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Abstract Soil microbial communities play an impor-
tant role in the biodegradation of different petroleum
derivates, including hydrocarbons. Also other biological
factors such as enzyme and respiration activities and
microbial abundance are sensitive to contamination with
petroleum derivates. The aim of this study was to eval-
uate the response of autochthonic microbial community
and biological parameters (respiration, dehydrogenase
and catalase activities, total microorganisms count) on
contamination with car fuels and engine oils. The sur-
face layer (0–20 cm) ofMollic Gleysol was used for the
experiment. In laboratory conditions, soil was contam-
inated with the following petroleum substances: car
fuels (petrol, diesel) and car engine oils (new and
waste—after 10,000 km). The results demonstrated that,
among the investigated hydrocarbon substances, petrol
addition seemed to be the most toxic for the microbial
activity of the investigated soil. The toxicity of the used
hydrocarbon substances to microorganisms might be
summarized as follows: diesel > new oil > waste oil >
petrol. Species belonging to the generaMicrococcus and
Rhodococcus were noted as the major autochthonic
bacteria being present in soil contaminated with new
automobile oil, whereas species of the genera Bacillus

sp. and Paenibacillus sp. were identified in the combi-
nation treated with waste oil.
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1 Introduction

The intensive development of urbanization and mecha-
nization is associated with increases in the environment
contamination by petroleum and petroleum derivate
products (Rusin et al. 2015). Oil derivates and car fuels
can be regarded as composed of four major constituents:
saturated hydrocarbons, aromatic hydrocarbons,
asphaltenes, and resins (Moubasher et al. 2015;
Ramadass et al. 2015). Many polycyclic aromatic hy-
drocarbons (PAHs) and their epoxides are highly toxic,
mutagenic, or carcinogenic to microorganisms and
higher organisms, including humans (Moubasher et al.
2015). Generally, car oil consists of 90 % petroleum
fractions and 10 % of other additives, i.e., antioxidants
and detergents (Ramadass et al. 2015); however, a par-
ticular danger for the soil environment is posed by used
oil. The Environmental Protection Agency (2001) de-
fined used motor oil as Bany petroleum-based or syn-
thetic oil that has been used for vehicle lubrication and
as a result of normal use, motor oil becomes contami-
nated with various impurities such as dirt, water,
chemicals, or metals from vehicle engine^. It was re-
ported that 1 L of used motor oil can pollute up to
3,784 m2 of soil, making it non-productive for farming
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or plant growth for up to 100 years (Chin et al. 2012). In
that context, soil contamination with oil derivates is a
serious problem needing recognition particularly in the
aspect of autochthonic soil microorganisms that are able
to survive in such extremely difficult conditions. Soil
microorganisms in intimate contact with soil particles
are very sensitive to any ecosystem perturbation and are
therefore considered to be the best indicators of soil
pollution (Andreoni et al. 2004; Guo et al. 2012). Suja
et al. (2014) reported that the use of indigenous micro-
organisms in the bioremediation process can reduce the
risk associated with hydrocarbon contamination of soils.
Earlier studies indicated that the following soil bacterial
genera have a capability of bioremediation of petroleum
substances: Pseudomonas, Arthrobacter, Acinetobacter,
Nocardia, Corynebacterium, Geobacillus, Klebsiella,
Bacil lus , Mycobacterium, Brachybacterium,
Microbacterium, Sphingobium, and Serratia (Al-
Mailem et al. 2014; Chen et al. 2015; Rusin et al.
2015). Also, such genera as Micrococcus (Khan and
Singh 2011), Pseudomonas sp. (Nikhil et al. 2013),
and Rhodococcus (Leilei et al. 2012) are indicated to
have an ability to degrade hydrocarbon in the soil
environment.

