring station was found to be less than 0.001. At
the 1% significance level, there is sufficient evidence to
reject the null hypothesis that the observed data is seri-
ally independent.

Overall, the transition probability matrix for each air
monitoring station is similar. The transition probabilities
for the transition from the Low Risk AQHI state to the
Low Risk AQHI state was the highest occurring proba-
bility in the transition probability matrix for each of the
air monitoring stations (mean of 0.990, ranging from
0.978 in Toronto West to 0.999 in Petawawa).
This implies that the Low Risk AQHI state is generally
stable since once the Low Risk AQHI state is entered, it
is expected to remain for a while. Transition probabili-
ties for moving directly from the Low Risk AQHI state
to a High Risk state were generally non-existent for
every air monitoring station. This means that the sudden
onset of a High Risk AQHI state from the Low Risk
AQHI state is extremely unlikely.

The transition probabilities for the transition out of
the Moderate Risk AQHI state were highest for the
transition to the Moderate Risk AQHI state (mean of
0.865; ranging from 0.782 in Thunder Bay to 0.890 in
Toronto Downtown). These results imply that the Mod-
erate Risk AQHI state is generally stable since once the
Moderate Risk AQHI state is entered, it is likely to
remain in that state. The next likeliest transition was to
the Low Risk AQHI state (mean of 0.134, ranging from
0.110 in Toronto Downtown to 0.209 in Sault Ste Ma-
rie). The least probable transition was to the High Risk
AQHI state (mean of 0.002, ranging from 0.000 at mul-
tiple air monitoring stations to 0.012 in Grand Bend).

Due to the low number of observed occurrences of
High Risk AQHI category during the study period, the
transition probabilities from the High Risk AQHI state
to other states are less consistent across the air monitor-
ing stations. Generally, the most probable transition
from the High Risk AQHI state was to the High Risk
AQHI state (mean of 0.554, ranging from 0.000 in
Cornwall to 0.714 in Kitchener). The next likeliest
transition was to the Moderate Risk AQHI state (mean
of 0.443, ranging from 0.000 in Thunder Bay to 1.000 at

Water Air Soil Pollut (2021) 232: 158158 Page 6 of 13



multiple air monitoring stations). Finally, the least prob-
able transitionwas to the LowRisk AQHI state (mean of
0.003; ranging from 0.000 at all air monitoring stations
except Thunder Bay to 1.000 in Thunder Bay).

Generally, transitions out of an AQHI state were
almost always to an AQHI state with a risk category
one level above or below it. For example, only three
transitions from the Low Risk AQHI state directly to

the High Risk AQHI state were observed out of
1,365,195 transitions from the Low Risk AQHI state,
and 1,463,652 transitions in the study period. Only
one transition from the High Risk AQHI state directly
to the Low Risk AQHI was observed out of the 386 h
spent in total in the High Risk AQHI state and
1,463,652 h in the study period. This indicates that
the AQHI risk states usually transition gradually, and

