Skip to main content

Advertisement

Log in

Synthesis of Immobilized CdS/TiO2 Nanofiber Heterostructure Photocatalyst for Efficient Degradation of Toluene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The immobilized CdS/TiO2 nanofiber (CdS/TiO2 NF) heterostructure photocatalyst was fabricated via anodic oxidation and cyclic impregnation method. The microstructure of CdS/TiO2 NF was characterized by SEM and TEM. The components of CdS/TiO2 NF were identified by EDX, XPS, and Raman. The optical properties of CdS/TiO2 NF were characterized by UV-vis DRS and PL. Results showed that CdS was loaded on the surface of TiO2 NF in the form of particles with a diameter of about 10–80 nm. The Cd and S elements were detected on the surface of catalyst. CdS/TiO2 NF improved the absorption performance in the ultraviolet and visible light regions and reduced the recombination of photogenerated electron-hole pairs. The performance of CdS/TiO2 NF on degrading toluene was investigated. Results showed that the deposition of CdS enhanced the photocatalytic activity of TiO2 NF. The toluene concentration, catalyst dosage, and flow rate had marked impact on the photocatalytic degradation efficiency of toluene. In this reaction system, the degradation ratio was 80.71% when the toluene concentration was 13 mg·L−1, the photocatalyst area was 32 cm2, the flow rate was 3 L·min−1, and the illumination time was 100 min. The mineralization ratio after photocatalytic reaction for 100 min was about 45.02%. The immobilized CdS/TiO2 NF photocatalyst is easy to be recycled, which can reduce the energy and material cost. This work not only highlights the intrinsical role of CdS materials in the enhanced photocatalytic performance of TiO2 NF but also provides significant guidance on fabricating immobilized CdS/TiO2 NF photocatalyst applied in environment remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen, Q. H., Xin, Y. J., & Zhu, X. W. (2015). Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochimica Acta, 186, 34–42.

    Article  CAS  Google Scholar 

  • Chen, Q. H., Wu, S. N., & Xin, Y. J. (2016). Synthesis of Au-CuS-TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chemical Engineering Journal, 302, 377–387.

    Article  CAS  Google Scholar 

  • Dang, R., & Ma, X. R. (2017). CdS nanoparticles decorated anatase TiO2 nanofibers with enhanced visible light photocatalytic activity for dye degradation. Journal of Materials Science, 28, 8818–8823.

    CAS  Google Scholar 

  • Dong, F., Wang, H. Q., Sen, G., Wu, Z. B., & Lee, S. C. (2011). Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air. Journal of Hazardous Materials, 187, 509–516.

    Article  CAS  Google Scholar 

  • Fagan, R., Synnott, D. W., Mccormack, D. E., & Pillai, S. C. (2016). An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts. Applied Surface Science, 371, 447–452.

    Article  CAS  Google Scholar 

  • Ghanbari, M., Ansari, F., & Salavati-Niasari, M. (2017). Simple synthesis-controlled fabrication of thallium cadmium iodide nanostructures via a novel route and photocatalytic investigation in degradation of toxic dyes. Inorganica Chimica Acta, 455, 88–97.

    Article  CAS  Google Scholar 

  • Jing, L. Q., Qu, Y. C., Wang, B. Q., Li, S. D., Jiang, B. J., Yang, L. B., Fu, W., Fu, H. G., & Sun, J. Z. (2006). Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells, 90, 1773–1787.

    Article  CAS  Google Scholar 

  • Li, X. Q., & Zhang, W. X. (2007). Sequestration of metalcations with zero valent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111, 6939–6946.

    Article  CAS  Google Scholar 

  • Lin, B., An, H., Yan, X. Q., Zhang, T. X., Wei, J. J., & Yang, G. D. (2017). Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 210, 173–183.

    Article  CAS  Google Scholar 

  • Meera, S., & Lawrence, L. T. (2008). Visible light photocatalytic oxidation of toluene using a cerium-doped titaniacatalyst. Industrial & Engineering Chemistry Research, 47, 3346–3357.

    Article  Google Scholar 

  • Moulis, F., & Krýsa, J. (2013). Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor. Catalysis Today, 209, 153–158.

    Article  CAS  Google Scholar 

  • Nakanishi, T., Ohtani, B., & Uosaki, K. (1998). Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold. The Journal of Physical Chemistry B, 102, 1571–1577.

    Article  CAS  Google Scholar 

  • Pham, T. D., & Lee, B. K. (2015). Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. Journal of Hazardous Materials, 300, 493–503.

    Article  CAS  Google Scholar 

  • Pham, V. V., Bui, D. P., Tran, H. H., Cao, M. T., Nguyen, T. K., Kim, Y. S., & Le, V. H. (2018). Photoreduction route for Cu2O/TiO2 nanotubes junction for enhanced photocatalytic activity. RSC Advances, 8, 12420–12427.