The biological balance in soil affected by the toxicity
of petroleum compounds could be assessed by ecotox-
icological assays using bacteria (Hentati et al. 2013;
Moubasher et al. 2015) or by measuring the activities
of soil enzymes, e.g., dehydrogenases and catalase
(Wyszkowska and Wyszkowski 2010; Hentati et al.
2013; Alrumman et al. 2015). Soil enzymatic activity
assays act as potential indicators of ecosystem quality, as
they are operationally practical, sensitive, integrative,
and often described as Bsoil biological fingerprints^.
Dehydrogenases (EC 1.1.1.) are particularly important
soil enzymes, since they exist only inside viable micro-
bial cells and thus provide reliable information about
soil biology, fertility, and productivity (Frąc and
Jezierska-Tys 2011; Wolinska et al. 2015). Thus, mea-
surement of dehydrogenase activity (DHA) in soil pro-
vides a large amount of information about its biological
characteristics. Catalase (EC 1.11.1.6) is another intra-
cellular enzyme found in all aerobic bacteria and most
facultative anaerobes, but absent in obligate anaerobes
(Shiyin et al. 2004). The products of oxygen reduction,
such as hydrogen peroxide, superoxide radical, and
hydroxyl radical, can be highly toxic to cells and might
damage cellular macromolecules (Stępniewska et al.
2009). Thus, the main catalase function is to split

hydrogen peroxide into molecular oxygen and water
and thus prevent cells from damage by reactive oxygen
species (Shiyin et al. 2004; Yao et al. 2006). It is as-
sumed that catalase activity (CAT) may be related to the
metabolic activity of aerobic organisms and has been
used as an indicator of soil fertility (Shiyin et al. 2004;
Stępniewska et al. 2009). Also, respiration activity
(RA), defined as the process of carbon dioxide release
by microorganisms and plant roots, is a factor that
provides one of the most important information about
the soil biological activity (Cerhanova et. al. 2006;
Baronti et al. 2008). However, little investigation has
been carried out to examine the effect of contamination
with petroleum derivates on RA.

It should be emphasized that soil quality can be
determined according to the presence and activity of
soil microbial populations, whereas enzyme activities
have been considered as parameters for evaluating and
monitoring remediation of hydrocarbon-contaminated
soil (Alrumman et al. 2015). Thus, in the current study,
soil dehydrogenase, soil catalase, soil respiration, and
the number of cultivable microorganisms were used to
monitor the effects of oil derivates on soil quality.
Additionally, identification of the microbial community
was performed with the use of molecular methods. The
purpose of this work was to determine the effect of
petroleum-derived substances such as petrol, diesel,
and new and used engine oils on selected biological
factors and to carry out molecular identification of mi-
croorganisms that are able to perform the bioremedia-
tion process in contaminated Mollic Gleysol.

2 Material and Methods

2.1 Soil Characteristic

The soil used for the experiment was Mollic Gleysol
taken in October 2014 from Kosiorów village (51°13′N;
21°51′E; Fig. 1), located close to the Chodelka River, a
tributary of the Vistula River in the south-east part of
Poland. Soil was collected from the surface layer (0–
20 cm) of an agricultural meadow used for hay-making.

The soil was chemically characterized by analyses of
pH, redox potential (Eh), electric conductivity (EC) by
Hach Lange and Radiometer potentiometric equipment
and total carbon (TC) content by an automatic analyzer
Shimadzu TOC-V CSH. The soil investigated exhibited
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a peaty soil type (upper 20 cm: pH 6.19; Eh 480.73 mV;
EC 197.8 μS/cm3).

In laboratory conditions, the soil was contaminated
with the following petroleum substances: car fuels (un-
leaded 95-octane petrol and diesel) and car engine oils
(synthetic Total 5W/30, referred to as New oil and Mobil
1™ 5W/50 after driving 10,000 km, referred to as Waste
oil). Synthetic oil 5W/30 is particularly suited for turbo-
charged, multi-valve, and direct injection engines. It can
be used in the most severe operating conditions in any
type of climate. It is perfectly adapted to all vehicles
equipped with catalysts that use unleaded fuel or LPG.
Mobil 1™ is the world’s leading synthetic motor oil
brand delivering ultimate car engine performance and
protection. The balanced technology of Mobil 1 5W/50
helps to make it suitable for many types of vehicles and
operating conditions, from mild to severe. Car fuels (pet-
rol, diesel) and engine oils (new and waste) were added to
the soil at the following doses: 5.0, 10.0, and 15.0 g per
10 g of soil. Soil samples without any petroleum sub-
stances addition were prepared as a control. Prior to
laboratory assays, the contaminated and control soils
were incubated for 1 week at room temperature (20 °C).