Table 2 Markov chain transition observation frequency

Air monitoring station Transition observation frequency Chi-square statistic

Number Name n 11 n 12 n 13 n 21 n 22 n 23 n 31 n 32 n 33 DF χ2 p value

1 Barrie 39917 398 0 394 2258 0 0 0 0 2 30,387.5 < 0.001

2 Belleville 40588 262 0 265 1452 10 0 10 13 4 43,526.0 < 0.001

3 Brantford 40790 325 0 331 1868 6 0 6 6 4 41,549.3 < 0.001

4 Burlington 38082 603 0 608 4078 5 0 5 6 4 44,602.1 < 0.001

5 Chatham 39679 368 0 370 2354 3 0 3 1 4 33,965.6 < 0.001

6 Cornwall 41765 221 0 220 1132 1 0 1 0 4 29,999.7 < 0.001

7 Dorset 42467 93 0 91 371 0 0 0 0 2 27,474.6 < 0.001

8 Grand Bend 40814 237 1 248 1429 20 0 22 33 4 46185.8 < 0.001

9 Guelph 40432 342 0 345 1985 2 0 2 1 4 35,497.6 < 0.001

10 Hamilton Downtown 35324 774 0 784 6246 7 0 7 13 4 50,674.0 < 0.001

11 Hamilton West 37090 638 0 635 4554 1 0 1 0 4 31,783.6 < 0.001

12 Kingston 41506 242 0 246 1265 3 0 3 2 4 36,888.6 < 0.001

13 Kitchener 39990 334 0 336 2090 4 0 4 10 4 52914.3 < 0.001

14 London 40849 307 0 308 1839 3 0 3 0 4 31,269.3 < 0.001

15 Mississauga 39832 426 0 429 2492 1 0 1 1 4 41,472.5 < 0.001

16 Newmarket 40422 362 0 363 2326 10 0 10 14 4 46,597.4 < 0.001

17 North Bay 41917 220 1 221 876 1 0 2 4 4 46,414.0 < 0.001

18 Oakville 38748 457 0 458 3172 4 0 4 1 4 33,572.8 < 0.001

19 Ottawa Downtown 40704 284 0 283 1783 0 0 0 0 2 31,539.5 < 0.001

20 Parry Sound 41873 150 0 150 813 1 0 1 0 4 30,406.1 < 0.001

21 Petawawa 42939 45 0 45 200 0 0 0 0 2 28,733.5 < 0.001

22 Peterborough 40890 284 0 286 1684 5 0 5 1 4 32,278.5 < 0.001

23 Port Stanley 39833 319 0 321 1939 8 0 8 15 4 48,628.0 < 0.001

24 Sarnia 38447 528 0 525 3653 18 0 18 14 4 40,186.2 < 0.001

25 Sault Ste Marie 41695 190 0 190 719 0 0 0 0 2 26,467.8 < 0.001

26 St Catherines 39990 375 0 375 2224 0 0 0 0 2 30,780.8 < 0.001

27 Sudbury 40774 299 0 300 1659 0 0 0 0 2 30,347.8 < 0.001

28 Thunder Bay 41760 211 1 213 766 0 1 0 0 4 26,010.2 < 0.001

29 Tiverton 41246 191 0 192 1164 9 0 9 7 4 39,333.2 < 0.001

30 Toronto Downtown 35299 730 0 723 5863 3 0 3 3 4 42,875.8 < 0.001

31 Toronto East 37438 582 0 584 4642 10 0 10 23 4 53,946.2 < 0.001

32 Toronto West 35620 799 0 800 5913 9 0 9 15 4 48,661.0 < 0.001

33 Windsor Downtown 36102 757 0 765 5511 10 0 10 11 4 43,581.8 < 0.001

34 Windsor West 37305 712 0 709 4468 14 0 14 20 4 45,695.4 < 0.001
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sudden, large changes are not expected. This fact
means that public health officials will likely not need
to issue an air quality advisory for the High Risk
AQHI category without an ongoing air quality

advisory for the Moderate Risk AQHI category. Ad-
ditionally, this observation indicates that if any air
quality mitigation measures were instituted during
the study period, they were not effective enough to

