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Abstract Inrecent years, there has been the phenomena
of spruce dieback in Europe. Significant areas of spruce
low mortality now cover both sides of the Polish south-
ern border. We evaluated ecochemical parameters
influencing the heavy dieback occurring in mature
spruce stands in the Polish Carpathian Mountains. Do-
lomite, magnesite and serpentinite fertilizers were ap-
plied to experimental plots located in 100-year-old
stands in the autumn of 2008. The experimental plots
were located in the mid-elevational forest zone (900—
950 m) on two nappes of the flysch Carpathians:
Magura (Ujsoty Forest District) and Silesian (Wista
Forest District). The saturation of the studied soils dem-
onstrates moderate resilience of soils in Wista Forest
District in relation to acid load and high flexibility of
the Ujsoly soils. After application of the fertilizers, an
increase of Mg, Ca and Mb was noted in the soil
solution, determined in the overlaying highly acidic
organic horizons through the ion-exchange buffering
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mechanism of highly protonated functional groups with
high buffering capacity. Magnesium concentration in-
creased following fertilization, presenting a potential
improvement of forest growth capacity without the haz-
ard of adverse side effects of liming. Aluminium stress
in old spruce is unlikely, while trees in the control plots
in Wista Forest District may already be sensitive to
aluminium stress. Serpentinite fertilization improved
the supply of soils in magnesium without causing sig-
nificant changes in the pH of the soil. Such changes in
the pH were found in dolomite and magnesite fertilizer.

Keywords Ecochemical indicators - Slow-release
fertilizers - Old Picea abies stands - Poland

1 Introduction

Polish spruce (Picea abies) forests, especially in western
part of the Beskidy Mountains, have experienced sig-
nificant dieback in recent years (Malek et al. 2012a, b).
Previous studies indicate that sustainability of the forest
in this area is particularly at risk in high and medium
altitude locations because of the dominance of pure
spruce stands and additional pressures related to abiotic,
biotic and anthropogenic factors, particularly air pollu-
tion. The latter combined with the long-term effects of
the natural acidification of soils by spruce have contrib-
uted to increase acidification of soils (Staszewski et al.
1999; Bytnerowicz et al. 1999; Matek 2010; Sramek
et al. 2010).
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Both sulphur and nitrogen in the form of NH,"
contribute to soil acidification, but the S deposition rate
has decreased in the last two decades, whereas the
deposition of N seems to be constant or slightly increas-
ing (Matek et al. 2012a, b; Sramek et al. 2010). There-
fore, the role of N in forest dieback has become an issue
of growing concern (e.g. Van Breemen and Van Dijk
1987; Aber 1992; Hornung and Sutton 1995; Flower
et al. 2007; Sicard et al. 2007; Matek 2010).

Together with the high nitrogen deposition (Matek
2010) and nutrient loss caused by canopy leaching of K,
Ca, Mn and Mg (Ulrich 1983; Bredemeier 1988;
Draaijers and Erisman 1995; Draaijers et al. 1997,
Matek 2010; Sramek et al. 2010), the following proper-
ties of precipitation, throughfall and soil solution have
become modified: acid-neutralizing capacity (Reuss and
Johnson 1986; Heinrichs et al. 1994; J6zwiak and
Koztowski 2004; Malek 2009; Matek et al. 2012a, b),
alkalinity (Harriman et al. 1990; Block et al. 2000;
Jozwiak and Koztowski 2004; Malek 2009), soil acidity
and base cation saturation (Ulrich 1983; Kowalkowski
2002) following soil acidification (Falkengren-Grerup
et al. 1987), as well as Ca:Al ratio (Cronan and Grigal
1995) and BC:Al ratio (Sverdrup and Warfvinge 1993).
These processes may increase tree demand for mineral
nutrients, cause nutrient deficiency in the trees and
change relations between elements (Cape et al. 1990;
Zwolinski 2003). The properties listed above can be
good ecochemical indicators of forest soil conditions
and stand damage from acidification (Block et al.
2000; Kowalkowski 2002).

We hypothesized that (1) fertilization can be used to
reduce susceptibility to forest dieback and (2) fertiliza-
tion improves the chemical properties of soil and soil
solution.

2 Materials and Methods

Because of site differences related to surficial geology,
the experimental plots were set up in the areas of two
Carpathian nappes, differing in terms of lithological
deposits. The Magura Nappe (Ujsoly Forest District) is
built of thin-bedded sandstone with a share clay-marley
slate inclusions, producing clay dominate waste-mantle
with meso/eutrophic soils that is more buffered and
resistant to degradation. The Silesian Nappe (Wista
Forest District) in the range of Barania Géra mountain,
built of the lower Istebna layers, consists of thick-
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bedded sandstones and conglomerates, producing
sandy-loam, gravelly-cobbly waste-mantle with oligo-
trophic soils. These are comparatively more susceptible
to degradation (Malek et al. 2010).

The Haplic Podzol soil built of very stony, coarse
sandy loam stratiform of very cobbly sandy loam with
mor humus was noted on the experimental plots in
Wista. The Endoeutric Cambisol built of loam deposi-
tion on very cobbly clay loam and very cobbly silty clay
loam with the moder type of humus was noted on the
experimental plots in Ujsoly. A more comprehensive
description of the soils in the Wista and Ujsoty research
plots is presented by Januszek et al. (2011).

Soil samples were collected on the experimental sites
in Wista on the 14th and in Ujsoly on the 16th of
September 2010 from five plots of different nutrition
treatment variants (dolomite—D, magnesite—M and
serpentinite—S), as well as from reference plots where
no nutrition treatment had been applied (control—C;
Table 1). On the experimental sites in Wista, from every
plot (10x 10m each), three aggregate samples were col-
lected from four holes randomly placed within a plot
with the size of 20x20%35 cm. The first sample was
obtained from the organic horizon (without further
subhorizons), one was taken from the AE horizon down
to 20 cm and a third from 20 to 35 cm in depth. The
sample taken from 20-35 cm depth came from the B and
AE horizons, more seldom from the AE horizon because
of the different thickness of the AE horizon. The soil
samples on the experimental sites in Ujsoly were ob-
tained from the depth of 0-10, 10-20 and 20-35 cm of
the same research plots as in Wisla. The samples were
marked by symbols OhA, AB and B regardless of the
actual thickness of the OhA, AB and B horizons. The
soil for determining chemical and physical properties
was collected after removal of the litter layer. In all the
cases, samples for the research were collected from 4
sub-stands of the soil horizon. Samples were returned to
the laboratory for analysis.