2.2 Soil Respiration Activity

Soil respiration activity (RA) was determined with the
use of a gas chromatograph (GC Varian CP-3800, USA)
equipped with a TCD detector and two types of col-
umns: Poraplot Q (25 m) and a molecular sieve 5A
(30 m) connected together (Szafranek-Nakonieczna
and Stępniewska 2014). Soil subsamples (10 g, three
replicates, both control and contaminated treatments)
were placed in dark, sterile bottles (60 ml) tightly closed
and 1-week incubated (20 °C). At the beginning of the
experiment and after 7 days, the level of accumulated
CO2 was analyzed in the headspace of the soil samples.
Based on the differences between the concentration of
CO2 at the start and at the end of the experiment, RAwas
calculated and expressed as a mass of produced carbon
dioxide per mass of dry soil and per unit of time—day
(milligram of CO2 per kilogram of d.m. per day).

2.3 Assay for Determination of Soil Enzymatic
Activities

Soil dehydrogenase activity (DHA) was estimated by
reducing 2.3.5–triphenyltetrazolium chloride (TTC), ac-
cording to the procedure of Casida et al. (1964). Soils

samples (6 g, three replicates, both control and contam-
inated treatments) were mixed with 120 mg CaCO3,
1 ml 3 % (w/v) TTC, and 4 ml of distilled water, and
incubated for 20 h at 30 °C (Heraens Instruments).
Then, extraction with ethanol (25 ml) was performed.
After 1-h incubation in the dark, the extracts were fil-
tered and absorption was measured at 485 nm (UV-
1800, Shimadzu).

Catalase activity (CAT) was determined by back-
titrating residual H2O2 with KMnO4 according to the
Johnson and Temple (1964) method. Soil samples (2 g,
three replicates, both control and contaminated treat-
ments) were added to 40 ml distilled water with 5 ml
of a 0.3 % hydrogen peroxide solution. The mixture was
shaken for 20 min and then 5 ml of 1.5 M H2SO4 were
added. Afterwards, the solution was filtered and titrated
using 0.02 M KMnO4 (Stępniewska et al. 2009). The
reacting amount of 0.02 M KMnO4 calculated per gram
of dry soil was used to express the activity of catalase.

2.4 Number of Soil Microorganisms

The total microbial counts (TMC) were estimated by the
viable count on serial spread plates (Guo et al. 2012).
The soil samples (5 g, three replicates, both control and
contaminated treatments) were suspended separately in
50 ml 0.9 % NaCl. The series of dilutions were repeated
to produce six continuous dilutions. The c.f.u. (colony-
forming unit) of the total heterotrophic bacteria was
counted after 14 days of growth on an agar medium at
25 °C (Wolińska et al. 2013).

2.5 Isolation of Petroleum-Degrading Bacterial Strains

Petroleum-contaminated and control soil samples (5 g)
were added to a flask containing 50ml of 0.9 % NaCl as
10−4 diluents, which were then shaken for 30 min at
150 rpm at 30 °C. Then, 0.1 ml was loaded onto LB
solid medium plates and incubated for 7 days at 30 °C.
Microbial colonies with different color and form were
transferred with an inoculation loop onto solid LB me-
dium again. This step was repeated twice for separation
and purification. The purified strains were precultivated
two times on enrichment liquid medium and were used
as petroleum-degrading bacteria for further study. Then,
the morphological characteristics of the colonies were
observed, e.g., colony color, form, and Gram staining.
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2.6 Molecular Identification