Table 3 Markov chain transition probabilities

Air monitoring station Transition probabilities

Number Name P11 P12 P13 P21 P22 P23 P31 P32 P33

1 Barrie 0.990 0.010 N/A 0.149 0.851 N/A N/A N/A N/A

2 Belleville 0.994 0.006 0.000 0.153 0.841 0.006 0.000 0.435 0.565

3 Brantford 0.992 0.008 0.000 0.150 0.847 0.003 0.000 0.500 0.500

4 Burlington 0.984 0.016 0.000 0.130 0.869 0.001 0.000 0.455 0.545

5 Chatham 0.991 0.009 0.000 0.136 0.863 0.001 0.000 0.750 0.250

6 Cornwall 0.995 0.005 0.000 0.163 0.837 0.001 0.000 1.000 0.000

7 Dorset 0.998 0.002 N/A 0.197 0.803 N/A N/A N/A N/A

8 Grand Bend 0.994 0.006 0.000 0.146 0.842 0.012 0.000 0.400 0.600

9 Guelph 0.992 0.008 0.000 0.148 0.851 0.001 0.000 0.667 0.333

10 Hamilton Downtown 0.979 0.021 0.000 0.111 0.888 0.001 0.000 0.350 0.650

11 Hamilton West 0.983 0.017 0.000 0.122 0.877 0.000 0.000 1.000 0.000

12 Kingston 0.994 0.006 0.000 0.162 0.836 0.002 0.000 0.600 0.400

13 Kitchener 0.992 0.008 0.000 0.138 0.860 0.002 0.000 0.286 0.714

14 London 0.993 0.007 0.000 0.143 0.855 0.001 0.000 1.000 0.000

15 Mississauga 0.989 0.011 0.000 0.147 0.853 0.000 0.000 0.500 0.500

16 Newmarket 0.991 0.009 0.000 0.134 0.862 0.004 0.000 0.417 0.583

17 North Bay 0.995 0.005 0.000 0.201 0.798 0.001 0.000 0.333 0.667

18 Oakville 0.988 0.012 0.000 0.126 0.873 0.001 0.000 0.800 0.200

19 Ottawa Downtown 0.993 0.007 N/A 0.137 0.863 N/A N/A N/A N/A

20 Parry Sound 0.996 0.004 0.000 0.156 0.843 0.001 0.000 1.000 0.000

21 Petawawa 0.999 0.001 N/A 0.184 0.816 N/A N/A N/A N/A

22 Peterborough 0.993 0.007 0.000 0.145 0.853 0.003 0.000 0.833 0.167

23 Port Stanley 0.992 0.008 0.000 0.142 0.855 0.004 0.000 0.348 0.652

24 Sarnia 0.986 0.014 0.000 0.125 0.871 0.004 0.000 0.563 0.438

25 Sault Ste Marie 0.995 0.005 N/A 0.209 0.791 N/A N/A N/A N/A

26 St Catherines 0.991 0.009 N/A 0.144 0.856 N/A N/A N/A N/A

27 Sudbury 0.993 0.007 N/A 0.153 0.847 N/A N/A N/A N/A

28 Thunder Bay 0.995 0.005 0.000 0.218 0.782 0.000 1.000 0.000 0.000

29 Tiverton 0.995 0.005 0.000 0.141 0.853 0.007 0.000 0.563 0.438

30 Toronto Downtown 0.980 0.020 0.000 0.110 0.890 0.000 0.000 0.500 0.500

31 Toronto East 0.985 0.015 0.000 0.112 0.887 0.002 0.000 0.303 0.697

32 Toronto West 0.978 0.022 0.000 0.119 0.880 0.001 0.000 0.375 0.625

33 Windsor Downtown 0.979 0.021 0.000 0.122 0.877 0.002 0.000 0.476 0.524

34 Windsor West 0.981 0.019 0.000 0.137 0.861 0.003 0.000 0.412 0.588

Ontario Average 0.990 0.010 0.000 0.134 0.865 0.002 0.003 0.443 0.554

Note: Transition probabilities that were assigned a value of N/A could not be calculated due to the AQHI risk category not being entered
during the period of the study (January 1, 2015–December 31, 2019). The subscripts of the transition probability, 1, 2, and 3 represent the
Low Risk, Moderate Risk, and High Risk AQHI category, respectively
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cause an immediate reduction from the High Risk
AQHI category to the Low Risk AQHI category.

3.2 Stationary Distribution

The stationary distribution of theMarkov chain for each air
monitoring stationwas calculated. EachMarkov chainwas
shown to be irreducible and ergodic, which meant that the
stationary distribution could be calculated and that it was
unique. It is worth mentioning that the primary source of

air pollution in Ontario is population growth. In the long
term, this factor may increase the probability of air pollu-
tion over time; however, the study period (2015–2019) is
relatively short. Therefore, the change in air-pollution
probability over time is considered insignificant that means
the Markov chain adopted in this study is assumed to be
homogeneous in time. The stationary distribution of each
Markov chain is contained in Table 4. An example of the
average stationary distribution for all of the air monitoring
stations is [π1, π2, π3] = [0.933, 0.067, 0.000].