    Article  CAS  Google Scholar 

  • Qian, S. S., Wang, C. S., Liu, W. J., Zhu, Y. H., Yao, W. J., & Lu, X. H. (2011). An enhanced CdS/TiO2 photocatalyst with high stability and avtivity: effect of mesoporous substrate and bifunctional linking molecule. Journal of Materials Chemistry, 21, 4945–4952.

    Article  CAS  Google Scholar 

  • Rifath, S., & Madhumita, B. R. (2012). Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. Journal of the Air & Waste Management, 62, 1032–1039.

    Article  Google Scholar 

  • Sleiman, M., Conchon, P., Ferronato, C., & Chovelon, J. M. (2009). Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86, 159–165.

    Article  CAS  Google Scholar 

  • Sun, G. H., Zhu, C. S., Zheng, J. T., Jiang, B., Yin, H. C., Wang, H., Qiu, S., Yuan, J. J., Wu, M. B., Wu, W. T., & Xue, Q. Z. (2016). Preparation of spherical and dendritic CdS@TiO2 hollow double-shelled nanoparticles for photocatalysis. Materials Letters, 166, 113–115.

    Article  CAS  Google Scholar 

  • Ullah, R., Ang, H. M., Tadé, M. O., & Wang, S. B. (2012). Synthesis of doped BiNbO4 photocatalysts for removal of gaseous volatile organic compounds with artificial sunlight. Chemical Engineering Journal, 185-186, 328–336.

    Article  CAS  Google Scholar 

  • Vesna, T., Franjo, J., & Zoran, G. (2008). Photocatalytic oxidation of toluene in the gas phase: modelling an annular photocatalytic reactor. Catalysis Today, 137, 350–356.

    Article  Google Scholar 

  • Vorokh, A. S., Kozhevnikova, N. S., Gorbunova, T. I., Gyrdasova, O. I., Baklanova, I. V., Buldakova, L. Y., Yanchenko, M. Y., Murzakaev, A. M., Shalaeva, E. V., & Enyashin, A. N. (2017). Facile, rapid and efficient doping of amorphous TiO2 by presynthesized colloidal CdS quantum dots. Journal of Alloys and Compounds, 706, 205–214.

    Article  CAS  Google Scholar 

  • Wang, M., Hua, J. H., & Yang, Y. L. (2018). Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation. Spectrochimica Acta Part A, 199, 102–109.

    Article  CAS  Google Scholar 

  • Wu, L., Yu, J. C., & Fu, X. Z. (2006). Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 244, 25–32.

    Article  CAS  Google Scholar 

  • Xin, Y. J., Chen, Q. H., & Zhang, G. D. (2018). Construction of ternary heterojunction CuS-CdS/TiO2 nanobelts for photocatalytic degradation of gaseous toluene. Journal of Alloys and Compounds, 751, 231–240.

    Article  CAS  Google Scholar 

  • Xue, C., Wang, T., Yang, G. D., Yang, B. L., & Ding, S. J. (2014). A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity. Journal of Materials Chemistry A, 2, 7674–7679.

    Article  CAS  Google Scholar 

  • Yuan, L., Weng, B., Colmenares, J. C., Sun, Y. G., & Xu, Y. J. (2017a). Multichannel charge transfer and mechanistic insight in metal decorated 2D-2D Bi2WO6-TiO2 cascade with enhanced photocatalytic performance. Small, 13, 1702253.

    Article  Google Scholar 

  • Yuan, Z. M., Tang, R., Zhang, Y. A., & Yin, L. W. (2017b). Enhanced photovoltaic performance of dye-sensitized solar cells based on Co9S8 nanotube array counter electrode and TiO2/g-C3N4 heterostructure nanosheet photoanode. Journal of Alloys and Compounds, 691, 983–991.

    Article  CAS  Google Scholar 

  • Zou, T., Xie, C. S., Liu, Y., Zhang, S. S., Zou, Z. J., & Zhang, S. P. (2013). Full mineralization of toluene by photocatalytic degradation with porous TiO2/SiC nanocomposite film. Journal of Alloys and Compounds, 552, 504–510.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Shandong Province (ZR2019MD012), National Natural Science Foundation of China (No. 51678323), and Special Fund for Agroscientific Research in the Public Interest (201503107). The authors sincerely thank the Central Laboratory of Qingdao Agriculture University for providing the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The immobilized CdS/TiO2 NF photocatalyst is easy to be recycled.

2. CdS/TiO2 NF had excellent absorption performance for ultraviolet and visible light.

3. CdS/TiO2 NF showed outstanding separation and transfer of photoexcited electrons.

4. Toluene degradation by CdS/TiO2 NF (80.71%) was higher than that by TiO2 NF (7.75%).

Electronic Supplementary Material

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, M., Jiang, Y. et al. Synthesis of Immobilized CdS/TiO2 Nanofiber Heterostructure Photocatalyst for Efficient Degradation of Toluene. Water Air Soil Pollut 231, 92 (2020). https://doi.org/10.1007/s11270-020-4461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4461-x

Keywords

Navigation