The total bacterial DNA was extracted with the
Sambrook and Russell method (2001, with own
modification). The universal 16S rDNA primers 27F
(5′-AGAGTTTGATCATGGCTCAG-3 ′) and 1492 R
(5′-TACGGTTACCTTGTTACGACTT-3′) were syn-
thesized to amplify the 16S rRNA gene of the isolates
obtained, using its genomic DNA as a template. For the
PCR reaction (50 μl), 1X Phusion Flash High-Fidelity
PCR Master Mix (Thermo Scientific) was used. The
reaction conditions consisted in initial denaturation at
98 °C for 10 s, 30 cycles of 98 °C for 5 s, primer
annealing at 53 °C for 5 s, and elongation at 72 °C for
40 s. Afterwards, the PCR amplification products were
separated by electrophoresis in a 1 % agarose gel. Then,
all products were gel purified and sequenced. The 16S
rDNA fragments of all isolates obtained were sent to the
Genomed S.A. (Warsaw) for sequencing. The results
obtained were analyzed by BLAST online comparison
(http:// www.ncbi.nlm.nih.gov) for identification of the
isolates.

3 Results

3.1 Effect of Car Fuels and Engine Oils on Soil
Respiration Activity

The response of RA on soil contamination with petro-
leum substances after 1-week incubation is shown at
Fig. 1. RA registered in the control sample was
112.25 mgCO2 kg

−1 day−1. The addition of oil derivates
and diesel at every dose applied resulted in RA

stimulation in comparison to respiration from the con-
trol soil. Three-fold higher values of RA ranging be-
tween 355 and 378 mg CO2 kg

−1 day−1were noted after
5.0 g of contaminant addition in regard to diesel as well
as new and waste oil. The dose of 10.0 g caused a double
increase in RA, which persisted at 241, 230, and 185 mg
CO2 kg−1 day−1 for diesel, new oil, and waste oil,
respectively. Also, the highest contaminant dose caused
c.a. 30% RA stimulation in relation to the control value.
However, the strongest effect was observed in the case
of 15.0 g diesel application when RA amounted to
170 mg CO2 kg

−1 day−1.
Among the investigated hydrocarbon substances,

petrol addition seemed to be the most toxic to the
microbial activity expressed as RA, as a significant
(p< 0.001) decrease in respiration, irrespective of the
petrol dose, was observed. RA decreased by 55, 73,
and 85 % in comparison to the control value as an
effect of the following petrol doses: 5.0, 10.0, and
15.0 g.

3.2 Effect of Car Fuels and Engine Oils on Soil
Enzymatic Activity

The response of DHA on soil contamination with petro-
leum substances is presented at Fig. 2. DHA detected in
the non-contaminated soil samples had a value of
1.68 μg TPF g−1 min−1. Stimulation of DHA was ob-
served only in one case as a result of diesel (5.0 g)
addition when DHA equaled 2.48 μg TPF g−1 min−1.
In the other cases, the addition of 5.0 g of petroleum
substances led to a decrease in DHA in comparison to
the control value by 4.8, 31.5, and 65.5 % for waste oil,
new oil, and petrol, respectively. The higher oil and
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petrol doses (10.0 and 15.0 g) resulted in a further DHA
decline, regardless of the type of oil products. The
lowest level of DHA of 0.11–0.41 μg TPF g−1 min−1

was detected in the soil samples contaminated with
15.0 g of oil products. However, DHA has proved to
be the most resistant to diesel pollution, as even the
highest dose (15.0 g) resulted in 38 % reduction of
enzymatic activity in comparison to the control value.

Also, CAT turned out to be sensitive to contamina-
tion with petrol, diesel, and oil derivates as each of the
contaminant doses applied induced a decrease in CAT
(Fig. 3). CAT recorded in the control samples amounted
to 216.61 μmol H2O2 g

−1 min−1. The lowest contami-
nant dose (5.0 g) led to CAT reduction by c.a. 16–66 %
in comparison to the non-contaminated soil. The most
toxic effect in this case was posed by petrol, whereas
new oil and diesel seemed to be the least harmful to
CAT.