Fig. 2 Transition probabilities. a p11. b p12. c p13. d p21. e p22. f p23. g p31. h p32. i p33
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The highest proportion of time for each monitoring
station was spent in the Low Risk AQHI category
(mean of 0.933, ranging from 0.838 in Hamilton
Downtown to 0.994 in Petawawa). The second
highest proportion of time was spent in the Moderate
Risk AQHI category (mean of 0.067, ranging from
0.006 in Petawawa to 0.161 in Hamilton Downtown).
Very little time was spent in the High Risk AQHI

category (mean of < 0.000, ranging from 0.000 at most
air monitoring stations to 0.001 at eight air monitoring
stations (Table 4).

Generally, the air monitoring stations with the lowest
expected proportion of time spent in the Low Risk
AQHI category are near densely populated areas in
urban environments. A summary of the spatial analysis
of the stationary distributions is shown in Fig. 3.

Fig. 3 Long-run proportion of time spent in aAQHI LowRisk category, bAQHIModerate Risk category, and cAQHI High Risk category

Table 4 Stationary distribution

Air monitoring station Stationary distribution

Number Name π1 π2 π3 Number Name π1 π2 π3

1 Barrie 0.938 0.062 0.000 18 Oakville 0.915 0.085 0.000

2 Belleville 0.959 0.040 0.001 19 Ottawa Downtown 0.952 0.048 0.000

3 Brantford 0.950 0.050 0.000 20 Parry Sound 0.978 0.022 0.000

4 Burlington 0.892 0.107 0.000 21 Petawawa 0.994 0.006 0.000

5 Chatham 0.936 0.063 0.000 22 Peterborough 0.954 0.045 0.000

6 Cornwall 0.969 0.031 0.000 23 Port Stanley 0.946 0.053 0.001

7 Dorset 0.989 0.011 0.000 24 Sarnia 0.902 0.098 0.001

8 Grand Bend 0.961 0.038 0.001 25 Sault Ste Marie 0.979 0.021 0.000

9 Guelph 0.946 0.054 0.000 26 St Catherines 0.940 0.060 0.000

10 Hamilton Downtown 0.838 0.161 0.000 27 Sudbury 0.955 0.045 0.000

11 Hamilton West 0.879 0.121 0.000 28 Thunder Bay 0.977 0.023 0.000

12 Kingston 0.965 0.034 0.000 29 Tiverton 0.968 0.032 0.000

13 Kitchener 0.943 0.056 0.000 30 Toronto Downtown 0.844 0.156 0.000

14 London 0.950 0.049 0.000 31 Toronto East 0.879 0.121 0.001

15 Mississauga 0.933 0.067 0.000 32 Toronto West 0.844 0.156 0.001

16 Newmarket 0.938 0.062 0.001 33 Windsor Downtown 0.855 0.144 0.000

17 North Bay 0.974 0.025 0.000 34 Windsor West 0.879 0.120 0.001

Ontario Average 0.933 0.067 0.000

The subscripts, 1, 2, and 3 represent the Low Risk, Moderate Risk, and High Risk AQHI category, respectively
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3.3 Mean Persistence Time of an AQHI Category

The mean persistence time of each state of the Markov
chains was calculated for each air monitoring station;
the results are reported in Table 5, and the spatial distri-
bution is shown in Fig. 4. The average mean persistence
time in hours for all of the air monitoring stations in
Ontario is [s11, s22, s33] = [101.7, 6.7, 1.5].

The mean persistence time was the highest for the
Low Risk AQHI category (mean of 101.7 h, ranging
from 46.6 h in Hamilton Downtown to 955.2 h in
Petawawa). The second highest mean persistence time
was for the Moderate Risk AQHI category (mean of 6.7
h, ranging from 4.6 h in Thunder Bay to 9.1 h in Toronto
Downtown). The lowest mean persistence time was for
the High Risk AQHI category (mean of 1.5 h, ranging