The samples collected were first dried at room tem-
perature and then sieved through a 2-mm sieve. The
sample parameters and method of analysis are presented
in Table 2.

We computed the percentages of exchangeable calci-
um, magnesium, potassium, sodium, aluminium and
hydrogen. These were calculated in units of T, the
molar proportions of the exchangeable calcium and
magnesium forms, the proportion of the total of ex-
changeable calcium, magnesium and potassium to
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g § N Table 2 The sample parameters and method of analysis
= <t o
&) =
Analyzed parameters Methods
%54 ) —
2 S s - Soil pH Determined potentiometrically,
in H,O and 1 M KCI dm*
o~ — solutions, with soil-to-solvent
4 3 3 proportion of 1:2.5 for
- g mineral soils and 1:5 for
2 i organic soils
- w2 Total C (Ct) and total N (N7)  CNS 2000 Leco elemental
O S o~ analyzer with the calculation
of the C:N ratio (in two
5 : 2 ; horizons)
Hydrolytic acidity (total Kappen method in the extract of
= | o o« acidity—Hh) 1 M of calcium acetate
S E 2T X Exchangeable acidity (Hw), Sokotow method
° exchangeable aluminium
‘_&n d e (Ha)), exchangeable
S en :\rln a8 hydrogen (Hy)
=8|~ Calcium (Ca"), magnesium In a 1-M CH3COONH, extract
o o = (Mg2+), potassium (K™) and of pH 7.0 as determined with
© LR sodium (Na") (base exchange ~ a Thermo Scientific iCAP
capacity—S) 6000 ICP OES Spectrometer,
o o o with calculation of effective
%D ;: el cation exchange capacity T,
o (total of S and Hy,) and the
© % o effective base saturation V%
8 s S S (S/T. 100)
Available phosphorus Bray-Kurtz method
o 2 8 Content of Cr and Ni Soluble in 1 mol dm ™ extract
5| =i of 1 M HCI solution
£ =52 . .
halll B s 88 exchangeable aluminium and the proportion of ex-
o | Z S o o . ..
m changeable calcium to exchangeable aluminium.
2 Qe = Analysis of the chemical composition of soil water
g %) S 3 3 was performed using gravitational and non-isolated
;;; e (L-20) soil lysimeters, placed at the depth of 20 cm,
LE . S 8 8 vertically and horizontally penetrating the surface soil
'; =< layers. They were installed in three repetitions for each
g S o experimental variant before the application of the fertil-
Slos | ==~ izers in September 2008. The surface area of each ly-
% _ simeter was 0.077 m?. It was connected by means of a
=Y plastic tube to the collection container (a chemically
g i % @ o neutral plastic container) placed in mineral soil (Matek
2| = 6 o6 o8 2009).
< . . .
sl o Sampling was performed at the beginning and the
é = end of the growing season (August) in 2010. Mean pH
5 i w g and conductivity were measured directly on the sam-
g = % 6 o pling spot by means of equipment made by Eijkelkamp.
§ ° Water samples were analyzed using ion chromatog-
-] B 2 % g raphy (Dionex-320, Sunnyvale, CA, USA) in order to
N g . . o -
= = S Eﬂ 2 determine the concentration of the following ions: ClI°,
o — _ _ —
Sl 853 NO;~, S04 PO,*", F, NH,", Na*, K*, Ca*", Mg**
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Table 3 Mean values (x), standard deviations (SD), statistics (H)
and statistical probability (p) (from five replications) of soil prop-
erties in O, AE and B horizons of soil on control plots (C), 2 years

after fertilization with dolomite (D), magnesite (M) and
serpentinite (S) in Wista Forest District on the basis of the
Kruskal-Wallis test

Soil properties C D M S H p value
X SD X SD X SD X SD

Ofh horizon
pH in H,0 3.93° 0.09 5.59° 0.36 5.30° 0.50 425% 0.12 1649  0.0009
pH in KCI 2.88° 0.10 4.93° 0.45 435° 0.64 3.26% 0.10 16.92  0.0007
Hh 87.47° 1056 44.02° 1132 4830° 1501 7531%® 3.48 1514 0.0017
Hy 2.65° 121 0.39° 0.20 0.67° 0.43 1.55% 0.62 1425 0.0026
Ha 13.17% 1.63 0.95" 0.53 2.10° 1.48 8.43% 1.39 16.55  0.0009
S 6.33° 1.08 39.10° 3.91 27.04° 6.06 14.04™ 228 17.58  0.0005
T. 22.15% 1.62 40.45° 4.13 29.81% 450 24.03* 1.78 1628  0.0010
Ve% 29.0°* 7.0 96.7° 12 90.0° 7.6 58.3% 7.5 16.71  0.0008
Cr 33.9 48 295 4.1 279 5.1 322 3.6 5.95 0.1141
Nt 1342 0.138  1.152 0.171  1.094 0230  1.287 0.172 538 0.1462
CN 252 14 256 14 256 12 25.1 13 0.85 0.8371
Ca®* [mg kg '] 9250  209.1  4,828.6° 5442  848.9™ 117.8  882.5° 1131 1093  0.0121
Mg?" [mg kg '] 112.4° 12.1 1,744.9% 1445  2,686.6° 7757 10556 2639  17.86  0.0005
K" [mg kg '] 282.2 455 229.0 39.9 256.8 36.6 320.8 89.8 7.69 0.0530
Na* [mg kg '] 16.2 3.0 1722 73 12.8 3.7 144 33 2.12 0.5479
P av. [mg kg '] 18.4 45 19.8 42 179 22 20.0 2.1 2.04 0.5641
Ca:Mg 5.03° 1.15 1.68° 0.07 0.21° 0.07 0.49° 0.10 17.86  0.0005
(Ca+Mg+K):Al  049° 0.15 47.18° 1432 23.74° 2262 173" 0.58 16.55  0.0009
Ca:Al 0.36° 0.13 29.09° 8.87 3.20% 243 0.52° 0.15 1671 0.0008
Ni [mg kg '] 5.15° 1.69 3.79° 123 12.70% 5.64 25.77° 5.69 1619 0.0010
Cr [mg kg'] 3.00 231 4.05 337 4.60 3.54 2.89 0.98 0.58 0.9016

