Skip to main content
Log in

Adsorption of Cadmium onto Sand-Attapulgite Cutoff Wall Backfill Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of Cd by sand-attapulgite cutoff wall backfill media was investigated with batch experiments for different quantities of attapulgite in the mixture (30%, 40%, 60%, and 100%; dry weight). The adsorption capacity of the media for Cd increased with the increase of attapulgite content (Ap). The change of adsorbed amount (qt) with time (t) exhibited two-stage behavior, with more than 80% of the final qt attained in the first 30 min of the experiments. The Elovich equation was the most suitable for describing the adsorption kinetics of Cd by the sand-attapulgite media. The isotherm data were best fit by the Freundlich equation. Analysis of the results indicates that cation exchange was the major adsorption mechanism. The theoretical maximum adsorption capacities (qm) of the sand-attapulgite media for Cd calculated by the Langmuir isotherm model are 6311 mg/kg (Ap = 30%), 6437 mg/kg (Ap = 40%), 6534 mg/kg (Ap = 60%), and 7034 mg/kg (Ap = 100%). The removal percentage (RP) and the distribution coefficient (Kd) of Cd decreased with the increase of the initial Cd concentration (C0) in the solution. An empirical equation for predicting Kd in terms of Ap and C0 was developed: log(Kd) = − 1.22log(C0) + 0.71Ap + 4.17 (r2 = 0.924). This equation can be used to estimate the distribution coefficient of Cd for sand-attapulgite backfill media. This will provide valuable parameters for the study of Cd transport in the sand-attapulgite cutoff wall media, and for the design of such systems for management of landfill leachate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez-Ayuso, E., & García-Sánchez, A. (2007). Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials, 147(1-2), 594–600. https://doi.org/10.1016/j.jhazmat.2007.01.055.

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials). (2008). Standard test method for 24-h batch-type measurement of contaminant sorption by soils and sediments, D 4646-03. PA: West Conshohocken.

    Google Scholar 

  • Bayat, B. (2002). Comparative study of adsorption properties of Turkish fly ashes: II. The case of chromium (VI) and cadmium (II). Journal of Hazardous Materials, 95(3), 275–290.

    CAS  Google Scholar 

  • Chegenizadeh, A., Keramatikerman, M., Dalla Santa, G., & Nikraz, A. (2018). Influence of recycled tyre amendment on the mechanical behaviour of soil-bentonite cut-off walls. Journal of Cleaner Production, 177, 507–515.

    CAS  Google Scholar 

  • Chen, H., & Wang, A. Q. (2009). Adsorption characteristics of Cu (II) from aqueous solution onto poly (acrylamide)/attapulgite composite. Journal of Hazardous Materials, 165(1-3), 223–231.

    CAS  Google Scholar 

  • Chen, Y., Zhan, L. T., & Gao, W. (2019). Waste mechanics and sustainable landfilling technology: comparison between HFWC and LFWC MSWs. In L. Zhan, Y. Chen, & A. Bouazza (Eds.), Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. ICEG 2018, Environmental Science and Engineering. Singapore: Springer.

    Google Scholar 

  • Cheung, C. W., Porter, J. F., & McKay, G. (2000a). Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technology & Biotechnology, 75(11), 963–970.

    CAS  Google Scholar 

  • Cheung, C. W., Porter, J. F., & McKay, G. (2000b). Sorption kinetics for the removal of copper and zinc from effluents using bone char. Separation and Purification Technology, 19(1-2), 55–64.

    CAS  Google Scholar 

  • D’Appolonia, D. J. (1980). Soil-bentonite slurry trench cutoffs. Journal of Geotechnical and Geoenvironmental Engineering, 106(4), 399–417.

    Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

    Google Scholar 

  • Day, S. R. (1994). The compatibility of slurry cutoff wall materials with contaminated groundwater. In D. E. Daniel & S. J. Trautwein (Eds.), Hydraulic conductivity and waste contaminant transport in soils, ASTM STP 1142. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • Dong, L., Lin, L., Li, Q. Y., Huang, Z., Tang, X. Q., Wu, M., Li, C., Cao, X. H., & Scholz, M. (2018). Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater. Journal of Environmental Management, 213, 151–158.