Table 5 Mean persistence time of an AQHI category

Air monitoring station Mean persistence time in hours

Number Name s11 s22 s33 Number Name s11 s22 s33

1 Barrie 101.3 6.7 N/A 18 Oakville 85.8 7.9 1.3

2 Belleville 155.9 6.3 2.3 19 Ottawa Downtown 144.3 7.3 N/A

3 Brantford 126.5 6.5 2.0 20 Parry Sound 280.2 6.4 1.0

4 Burlington 64.2 7.7 2.2 21 Petawawa 955.2 5.4 N/A

5 Chatham 108.8 7.3 1.3 22 Peterborough 145.0 6.8 1.2

6 Cornwall 190.0 6.1 1.0 23 Port Stanley 125.9 6.9 2.9

7 Dorset 457.6 5.1 N/A 24 Sarnia 73.8 7.7 1.8

8 Grand Bend 172.5 6.3 2.5 25 Sault Ste Marie 220.4 4.8 N/A

9 Guelph 119.2 6.7 1.5 26 St Catherines 107.6 6.9 N/A

10 Hamilton Downtown 46.6 8.9 2.9 27 Sudbury 137.4 6.5 N/A

11 Hamilton West 59.1 8.2 1.0 28 Thunder Bay 198.0 4.6 1.0

12 Kingston 172.5 6.1 1.7 29 Tiverton 216.9 6.8 1.8

13 Kitchener 120.7 7.1 3.5 30 Toronto Downtown 49.4 9.1 2.0

14 London 134.1 6.9 1.0 31 Toronto East 65.3 8.8 3.3

15 Mississauga 94.5 6.8 2.0 32 Toronto West 45.6 8.3 2.7

16 Newmarket 112.7 7.2 2.4 33 Windsor Downtown 48.7 8.1 2.1

17 North Bay 190.7 4.9 2.3 34 Windsor West 53.4 7.2 2.4

Ontario average 101.7 6.7 1.5

The subscripts, 1, 2, and 3 represent the Low Risk, Moderate Risk, and High Risk AQHI category, respectively

Fig. 4 Mean persistence time of a AQHI Low Risk category, b AQHI Moderate Risk Category, and c AQHI High Risk category
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from 1.0 h at five air monitoring stations to 3.5 h in
Kitchener).

The ideal distribution for air quality health impacts
would have a very high mean persistence time for the
Low Risk AQHI category, and very low mean persis-
tence times for the Moderate Risk, and High Risk AQHI
categories. Generally, this pattern was observed at air
monitoring stations in less populated, rural environ-
ments. At the air monitoring stations in more populated,
urban environments, this pattern was also observed to a
lesser extent. Based on the results of this analysis, public
health officials can, on average, expect to issue air
quality advisories in Ontario with health messages last-
ing for 6.7 h for the Moderate Risk AQHI category and
1.5 h for the High Risk AQHI category.

4 Conclusions

In this study, we used the Markov chain model to
investigate the pattern of AQHI risk categories in On-
tario for a period of 5 years, from 2015 to 2019. We
estimated the transition probability matrix for each air
monitoring station. We identified a general trend in the
transition probability patterns for AQHI risk categories.
We found that each AQHI risk category generally tends
to be stable across each air monitoring station. And
transitions between the AQHI risk categories occur
gradually; sudden, large transitions between risk cate-
gories two levels away are not expected to occur.

The transition probability matrix facilitates the calcu-
lation of the stationary distribution showing the long-
term proportion of time that each air monitoring station
spends in a specific AQHI risk category. We calculated
the mean persistence time for each AQHI risk category
and identified the average duration of air quality advi-
sories in Ontario for the Moderate Risk and High Risk
AQHI categories. Overall, we found that air monitoring
stations in less populated, rural environments had better
air quality and spent less time in Moderate Risk and
High Risk AQHI categories than air monitoring stations
in more populated, urban environments.

The discrete-time Markov chain analysis done in this
study can be extended to include other air monitoring
stations outside of Ontario to broaden the study area and
determine if the trends identified in this study can be
generalised to other areas. The analysis could also be
split into multiple periods to identify temporal trends in
the observed AQHI risk category data. In the future, if

there is enough data, a similar analysis of AQHI data
recorded during the period of the COVID-19 pandemic
would provide more insights about the impact of re-
duced human outdoor activities on air quality.

Notation The following symbols are used in this paper:
Iidentity matrix;
nijobserved frequency of transitions from state i to state j;
Ptransition probability matrix;
PTtransition probability matrix consisting of only the transient

states;
pijone-step transition probability from state i to state j;
Sexpected amount of time before absorption matrix;
sijexpected amount of time before absorption thatMarkov chain

spends in state j given it started in state i;
Xnstochastic process;
πjlong-run proportion of time spent in state j;
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