AE horizon
pH in H,0 3.80° 0.08 3.98° 0.15 3.83% 0.11 3.71° 0.08 1039 0.0156
pH in KCI 2.90 0.14 2.99 0.14 2.99 0.10 291 0.07 4.08 0.2523
Hh 21.10 420 17.87 4.90 19.64 5.99 17.51 3.96 2.16 0.5387
Hy 0.39 0.19 0.49 0.27 0.48 0.10 0.54 0.30 1.09 0.7794
Ha 12.73 3.62 9.10 3.54 11.17 3.81 9.07 3.10 3.43 0.3294
S 0.54 0.18 1.28 0.77 127 0.78 0.61 0.20 5.78 0.1230
T. 13.66 3.72 10.86 4.05 12.92 437 1021 3.03 2.13 0.5456
Ve% 42° 1.8 11.1° 29 9.4% 47 6.0 12 10.77  0.0130
Cr 5.08 0.78 4.69 1.75 5.09 2.12 5.02 1.58 0.34 0.9529
Nr 0.258 0.033  0.230 0.08 0265 0.125 0251 0.071  0.60 0.8964
C:N 19.7 1.6 20.4 0.9 19.6 1.8 19.9 0.9 3.11 0.3753
Ca®" [mg kg '] 38.3%® 23.7 96.8° 62.7 27.8° 11.9 29.6% 9.8 9.35 0.0249
Mg [mg kg '] 203 9.5 76.7% 53.0 114.3° 779 394 20.8 9.99 0.0186
K" [mg kg '] 62.6 9.6 56.3 15.0 69.6 334 553 12.2 1.95 0.5831
Na' [mg kg '] 43 0.8 4.1 0.9 3.9 0.9 3.9 1.1 0.87 0.8316
P av. [mg kg '] 10.7 8.4 8.7 5.9 47 25 8.2 3.8 2.07 0.5586
Ca:Mg 1.19° 0.63 0.81° 0.20 0.19° 0.08 0.48%° 0.22 1291  0.0048
(Ca+Mg+K):Al  0.04* 0.02 0.13° 0.04 0.11% 0.06 0.07%° 0.02 10.77  0.0130
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Table 3 (continued)

Soil properties C D M S H p value
X SD X SD X SD X SD
Ca:Al 0.02%® 0.01 0.05% 0.02 0.01° 0.00 0.02%° 0.01 1031 0.0161
Ni [mg kg™'] 137 0.74 3.10 3.86 2.14 130 244 1.54 136 0.7140
Cr [mg kg™'] 1.63 0.95 3.64 475 2.30 1.08 2.54 1.69 1.93 0.5880
B horizon
pH in H,0 3.99 0.18 4.08 0.15 3.95 0.15 4.05 0.11 191 0.5913
pH in KCI 3.18 0.16 3.17 021 323 0.18 3.19 0.15 0.51 0.9149
Hh 20.59 4.66 18.50 3.26 19.23 430 19.57 428 121 0.7516
Hy 0.28 0.26 0.36 021 0.39 0.45 031 0.28 0.66 0.8833
Ha 17.06 5.18 13.95 3.51 15.39 5.29 14.48 422 273 0.4359
S 0312 0.03 0.51° 0.13 0.35% 0.06 0.33% 0.04 11.73  0.0084
Te 17.64 5.09 14.81 3.24 16.14 5.08 15.12 229 220 0.5319
VeY% 1.93 0.91 3.76 2.02 231 0.64 229 0.57 6.95 0.0734
Ca®" [mg kg ] 19.2%® 7.4 38.4% 185 15.9° 5.7 19.2% 6.8 8.62 0.0348
Mg*" [mg kg '] 9.5 1.5 23.9° 6.2 20.0° 3.8 13.7% 3.1 1466 0.0021
K" [mg kg '] 438 7.9 403 6.7 36.4 5.8 405 1.6 2.75 0.4320
Na' [mg kg '] 45 2.0 42 1.0 3.7 0.2 48 13 1.42 0.7002
P av. [mg kg '] 1.26 0.56 0.96 0.29 0.49 0.17 0.93 0.41 721 0.0656
(Ca+Mg+K):Al  0.02 0.01 0.04 0.02 0.02 0.01 0.02 0.01 6.63 0.0845
Ca:Al 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 6.27 0.0993
Ni [mg kg™ 0.68 0.71 0.78 0.58 0.58 0.49 0.92 0.51 0.96 0.8101
Cr [mg kg'] 2.56 0.34 2.12 035 2.05 0.50 2.76 0.93 4.62 0.2016

Different small letters in the upper index of the mean values mean significant differences. Explanation for Table 3, see Materials and

Methods

and APP*. We used ICP OES technology in order to
determine the elements Fe, Mn, Zn and Ni. Parallel
analysis was performed for the reference material with
the certified content of the analyses. For this purpose,
we used a water sample with low pH from south Ontario
(Canada), RAIN.97—no. 409.

The results obtained were used to calculate the fol-
lowing ecochemical soil indicators: ANC,q, ALK, Ma,
Mb, BS, Ca/Al and BC/Al (Kowalkowski 2002; Malek
2009; Matek et al. 2012a, b). The acid-neutralizing
capacity (ANC,q) (Reuss and Johnson 1986; Heinrichs
et al. 1994), alkalinity (ALK) (Harriman et al. 1990;
Block et al. 2000), the degree of soil acidity (Ma%)
(Ulrich 1983), acidic cations (Ma), saturation of the
exchangeable complex of the solid soil phase with alka-
lis (Mb), saturation with alkalis (BS) (Kowalkowski
2002) and molar ratios Ca:Al (Cronan and Grigal
1995) and BC:Al (Sverdrup and Warfvinge 1993).

Statistical data analysis was performed using
Statistica 9 software. Differences between the mean
values were evaluated with the nonparametric Kruskal-
Wallis test. We also calculated Pearson’s correlation
coefficients for the purpose of assessing the physico-
chemical properties of soil and soil water.