    CAS  Google Scholar 

  • Du, Y. J., Fan, R. D., Reddy, K. R., Liu, S. Y., & Yang, Y. L. (2015a). Impacts of presence of lead contamination in clayey soil–calcium bentonite cutoff wall backfills. Applied Clay Science, 108(5), 111–122.

    CAS  Google Scholar 

  • Du, Y. J., Fan, R. D., Liu, S. Y., Reddy, K. R., & Jin, F. (2015b). Workability, compressibility and hydraulic conductivity of zeolite amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls. Engineering Geology, 195, 258–268.

    Google Scholar 

  • Dubinin, M. M., & Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences. Physical Chemistry Section, 55, 331–337.

    Google Scholar 

  • Evans, J. C., Prince, M. J. (1997). Additive effectiveness in minerally-enhanced slurry walls. ASCE Specialty Conference on In Situ Remediation of the Geoenvironment, ASCE Geotechnical Special Publication No. 71.

  • Evans, J. C., Costa, M. J., & Cooley, B. (1995). The state-of-stress in soil-bentonite slurry trench cutoff walls. In Y. N. Acar & D. E. Daniel (Eds.), Geoenvironment 2000: Characterization, containment, remediation, and performance in environmental geotechnics (pp. 1173–1191). Reston: American Society of Civil Engineers.

    Google Scholar 

  • Evans, J. C., Adams, T. L., Prince, M. J. (1997). Metals attenuation in minerally-enhanced slurry walls. Proc., 1997 Int. Containment Technology Conf., NTIS (National Technical Information Service), Springfield, VA, 679–687.

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.

    CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Galan, E. (1996). Properties and applications of palygorskitesepiolite clays. Clay Minerals, 31(4), 443–453.

    CAS  Google Scholar 

  • Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755–765.

    CAS  Google Scholar 

  • Günay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1-2), 362–371.

    Google Scholar 

  • Gupta, S. S., & Bhattacharyya, K. G. (2006). Removal of Cd (II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128(2-3), 247–257.

    Google Scholar 

  • Haden, W. L., & Schwint, I. A. (1967). Attapulgite: its properties and applications. Industrial & Engineering Chemistry, 59(9), 58–69.

    CAS  Google Scholar 

  • Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., & Furrer, G. (2011). Sorption of lead on Iranian bentonite and zeolite: kinetics and isotherms. Environmental Earth Sciences, 62(3), 559–568.

    CAS  Google Scholar 

  • Helfferich, F. (1962). Ion-exchange (pp. 260–262). New-York: McGraw-Hill.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem, 34, 451–465.

    CAS  Google Scholar 

  • Ho, Y. S., Ng, J. C. Y., & McKay, G. (2000). Kinetics of pollutant sorption by biosorbents. Separation and Purification Methods, 29(2), 189–232.

    CAS  Google Scholar 

  • Hojati, S., & Khademi, H. (2013). Cadmium sorption from aqueous solutions onto Iranian sepiolite: kinetics and isotherms. Journal of Central South University, 20(12).

  • Hong, C. S., & Shackelford, C. D. (2017a). Long-term column testing of zeolite-amended backfills. I: testing methodology and chemical compatibility. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 04017050.

    Google Scholar 

  • Hong, C. S., & Shackelford, C. D. (2017b). Long-term column testing of zeolite-amended backfills. II: solute transport properties. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 04017051.

    Google Scholar 

  • Hong, C. S., Shackelford, C. D., & Malusis, M. A. (2012). Consolidation and hydraulic conductivity of zeolite-amended soilbentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, 138(1), 15–25.

    CAS  Google Scholar 

  • Hong, C. S., Shackelford, C. D., & Malusis, M. A. (2016). Adsorptive behavior of zeolite-amended backfills for enhanced metals containment. Journal of Geotechnical and Geoenvironmental Engineering, 142(7), 04016021.

    Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Laner, D., Fellner, J., & Brunner, P. H. (2012). Site-specific criteria for the completion of landfill aftercare. Waste Management & Research, 30(S9), 88–99.

    CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295.

    CAS  Google Scholar 

  • Liang, X. F., Han, J., Xu, Y. M., Sun, Y. B., Wang, L., & Tan, X. (2014a). In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma, 235, 9–18.

    Google Scholar 

  • Liang, X. F., Han, J., Xu, Y. M., Wang, L., Sun, Y. B., & Tan, X. (2014b). Sorption of Cd2+ on mercapto and amino functionalized palygorskite. Applied Surface Science, 322, 194–201.