3.3 Effect of Car Fuels and Engine Oils on the Number
of Soil Microorganisms

The changes noted in the microorganisms abundance
caused by contamination with petrol, diesel and oil
derivates and expressed as colony forming units are
demonstrated at Fig. 4.

Cultivable microorganisms number (CMN) noted in
the control samples reached the level of 55×106 c.f.u. In
two cases, addition of diesel and waste oil (5.0 g) result-
ed in an increase in the bacterial abundance by 7 and
13 %, respectively. However, the differences mentioned
were not significant (p>0.05). Each subsequent dose of
the contaminants caused a decline in CMN by 35 and
73 % in respect to the contaminant dose: 10.0 and
15.0 g. However, it should be emphasized that despite
the use of the highest doses of the petroleum substances
(15.0 g), CMN was relatively high and ranged between
9 and 22×106 c.f.u., which suggests therefore that the
bacterial microflora inhabiting the investigated Mollic
Gleysol is capable of growth in the presence of contam-
ination with petroleum substances. Consequently, the
next step in the study was molecular identification of
the autochthonic microbial community.

3.4 Effect of Car Fuels and Engine Oils on Soil Bacterial
Community

We isolated 10 strains from the top soil layer (both
control and contaminated soil treatments). The DNA

from the bacterial isolates obtained was the template
for PCR reaction with universal 16S rDNA primers
27F/1492R. We obtained specific PCR amplification
products ca. 1.5 Kb in size (Fig. 5). All the PCR frag-
ments were highly similar to known bacterial strains
according to the 16S rDNA sequence comparison.

The major autochthonic bacteria present in the soil
contaminated with petrol oil and diesel as well as the
control soil included species belonging to the genera
Rhodococcus (R. erythropolis, R. qingshengi, and R.
globerulus)—isolates C2, P1, P2, D1, and D2, whereas
isolates C1, WO1, WO2, NO1, and NO2 representing
the genera Micrococcus, Bacillus, Peanibacillus,
Mesorhizobium (Table 1) were identified in the combi-
nation treated with waste and new engine oil.

Our study reports a preliminary identification.
Further identification to the species level is needed.
The results of Gram staining and genetic identification
showed that nine among the ten isolates are Gram-
positive microorganisms. This could be the premise that
Gram positive microorganisms are more able to with-
stand contamination with petroleum (Table 2). The col-
ony shape was established as round or irregular (for
most isolated strains, 90 %). The isolated colonies of
the strains exhibited mostly a rod shape. As for the
colony color or transparency/opacity, it was noticed that
most strains formed opaque colonies, weakly pigmented
(only one colony of strains was bright yellow), charac-
teristics of microorganisms present in the soil (Table 2).

4 Discussion

Enzyme activity could be a good indicator of soil quality
because it is sensitive and reflects the biological situa-
tion in the soil (Wyszkowska and Wyszkowski 2010;
Wolińska et al. 2015). Thus, in the current study, we
established soil biological activity by measuring DHA
and CAT, and also other contamination-sensitive soil
parameters such as RA and CMC. The results obtained
confirm that soil enzyme activity is strongly determined
by the degree of petrol and oil pollution.

Addition of petroleum substances to the soil was both
stimulatory and inhibitory to AR, DHA, CAT, and CMC
depending on the nature and concentration of the car
fuels and engines oil. We found that addition of car fuels
(petrol, diesel) and engine oil (new and waste) up to
5.0 g was usually not toxic to the overall microbial
activity since hydrocarbons present in oil could be
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serving as an additional carbon source for microbial
growth (Alrumman et al. 2015; Rusin et al. 2015).
Moreover, another cause of the increased soil biological
activity might be the ongoing biodegradation process
carried out with the participation of autochthonic micro-
organisms. Achuba and Peretiemo-Clarke (2008) ob-
served progressive enhancement in soil DHA and CAT
relative to the control, where concentrations of the spent
motor oil increased from 1 to 2 %. Similarly, Ramadass
et al. (2015) clearly indicated that even short-term ex-
posure of soils to motor oils leads to changes in soil
enzyme activities. In the case of fresh oil at low concen-
trations, a significant increase in DHAwas noted while
higher doses resulted in a decrease in enzyme activity. A
decreasing trend of DHA at a high concentration of
hydrocarbons was also observed by Alurmman et al.
(2015).