3 Results

A significant impact of fertilization variants on soil
properties was found 2 years after treatment. Based on
the comparison of three types of fertilization, we noted a
more radical change in the properties of the surface
levels of two plots after dolomite and magnesite fertili-
zation and a less radical change in the properties of the
surface levels after serpentinite fertilization. On the
Wista plot of podzolic soil (Table 3), after the higher
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dose of fertilization (4,000 kg/ha), we observed a more
radical change in the properties of the surface levels.
After fertilization with the lower dose of fertilizer
(2,000 kg/ha), less pronounced changes in the levels of
surface cambisol were noted on the Ujsoty plot
(Table 4).

In the Ofh horizon on the dolomite-fertilized plots,
there noted a significant difference (p<0,05) compared
to the control plots on the Wista plot. This held for a
large majority of soil properties, apart from concentra-
tion, including total C and N, exchangeable sodium,
available phosphorus, chromium soluble and C:N ratio
(Table 3).

The results showed a higher average pH in H,O and
KCl in the case of dolomite fertilization in Ofh horizon
of Wista plots, 1.66 and 2.05, respectively. For this
treatment, hydrolytic acidity was less than half of con-
trol and had a lower concentration of hydrogen and
exchangeable aluminium (Table 3). In the case of dolo-
mite fertilization compared to the control, the AE hori-
zon showed significantly higher values in pH in H,O (an
average of 0.18 pH units), content of exchangeable
calcium and magnesium form (2.5- and 3.8-fold on
average) and a higher base saturation (6.9 % on aver-
age). The B horizon showed a significantly higher con-
tent of the exchangeable forms of calcium and magne-
sium (2 and 2.5 times higher, respectively) and a higher
total base (an average of 0.2 cmol (H)kg '; Table 3)
compared to the controls.

Statistically significant changes in a great majority of
the studied properties of the soil, in addition to the
effective sorption capacity, the content of alkaline cation
exchange, concentration of C and N, total exchangeable
sodium, available phosphorus, nickel and chromium,
the percentage of exchangeable forms of calcium, po-
tassium and sodium in the capacity of the absorbing
complex and the C:N and Ca:Al (Table 3), were reported
in the Ofh horizon of Wista experimental plot,
magnesite-fertilized plots compared to control plots, as
in the case of the dolomite-fertilized plots. A higher
average pH in H,O and KCI (respectively, 1.37 and
1.47 pH units), a lower hydrolytic acidity (1.8-fold), a
lower content of hydrogen and exchangeable aluminium
(75 and 84 %), a higher value of the sum of bases
(20.7 cmol (+)kg ' on average) and a smaller share of
aluminium and hydrogen (51.6 and 9.3 %; Fig. 1) were
noted. A significantly lower ratio of exchangeable forms
of calcium to magnesium (from 5.03 to 0.21) and a
higher value of the sum of exchangeable calcium,
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magnesium and potassium to aluminium (from 0.49 to
23.74) were noted. Lower values of the ratio of the
exchangeable form Ca:Mg (from 1.19 to 0.19) and a
larger share of exchangeable magnesium in the sorption
complex were noted in the AE horizon. These values
were 5.7 % on average (Fig. 1). A significantly higher
content of exchangeable magnesium, averaging 2.1-
fold, was noted in the B horizon (Table 3).

Significant enrichment of exchangeable Mg, lower
values of the ratio of the exchangeable form Ca:Mg (on
average from 5.03 to 0.49) and a higher, approximately
5-fold, concentration of soluble nickel in 1 mol
HCI dm > (Table 3) were noted in the Ofh horizon of
the plots fertilized with serpentine in comparison to the
control plots.

Soil properties in AE horizon were not significantly
different from the plots fertilized with serpentinite as
compared to the control plots. We found a 2.2-fold
higher content of exchangeable magnesium and a higher
concentration of exchangeable hydrogen in the AE ho-
rizon of soil on the plots fertilized with serpentinite,
dolomite and magnesite (Table 3). The marked proper-
ties in the samples from the B horizon of soil of the
serpentinite-fertilized plots, as compared with the prop-
erties of the B horizon on the control plots, were not
significantly varied but had a higher content of ex-
changeable magnesium, and part of removable Mg in
the sorption complex was noted (Fig. 1).

The AE horizon of the soil of the dolomite-fertilized
plots as compared to the soil of the serpentinite-fertilized
plots had significantly higher values of pH in H,O
(about 0.27 units). In the Oth and AE horizons of the
plots with magnesite and serpentinite fertilization, we
noted a lower content of exchangeable calcium com-
pared to the control plots. This indicates a more intense
rate of calcium leaching from soils fertilized with mag-
nesite and serpentine than in soils without fertilization.

On the Ujsoty plot 2 years after fertilization in the
OhA horizon (0-10 cm), the magnesite-fertilized plots
showed statistically significant changes in the properties
relative to the control plots. These differences included a
higher content of exchangeable magnesium (an average
of 5.9-fold), a higher share of exchangeable magnesium
in the sorption complex (on average by 22.7 %) and a
lower ratio of exchangeable calcium to magnesium
(from 6.75 to 1.07; Fig. 1).

Higher concentrations of exchangeable hydrogen
(Tables 3 and 4) and higher shares of H' in the sorption
complex (Fig. 1) were reported on the Wista plot in the
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Table 4 Mean values (x), standard deviations (SD), statistics (H)
and statistical probability (p) (from five replications) of soil prop-
erties in OhA, AB and B horizons of soil on control plots (C),

2 years after fertilization with dolomite (D), magnesite (M) and
serpentinite (S) in Ujsoty Forest District on the basis of the
Kruskal-Wallis test