    CAS  Google Scholar 

  • Lo, I. M. C., & Yang, X. Y. (2001). Use of organoclay as secondary containment for gasoline storage tanks. Journal of Environmental Engineering, 127(2), 154–161.

    CAS  Google Scholar 

  • Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60(3), 267–312.

    CAS  Google Scholar 

  • Malusis, M. A., & McKeehan, M. D. (2013). Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 189–198.

    CAS  Google Scholar 

  • Malusis, M. A., Barben, E. J., & Evans, J. C. (2009). Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon. Journal of Geotechnical and Geoenvironmental Engineering, 135(5), 664–672.

    CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Mckay, G., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043–3057.

    CAS  Google Scholar 

  • Mishra, A. K., Ohtsubo, M., Li, L. Y., Higashi, T., & Park, J. (2009). Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures. Environmental Geology, 57(5), 1145–1153.

    CAS  Google Scholar 

  • Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17(5-6), 207–221.

    CAS  Google Scholar 

  • Nath, R., Prasad, R., Palinal, V. K., & Chopra, R. K. (1984). Molecular basis of cadmium toxicity. Progress in Food & Nutrition Science, 8(1-2), 109–163.

    CAS  Google Scholar 

  • Neaman, A., & Singer, A. (2004). Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Applied Clay Science, 25(1-2), 121–124.

    CAS  Google Scholar 

  • Nordberg, G. F. (1974). Health hazards of environmental cadmium pollution. Ambio, 3, 51–65.

    Google Scholar 

  • Rusmin, R., Sarkar, B., Biswas, B., Churchman, J., Liu, Y. J., & Naidu, R. (2016). Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Applied Clay Science, 134, 95–102.

    CAS  Google Scholar 

  • Ryan, C. R. (1987). Soil-bentonite cutoff walls. In R. D. Woods (Ed.), Geotechnical Practice for Waste Disposal’87 (pp. 182–204). New York: American Society of Civil Engineers.

    Google Scholar 

  • Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: solid phase formation 1. Soil Science Society of America Journal, 39(5), 851–856.

    CAS  Google Scholar 

  • Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Hoboken: Wiley.

    Google Scholar 

  • Sreedharan, V., & Puvvadi, S. (2013). Compressibility behaviour of bentonite and organically modified bentonite slurry. Géotechnique, 63(10), 876–879.

    Google Scholar 

  • Staessen, J. A., Roels, H. A., Emelianov, D., Kuznetsova, T., Thijs, L., Vangronsveld, J., & Fagard, R. (1999). Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Lancet, 353(9159), 1140–1144.

    CAS  Google Scholar 

  • Stern, R. T., & Shackelford, C. D. (1998). Permeation of sandprocessed clay mixtures with calcium chloride solutions. Journal of Geotechnical and Geoenvironmental Engineering, 12(3), 231–241.

    Google Scholar 

  • Tallard, G. (1997). Very low conductivity self-hardening slurry for permanent enclosures. International Containment Technology Conference and Exhibition Proceeding, No. CONF-970208—PROC.

  • Taylor, R. W., Hassan, K., Mehadi, A. A., & Shuford, J. W. (1995). Kinetics of zinc sorpt1on by soils. Communications in Soil Science and Plant Analysis, 26(11-12).

  • Tran, H. H., Roddick, F. A., & O’Donnell, J. A. (1999). Comparison of chromatography and desiccant silica gels for the adsorption of metal ions—I. adsorption and kinetics. Water Research, 33(13), 2992–3000.

    CAS  Google Scholar 

  • Wang, X. H., & Wang, A. Q. (2010). Removal of Cd (II) from aqueous solution by a composite hydrogel based on attapulgite. Environmental Technology, 31(7), 745–753.

    Google Scholar 

  • Wang, W. J., Chen, H., & Wang, A. Q. (2007). Adsorption characteristics of Cd (II) from aqueous solution onto activated palygorskite. Separation and Purification Technology, 55(2), 157–164.

    CAS  Google Scholar 

  • Wang, Y. Z., Chen, Y. M., Xie, H. J., Zhang, C. H., & Zhan, L. T. (2016). Lead adsorption and transport in loess-amended soil-bentonite cut-off wall. Engineering Geology, 215, 69–80.

    Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Xie, H. J., Chen, Y. M., Zhan, L. T., Chen, R. P., Tang, X. W., Chen, R. H., & Ke, H. (2009). Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system. Journal of Zhejiang University-SCIENCE A, 10(3), 439–449.

    CAS  Google Scholar 

  • Xie, H. J., Chen, Y. M., Thomas, H. R., Sedighi, M., Masum, S. A., & Ran, Q. H. (2016). Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis. Environmental ence and Pollution Research, 23(3), 2566–2575.

    CAS  Google Scholar 

  • Xie, H. J., Wang, S. Y., Qiu, Z. H., & Jiang, J. Q. (2017). Adsorption of NH4+-N on Chinese loess: non-equilibrium and equilibrium investigations. Journal of Environmental Management, 202, 46–54.

    CAS  Google Scholar 

  • Xie, H. J., Wang, S. Y., Chen, Y. M., Jiang, J. Q., & Qiu, Z. H. (2018). An analytical model for contaminant transport in cut-off wall and aquifer system. Environmental Geotechnics, 1–30.

  • Xu, C. B., Qi, J., Yang, W. J., Chen, Y., Yang, C., He, Y. L., Wang, J., & Lin, A. J. (2019). Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Science of the Total Environment, 686, 476–483.

    CAS  Google Scholar 

  • Yang, Y. L., Du, Y. J., Reddy, K. R., & Fan, R. D. (2018). Adsorption of Cr (VI) onto SHMP-amended Ca-bentonite backfills for slurry-trench cutoff walls. In Geo Shanghai International Conference (pp. 434–441). Singapore: Springer.

    Google Scholar 

  • Yang, Y. L., Reddy, K. R., Du, Y. J., & Fan, R. D. (2019). Retention of Pb and Cr(VI) onto slurry trench vertical cutoff wall backfill containing phosphate dispersant amended Ca-bentonite. Applied Clay Science, 168, 355–365.

    CAS  Google Scholar 

  • Ye, H. P., Chen, F. Z., Sheng, Y. Q., Sheng, G. Y., & Fu, J. M. (2006). Adsorption of phosphate from aqueous solution onto modified palygorskites. Separation and Purification Technology, 50(3), 283–290.

    CAS  Google Scholar 

  • Yeo, S. S., Shackelford, C. D., & Evans, J. C. (2005). Consolidation and hydraulic conductivity of nine model soil-bentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1189–1198.

    Google Scholar 

  • Yong, R. N., Ouhadi, V. R., & Goodarzi, A. R. (2009). Effect of Cu2+ ions and buffering capacity on smectite microstructure and performance. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1981–1985.

    CAS  Google Scholar 

  • Zhan, T. L. T., Guan, C., Xie, H. J., & Chen, Y. M. (2014). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation. Science of the Total Environment, 470-471(FEB.1), 290–298.

    CAS  Google Scholar 

  • Zhang, W. B., Rao, W. B., Li, L., Liu, Y., Wang, S., Jin, K., & Zheng, F. W. (2019). Compressibility and hydraulic conductivity of sand-attapulgite cut-off wall backfills. Journal of Zhejiang University-SCIENCE A, 20(3), 218–228.

    Google Scholar 

  • Zhu, W., Xu, H. Q., Wang, S. W., Fan, X. H. (2014). Hydraulic conductivity of model clay-based cut-off wall backfills. Proceedings of the 7th International Congress on Environmental Geotechnics, pp1516-1523.

  • Zhu, W., Xu, H. Q., Wang, S. W., & Fan, X. H. (2016). Influence of CaCl2 solution on the permeability of different clay-based cutoff walls. Rock and Soil Mechanics, 37(5), 1224–1230 (in Chinese with English Abstract).

    Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Drs. Zhimin Jia and Tao Tan for laboratory assistance.

Funding

This study was financially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20191304) and the Fundamental Research Funds for the Central Universities (Grant No. 2019B45414). The contributions of Mark Brusseau were supported by the NIEHS SRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Rao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Rao, W., Li, L. et al. Adsorption of Cadmium onto Sand-Attapulgite Cutoff Wall Backfill Media. Water Air Soil Pollut 232, 47 (2021). https://doi.org/10.1007/s11270-021-04981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-04981-z

Keywords

Navigation