Among the investigated hydrocarbon substances,
petrol addition seemed to be the most toxic for microbial

activity of the investigated Mollic Gleysol. The toxicity
of the used hydrocarbon substances to microorganisms
inhabiting the investigated soil type might be summa-
rized as follows: diesel > new oil > waste oil > petrol.
Ramadass et al. (2015) suggested that used oils are the
most hazardous mainstream categories of environmental
pollutants, posing a major threat to the environment and
public health because they are responsible for immobi-
lization of nutrients and lowering of soil pH (Shukry
et al. 2013). However, this partially remains in contrast
to our results, as we observed a less toxic effect posed by
waste oil rather than by new oil in relation to DHA and
CMC. In that case, even 13 % stimulation of those
biological factors resulting from waste oil addition was
noted in relation to new oil. On the other hand, the diesel
treatment was characterized by higher values of all
measured biological factors and this may be due to the
fact that diesel is a less toxic source of carbon for
microorganisms. A similar finding was reported by
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Alrumman et al. (2015) in regard to microbial biomass
and enzyme activity (dehydrogenases and phospha-
tases). Measuring soil enzymatic activities can provide
information about the function and structure of soil
microbial communities in hydrocarbon-contaminated
soils. These measures could be used as rapid and cost-
effective means for evaluating and monitoring remedia-
tion of hydrocarbon-contaminated soil (Alrumman et al.
2015).

For plate counts, it is known that microbial popula-
tions proliferate following addition of readily assimilat-
ed substrates to the medium (Alrumman et al. 2015).
Thereby hydrocarbons in soil provide a source of C for
microbial growth and this explains the high c.f.u. for
bacteria in the freshly contaminated soils compared to

the control soil. This fact explains the 7–13 % increase
in the bacterial abundance observed in the current study
as an effect of diesel and waste oil addition (5.0 g). Our
results are also compatible with those of Guo et al.
(2012), who observed that the cultivable microbial
count was significantly higher in the low petroleum
pollution than in the medium- and high-pollution
groups. This may be caused by the use of low toxicity
petroleum hydrocarbons as a carbon and energy source
by soil microorganisms adapted at a lower dose (Guo
et al. 2012).

Other studies have reported that an increase in the
number of hydrocarbon utilizers is positively correlated
with the hydrocarbon concentration (Margesin et al.
2000; Alrumman et al. 2015). Additionally, the increase
in the number of cultivable hydrocarbon-degrading bac-
teria demonstrates how rapidly indigenous soil micro-
organisms are able to adapt to new substrates (Margesin
et al. 2000).

Based on the morphological (Table 2) and genetical
results, it was shown that strains C1 and NO1 belong to
the genusMicrococcus. Khan and Singh (2011) present-
ed that Micrococcus varians can be a potent source for
remediation of oil-contaminated sites and can be bene-
ficial for the environment. Earlier studies showed that
isolated strain identified tentatively as M. varians have
the roles of M. varians in hydrocarbon bioremediation
(Ijah and Antai 2003; Ekpo and Udofia 2008). Modified
diesel engine oil medium was used for isolation of oil-
degrading strains by Nikhil et al. (2013). The most
abundant microorganisms were isolated from garage
soil—Micrococcus sp. and Pseudomonas sp. (Nikhil
et al. 2013). The studies reported by Kumar et al.
(2013) indicated the application ofMicrococcus isolated
from the contaminated sites to efficiently degrade the
crude oil components. The rate of oil degradation by
Micrococcus sp. has been estimated at ca. 27 % in
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optimum conditions. Recently, Jesubunmi (2014) has
reported that the best bacterial spent oil-degraders were
Micrococcus species, in comparison to Aspergillus and
Penicillium species of fungi.