Soil properties C D M S H p value
X SD X SD X SD X SD

OhA horizon (0-10 cm)
pH in H,0 428 0.21 472 0.34 4.68 0.32 4.54 027 558 0.1337
pH in KC1 3.40 0.23 3.69 0.32 3.62 021 353 021 335 0.1314
Hh 3553 6.46 24.93 8.26 29.96 5.66 30.55 591 357 03116
Hy 0.32 0.15 0.20 0.13 0.16 0.03 0.15 008 7.16 0.0669
Ha 10.30 4.60 6.95 3.56 7.07 1.40 9.20 344 354 03160
S 7.59 393 13.78 5.66 1123 3.98 9.82 188  3.87 02760
T. 1821 142 20.93 4.68 18.47 4.68 19.17 309 197 05784
Ve% 422 233 64.3 19.4 59.9 7.8 52.0 10.9 492 0.1778
Cr 12.25 4.08 10.84 5.51 11.25 2.68 11.99 317 078  0.8536
Nr 0.58 0.13 0.55 0.21 0.55 0.10 0.55 008 055 0.9068
C:N 20.6 2.7 189 25 20.1 1.9 214 33 327 03512
Ca®* [mg kg 12333 7158 20842 1,009  1,1003 4865 13428 475.0 433 02284
Mg?" [mg kg '] 105.6 38.6 351.1%® 151.5 621.1° 1784 319.8% 92.1  14.86 0.0019
K™ [mg kg ] 1975 486 167.8 36.5 2224 122.9 165.5 476 253 04696
Na* [mg kg '] 149 3.6 14.7 22 15.5 5.7 14.4 45 026 0.9679
P av. [mg kg '] 2.86 1.40 256 129 341 1.28 3.17 172 185 0.6041
Ca:Mg 6.75" 132 3.98% 267 1.07° 0.29 2.89% 170 1378  0.0032

(Ca+ Mg + K):Al 145 2.10 2.88 2.38 1.59 0.47 1.19 052 451 02115
Ca:Al 1.22 1.84 2.15 175 0.79 0.30 0.84 048 3.1 03743
Ni [mg kg '] 6.10 253 6.10 3.34 5.00 0.67 9.53 221 733 0.0621
Cr [mg kg™'] 3.88 2.15 3.32 1.90 1.94 0.93 1.66 105 471 0.1940

AB horizon (10-20 cm)
pH in H,0 4.68 0.17 474 0.23 461 0.24 476 024 128 0.7330
pH in KCI 3.60 0.11 3.65 0.13 3.55 0.16 3.67 022 084 0.8378
Hh 16.56 247 15.30 1.70 16.39 2.89 15.11 325 061 0.8938
Hy 021 0.09 0.32 0.09 0.28 0.09 0.28 0.03 387 02762
Hp 11.79 4.11 10.74 4.08 11.19 3.03 10.85 540 0.05 0.9969
S 4.03 1.15 6.55 491 3.87 133 6.13 428 138 0.7109
T. 16.03 321 17.60 1.74 15.34 247 17.26 196 401 02608
Ve% 26.7 11.9 36.2 25.6 26.0 10.7 36.7 28.0 028 0.9637
Cr 3.02 0.58 277 0.55 2.93 0.51 3.09 054 058 0.9016
Nr 0.23 0.03 0.23 0.04 0.22 0.02 0.23 0.04 087 0.8316
C:N 13.0 13 123 0.9 132 1.5 133 1.1 257 04635
Ca®* [mg kg '] 6490 2163  1,082.7 882.6 5756 2474 1,020.8 800.0 241 04926
Mg [mg kg '] 57.0 8.3 96.3 482 85.8 8.7 89.7 28.4 579 0.1224
K" [mg kg ] 112.0 20.4 1218 48.1 100.1 175 101.2 272 148  0.6869
Na' [mg kg '] 8.1 1.7 9.7 1.1 93 1.0 9.9 1.8 326 03528
P av. [mg kg '] 0.80 0.24 0.89 0.21 0.93 0.18 0.94 024 1.08 0.7810
Ca:Mg 6.82 1.65 6.04 2.06 4.00 136 6.34 264 633 0.0968
(Ca+ Mg + K):Al 0.40 0.26 1.04 1.48 0.38 0.24 1.69 3.04 037 09461
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Table 4 (continued)

Soil properties C D M S H p value
X SD X SD X SD X SD
Ca:Al 033 0.23 0.88 1.30 0.29 0.21 1.48 2.72 0.81 0.8481
Ni [mg kg '] 3.85 0.93 4.74 240 3.75 0.98 5.16 243 2.63 04515
Cr[mg kg '] 3.00 1.58 3.10 1.55 1.82 0.90 191 0.81 332 0.3449
B horizon (20-35 cm)
pH in H,0 4.92 0.10 491 0.27 4.86 0.35 4.97 0.34 0.17 0.9816
pH in KCI 3.70 0.09 3.71 0.21 3.69 0.21 3.79 0.32 0.59  0.8992
Hh 12.57 1.74 12.94 2.87 12.16 3.47 11.71 3.40 0.65 0.8859
Hy 0.27 0.05 0.20 0.05 0.18 0.11 0.20 0.06 435 0.2275
Hay 7.88 4.56 8.82 432 8.76 4.18 8.45 5.26 0.28  0.9637
S 5.57 0.69 7.38 545 5.86 2.55 7.32 3.57 0.37  0.9461
T, 13.72 5.00 16.39 1.48 14.80 1.89 15.98 1.98 2.08 0.5548
Ve% 45.6 19.1 434 28.9 41.3 20.3 48.2 28.8 039 09414
Ca®" [mg kg ] 1,110.3 927.02 11,2545 998.1 965.9 468.4 1,248.9 675.1 0.39 09414
Mg?* [mg kg '] 78.1 15.7 96.9 47.7 91.9 22.6 97.6 214 1.79 0.6174
K* [mg kg '] 103.6 18.5 108.1 36.0 93.1 24.7 95.1 13.6 0.83 0.8418
Na" [mg kg '] 92 14 9.8 1.7 10.0 14 10.6 22 1.66  0.6452
P av. [mg kg '] 0.58 0.12 0.65 0.17 0.72 0.17 0.71 0.18 2.03  0.5667
Ca:Mg 7.30 0.69 7.12 2.14 6.08 1.75 7.42 2.33 1.95 0.5831
(Ca+ Mg + K):Al 1.34 1.60 2.69 4.90 1.00 0.66 6.87 13.96 044 09319
Ca:Al 1.11 1.32 2.37 438 0.83 0.59 6.14 12.56 0.57 0.9042
Ni [mg kg '] 3.11 1.37 2.76 147 2.18 1.49 1.76 0.74 421 0.2395
Cr [mg kg™'] 437 0.36 4.11 1.94 3.56 0.78 3.96 1.17 340 0.3340

Different small letters in the upper index of the mean values mean significant differences. Explanation for Table 4, see Materials and

Methods

AE and B horizons and on the Ujsoly plot in the AB
horizon. This may reflect an increase in the concentra-
tion of exchangeable hydrogen in the soil solution than
in the sorption complex in these horizons immediately
after fertilization.

Sampling period strongly affected the concentrations
of chemicals in soil water related to the periods of their
sampling is connected with the chemical composition of
the fertilizers used. After the winter period, on plots with
dolomite concentration, levels increased for NO;s
NH,", SO4*~ and Ca*" (in both locations); while plots
with magnesite and serpentinite in the Wista Forest
District, there was an increase of K, Mg**, Fe and Al
Similar relations also held after the vegetation period but
with higher concentrations of the analytes. After that
period, the soil waters on the research plots in Wista
showed, in comparison with the control, a considerable

@ Springer

increase of the concentrations of NO;~ and SO, as
well as Ca*" and Mg*", while the waters in Ujsoty
additionally showed an increase in NH,4". These chang-
es signify an increase in the mineralization of the organ-
ic matter and the process of nitrification, which is indi-
cated by enzymatic activity and the rate of mineraliza-
tion of the organic nitrogen compounds net (Haynes &
Swift 1988; Valeur et al. 2000; Valeur et al. 2002;
Januszek et al. 2011).

Also here, there may occur an influence of a decrease
in the non-specific sorption of sulphates due to a reduc-
tion of acidification (Marschner 1993). A larger amount
of potassium in soil solutions and the related leaching
and threat of potassium deficiency may be related to a
reduction of the selective sorption of monocations for
the sake of doubly charged cations due to the fertiliza-
tion applied (Kim et al. 2003) as well as due to further
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Wista Forest District Ujsoty Forest District
Ofh horizon OhA horizon
100% - 100% -
80% 80% -
60% - W %H 60% - W %H
40% | %Al 40% - %Al
20% - e 20% 7 e
0% - . | | 0% - . . T
C D M S C D M S
AE horizon AB horizon
100% - 100% -
80% - 80% -
60% - W %H 60% - W %H
40% - m %Al 40% - m %Al
20% - m%5 20% W %S
0% - . T T 0% - . . T
C D M S C D M S
B horizon B horizon
100% - 100% -
80% - 80% -
60% - H %H 60% - B %H
40% - %Al 40% - %Al
20% m%S 20% 4 m%S
0% - . . . 0% - . . .
C D M S C D M S
Fig.1 The share of base cations and share exchangeable Al and H control; D dolomite; M magnesite; S serpentinite, in a dose of,
in the sorption complex (%) in the surface levels of podzolic soil respectively, 4 and 2 t ha ' of the plot in Wista and Ujsoly, 2 years
(Wista Forest District) as well as brown cambisol, leached soil after fertilization

(Ujsoly Forest District) depending on the fertilization variant: C
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removal of Ca®" by Mg®" and increased removal of AI**

and H' from the sorptive complex.

After winter 2009/2010, water penetrating the 20-cm
layer of soil treated with serpentinite became acidified,
especially in Wista Forest District. The acidification
deepened after the vegetation period. In Ujsoty Forest
District, the soil water reaction also fell (starting from
higher initial values than in Wista), but to a smaller
extent (Tables 5 and 6). The dominant process of buff-
ering in Wista Forest District was the dissolution and
complexing of metal hydroxides (Fe and Al buffers),
whereas in Ujsoly Forest District, it was the release of Al
from the crystalline networks of aluminosilicates (ion
buffer).

The saturation of the analyzed waters with alkalis
(BS) was very low especially in Wista Forest District
(Table 5). In the soil waters of Ujsoly Forest District, the
level of BS was, however, three times higher than that in
the waters of Wista. The values obtained on the research

plots in Wista Forest District show moderate flexibility
of water solutions (after their passage through the sur-
face soil level) in relation to the acid load, whereas the
results from the plots in Ujsoty Forest District indicate
high flexibility of the solutions (Table 6).

The opposite tendencies for the degree of soil acidity,
Ma% (according to Ulrich 1983), were determined via
analysis of waters which pass through it. The values
obtained for this feature of waters from Wista indicate
the first acidity class (very acid soils), as in the
Dupnianski Stream catchment (Matek 2009); the Ma%
values obtained in Ujsoly indicate the third class (weak-
ly acid soils). The fertilization applied did not basically
change these values despite a considerable increase in
the saturation of the solid soil phase with the alkalis of
the exchangeable complex (Mb) and the preservation of
the acidic cations (Ma) on the same level (Table 6).

The acid-neutralizing capacity (ANC,) of the ana-
lyzed waters slightly decreased in both locations and

Table 5 Concentrations of ions and metals (in mg/l) in soil waters from lysimeters in spring and autumn 2010 on research plots fertilized all
over their surface in spruce stands in Ujsoly and Wista Forest Districts in autumn 2008

Fertilization variant ~ CI~ NO;~ S04 Na* K" Cca*t Mg2+ Fe Mn AP NH," Zn
Wista
Spring
C 1.500 9.400 9.700 0987 2.511 2369 0303 0393 0.053 0488 1.155 0.026
D 1.516 10900 10.625 1.004 2.838 2.644 0.347 0390 0.052 0435 1298 0.025
M 1.583 10.079 10900 1.002 2.794 2590 0383 0366 0.061 0483 1368 0.047
S 1.450 9.775 9925 0972 2.631 2486 0365 0311 0.075 0457 1358 0.062
Autumn
C 1.550 9.675 9.750 0994 2.578 2456 0306 0394 0.055 0428 1.545 0.037
D 1.515  11.070 10925 1.015 2.724 2744 0354 0401 0.066 0454 1278  0.040
M 1.615 10.120 10950 1.024 2738 2.640 0.393 0469 0.068 0449 1400 0.030
S 1.490 9.800 9950 1.003 2.795 2566 0379 0485 0.060 0419 1395 0.067
Ujsoty
Spring
C 1.806  12.550 9365 1.061 4.088 4437 1510 0325 0.042 0433 1280 0.004
D 1.978 12904 9.642 1.093 4880 5610 1873 0388 0.048 0481 1383 0.002
M 1.985 12,755 10.039 1.069 4721 5399 1989 0367 0.047 0455 1470 0.005
S 1.848  12.808 9385 1.062 4442 5240 1.620 0316 0.041 0420 1350 0.004
Autumn
C 1.804  12.760 9459 1.052 4.073 4950 1.586 0.328 0.043 0412 1305 0.003
D 1937 12983 10.033 1.056 4753 5701 1903 0324 0.055 0496 1488 0.003
M 1.942 12877 10.113  1.045 4771 5450 1965 0321 0.054 0467 1495 0.004
S 1.842  12.867 9.667 1.038 4469 5252 1.627 0327 0.024 0431 1317 0.002