Strains C2, P1, P2, D1, and D2 were tentatively iden-
tified as Rhodococcus species. Strain 3C-9 of
Rhodococcus erythropolis was identified by Peng et al.
(2007) as a candidate for use in oil spill cleanup operations.
Leilei et al. (2012) isolated a Rhodococcus strain with oil-
degrading potential from activated sludge in an oil field.
The results of Benedek et al. (2012) indicated that
Rhodococcus qingshengiiBBG1 is suitable for elimination
of aliphatic, monoaromatic, and polycyclic aromatic hy-
drocarbons from soil samples. In studies performed byVan
et al. (2014), it was demonstrated that R. jialingiae Y1-1
has relatively high oil-degradation efficiencies (>70 %) in
land farming, especially during winter.

Strain WO2 was identified as a Paenibacillus sp.
These bacteria are very interesting, as they are microor-
ganisms with no genomic information. Nowadays, re-
searchers are working on more extensive genome se-
quencing of Paenibacillus sp. which could provide fun-
damental insights into pathways involved in the com-
plex social behavior of these bacteria and contribute to a
discovery of a rich source of genes with biotechnolog-
ical potential. In literature, there are some reports of the
oil-degrading ability of Peanibacillus species. Ganesh
and Lin (2009) isolated three strains D2, D9, and D10
that were identified as Paenibacillus sp. All isolates
were capable of degrading 70–80 % of n-paraffin. This
study clearly demonstrates that Gram-positive
biosurfactant-producing bacteria are effective in diesel
degradation (Genesh and Lin 2009).

5 Conclusions

In a summary, soil biological analyses such as AR,
DHA, CAT, and CMC can shed light on the

presence of existing microorganisms in Mollic
Gleysol contaminated by petroleum substance. In
regard to car engine oils, we demonstrated that
waste oil (after 10,000 km) was less harmful to
soil biology than new oil, which was confirmed
by the higher values (by c.a. 44 %) of TMC and
CAT. The CAT activity assays showed that the
catalase in the studied aerobic autochthonic com-
munity could be inductively expressed in the pres-
ence of new oil.

Others factors (RA, DHA) remained at a similar level
regardless of whether the soil was contaminated by new
or waste oil. The lowest dose of the contaminants (5.0 g)
resulted even in stimulation of RA, DHA, CAT, and
TMC in relation to the control samples.

In regard to car fuels, it was indicated that petrol is
more harmful to soil biology than diesel, which was
confirmed by the lower values (by c.a. 70 %) of each
biological factor (RA, DHA, CAT, MA) treated with
petrol in relation to the same diesel contamination doses.
RA and DHA seemed to be the most sensitive to petro-
leum contamination.

Species belonging to the genera Micrococcus
and Rhodococcus were noted as the major
autochthonic bacteria being present in soil contam-
inated with new automobile oil, whereas species of
the genera Bacillus sp. and Paenibacillus sp. were
identified in the combination treated with waste oil.
Our studies enabled to isolated the strains of bac-
teria which could be used for oil spills as a micro-
bial component of the biopreparates or the
bioaugumentation.

Further studies are very promising because the use of
isolated has the following advantages:

& the strains are aerobic microorganisms,
& easy adaptive to new environmental/culture condi-

tions (it is a indigenous flora),
& the use of natural, non-toxic microorganisms,

Table 2 Morphological characteristic of obtained isolates (abbreviations explained in Table 1)

Isolates C1 C2 WO1 WO2 NO1 NO2 P1 P2 D1 D2
Features

Colony form Irregular Irregular Irregular Irregular circular Irregular Irregular Irregular Irregular Irregular

Colony color White White White Bright yellow White White White/cream White White/cream White

Cell shape Spherical Rod Rod Rod Rod Spherical Rod Rod Rod Rod

Gram staining + + + + − + + + + +
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& avoidance of the use of genetic engineering to in-
crease oil degrading, due to the high flexibility of the
metabolism (especially introducing to a genome of a
mobile genetic elements)

The impulse to undertake a study on isolation and
determination of autochthonous microbiota is the indus-
trial demand for natural, cheap and safe for humans and
animals biopreparates.
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