C control plots, fertilization with D dolomite, M magnesite, S serpentinite
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Table 6 Indices of the ecochemical soil condition in the light of the results of analyses of soil waters sampled in spring and autumn 2010 on
research plots fertilized all over their surface in spruce stands in Ujsoty and Wista Forest Districts

Fertilization variant pH BS ANCyq ALK Ma Mb Ma% Ca/Al Mb/Al BC/Al
meq L mmol L™
Wista
Spring
C 3.63 40.7 —18.850 -18.921 0.026 0.179 59.3 33 9.9 7.5
D 441 75.6 —21.248 —21.328 0.024 0.197 24.4 4.1 12.2 9.5
M 4.22 69.3 —20.703 —20.783 0.026 0.195 30.7 3.6 10.9 8.5
S 4.11 64.8 —19.436 —19.513 0.024 0.187 352 3.7 11.0 8.5
Autumn
C 3.65 42.5 —19.168 —19.242 0.024 0.183 57.5 39 11.5 8.8
D 4.44 76.2 —21.715 —21.798 0.025 0.197 23.8 4.1 11.7 9.1
M 4.28 71.4 —20.791 -20.873 0.026 0.197 28.6 4.0 11.8 9.1
S 4.12 65.8 —19.476 —19.555 0.025 0.195 342 4.1 12.5 9.7
Ujsoty
Spring
C 4.87 89.9 —21.419 —21.591 0.023 0.324 10.1 6.9 20.2 17.3
D 5.58 93.2 -21.939 —22.156 0.026 0.389 6.8 79 219 19.2
M 527 92.8 —22.194 —22.410 0.024 0.384 72 8.0 22.8 20.0
S 5.28 92.9 —21.638 —21.835 0.022 0.357 7.1 8.4 23.0 20.0
Autumn
C 4.86 90.5 —21.692 —21.880 0.022 0.339 9.5 8.1 222 19.2
D 5.60 93.5 —22.408 —22.629 0.025 0.388 6.5 7.7 21.1 18.6
M 527 93.1 —22.389 —22.606 0.024 0.384 6.9 79 222 19.6
S 5.28 92.9 —21.978 —22.176 0.022 0.357 7.1 8.2 224 19.6

C control plots, fertilization with D dolomite, M magnesite, S serpentinite

fluctuated in areas with an older stand, where it in-
creased to approximately —18 to —22 mmol L™,
which—according to the scale applied—still situated
these waters near the “0” value (Table 6). According to
Kowalkowski (2002), soil waters with such alkalinity
(from —7 to —23 mmol L") respond with strong fluctu-
ations of pH values even to the smallest changes in the
composition of the solution caused by the inflow of
NO; ™ and SO, anions.

An increase in pH reaction and saturation with alkalis
(BS) was observed with a simultaneous decrease of the
degree of acidity (Ma%), especially on the plots with
dolomite and mostly in Wista Forest District in 2010.
The phenomenon intensified in the vegetation period. In
the light of analysis of waters from lysimeters, fertiliza-
tion with magnesite increased the saturation of the ex-
changeable complex of the solid soil phase with alkalis
(Mb), mainly in Wista Forest District. In this forest

district, soils undergo the process of dissolving and
complexing of metal hydroxides (aluminium buffer),
whereas in Ujsoty Forest District, there occurs a release
of alkaline cations from silicates and exchangers. The
saturation of soils water under spruce stands in Wisla
Forest District with alkalis is moderate, similarly to soils
under mature stands in Dupnianski Stream catchment
(Matek 2009), whereas it was high in Ujsoty Forest
District (Table 6).

The acid-neutralizing capacity (ANC,,) and alkalin-
ity of waters from soil lysimeters in older spruce stands
grew in 2010 after the winter period as well as after the
vegetation period. The values of these characteristics
were close to the “0” value, indicating similar relations
and possibilities of changes on these plots to those
occurring in stands of the Dupnianski stream catchment
(Matek 2009) but slightly weaker and slower. Molar
ratios in the water from lysimeters under the old spruce
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stands defined the Al stress as improbable, and the
release of alkaline cations from fertilizers in 2010 fur-
ther improved their values (Table 6).

Among the analyzed properties of solutions obtained
from soils on research plots in Wista, what correlated
most with the properties of the surface horizons of the
analyzed soils were (Tables 7 and 8) the acid-
neutralizing capacity (ANC), alkalinity (ALK) and the
sum of alkaline cations (Mb; Table 7). The ANC and
ALK values of the solutions sampled in the lysimeters
correlated negatively with the pH of soil in H,O and in
KCl, with the sum of alkaline cations (BC), with the
degree of saturation of the sorptive complex with alka-
line cations (V%) and with the molar ratio of the sum of
alkaline cations (BC) to the exchangeable aluminium on
the Ofh level, and in the case of ANC, also with pH in
KCl and the sum of alkalis BC on AE levels (Table 7). A
negative correlation was also noted between the ANC
values of the solutions sampled in autumn and the sum
of alkaline cations, the degree of saturation with alkaline
cations and the molar ratio of the sum of alkaline cations
to the exchangeable aluminium on AE levels (Table 7).
A positive correlation was noted between the ANC and
ALK values of the solutions sampled in spring and the
concentration of the exchangeable aluminium and hy-
drogen in Ofh levels (Table 6). These relations can be
generalized by stating that the higher the pH values, the
sums of alkalis (BC) and the degree of saturation with
alkaline cations (V%) in the surface layers of the ana-
lyzed soils, the lower the ANC and ALK values deter-
mined in the sampled solutions, which means that there
was a larger share of NO; , CI” and SO,% anions than
cations in the sampled soil solutions. This is probably
connected with a larger rate of mineralization of organic
matter and, to a smaller degree, with a decrease in the
non-specific sorption of anions (mainly sulphates) in the
soils fertilized with carbonate fertilizers. An increased
share of sulphates in the soil solution after soil liming as
a result of an increased rate of organic substance miner-
alization was noted by Marschner (1993) and Valeur
et al. (2000, 2002). On fields fertilized with carbonate
rocks, as compared to the control fields on the research
plots Januszek et al. (2011), noted increased enzymatic
activity as well as intensive nitrification, which allows
for the statement that—on the fields fertilized with
carbonate rocks—on the research plots, the rate of or-
ganic matter mineralization increased.

A larger number of significant correlations between
the analyzed properties of the surface soil layers and the
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properties of soil solutions was observed on the research
plots in Wista, whereas a smaller number was found on
the plots in Ujsoty (cf. Tables 7 and 8). Exchangeable
aluminium and hydrogen, the degree of saturation with
alkaline cations and the molar ratio of alkaline cations to
exchangeable aluminium (BC:Al) in the sorptive com-
plex of the examined surface layers were correlated with
the properties of soil solutions in the case of the soils in
Wista. On the research plot in Ujsoly, there was a
positive correlation between the pH values in H,O as
well as in KCI on OhA levels and the pH values as well
as the degree of saturation with alkaline cations (BS) in
solutions sampled in autumn (Table 8). A positive cor-
relation was also noted between the pH values in KCl on
OhA levels and the pH values of solutions sampled in
spring (Table 8). A positive correlation was found be-
tween the pH values in H,O as well as in KCI in OhA
horizons and the sum of alkaline cations in solutions
sampled in spring, and a negative correlation was found
between the pH values in H,O as well as in KCI in OhA
horizons and the level of acidity (Ma%) of solutions
sampled in autumn (Table 8). A positive correlation was
noted between the share of magnesium in the soil sorp-
tive complex in ABbr horizon (10-20 cm) and the
degree of saturation of solutions sampled both in spring
and in autumn with alkaline cations; a negative correla-
tion was noted between the share of magnesium in the
soil sorptive complex in ABbr horizon (10-20 cm) and
the degree of acidity of soil solutions sampled both in
spring and in autumn (Table 8). As on the research plot
in Wisla, also in Ujsoty, a negative correlation was
found between the sum of alkaline cations in Oth and
OhA horizons and values of ANC and ALK of solutions
sampled in autumn, which means an increase in anions,
NO;, CI" and SO4*, in solutions sampled from soils
characterized by a higher pH of the fertilized fields
(Table 7).

4 Discussion

Norway spruce is one of the most common and eco-
nomically important tree species in Europe. Sustainable
management of spruce forests in a changing environ-
ment presents an enormous challenge for European
forestry. Knowledge about forest growth reactions and
growth trends is just one important aspect of sustainable
forest ecosystem management (Spiecker 2000). The
growth of stands may be strongly influenced by soil
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Table 7 The matrix of correlations of solution (spring/autumn)
and soil properties in Oth and AE horizons (Oth; AE, respectively)
of fields on research plots 2 years after fertilization of the whole

area with ground dolomite or magnesite or serpentinite and of
control fields in Wista Forest District

Soil properties in horizons: Oth and AE Solution properties

pH BS  ANC

ALK Ma Mb Ma% Ca/Al Mb/Al BC/Al

pH in H,O -
pH in KCI -
BC ——/-
Exchangeable Al +— +
Exchangeable H" - + +

Te

% Cain T,

%Mg in T,

V% +H+ o A ==
Ca?*Mg?*
BC:exchangeable Al
Ca?":exchangeable Al

Has = ==

[
+ o+ o+

+ positive correlation; — negative correlation; correlations determined are significant on the level p<0.05;

—;—/— negative correlation of the

sum of alkaline cations BC on Oth level with ANC of the solution sampled in spring and a negative correlation of soil BC on AE level from

the ANC of solution sampled in spring and autumn

preparation, selection of species and provenances.
Fertilizers and lime have been applied to some
European forests for many decades in order to increase

Table 8 The matrix of correlations of the properties of solutions
(spring/autumn) and soil in OhA and AB horizons (OhA; AB,
respectively) on the fields 2 years after fertilization of the whole

site productivity and to overcome some effects of site
degradation caused by former land use. Kulhavy (2000)
evaluated the simulated input of sulphur—in sitt—with

area with ground dolomite or magnesite or serpentinite as well as
on control fields in Ujsoty Forest District

Soil properties in horizons: Oth and AE Solution properties

pH BS ANC ALK Ma Mb Ma%  Ca/Al  Mb/Al  BC/Al
pH in H,O /+ + +/+ /-
pH in KCI +/+ /+ + /=
BC ++ /= /=
Exchangeable Al - =
Exchangeable H" Sras - - -
T.
% Cain T,
%Mg in T, A+ [+ -
V% /+ 1+
Ca*":Mg** /—
Exchangeable BC:Al +
Exchangeable Ca”":Al

Explanation for Table 8, see Table 7
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the parallel application of dolomitic limestone. Soil pH
increased significantly in the surface humus within the
course of 5 years but was insignificant in the mineral
soil. Liming resulted in the decrease of leaching of
humic acids and improvement of soil saturation with
base cations. Soil solution showed lower acidity, higher
conductivity and higher content of Ca and Mg. From
2003, the Norway spruce decline started in the Beskid
Slaski and Zywiecki (western edge of the Carpathians).
Kulhavy (2000) was the first to investigate this nature.
By comparison, our results indicate a positive change of
soil properties—Iliming resulted in the decrease of
leaching of humic acids, and improvement of soil satu-
ration with basic cations and soil solution showed lower
acidity, higher conductivity and higher content of Ca
and Mg.

Liming forest soils causes beneficial effects such as
reduced acidity, reducing the concentration of toxic
forms of aluminium and the increase in the supply of
Ca and Mg. The liming causing other side effects in
some site conditions (intensity of nitrification and the
threat of surface water with nitrates, too fast mineraliza-
tion and loss of organic matter, increased CO, emis-
sions, shortness of spruce root systems, boron deficien-
cy, increased activity of root pathogens, increased trunks
with butt-end rot, fall growth stands) (Kreutzer 1995). A
higher concentration of exchangeable hydrogen in the
sorption complex in the mineral horizons of the exam-
ined soils may be one of the causes of growth
(increment) inhibition in spruce stands after liming,
which was concluded following experiments conducted
in the Nordic countries (Ingerslev 1997; Sikstrom
1997), as well as root system shallowing noted for
spruce after liming (Kreutzer 1995). For this reason,
Matek (2009) planted seedlings 2 years after fertilization
to avoid exposing the young seedlings to stress from
increased acidification of the soil solutions in the upper
mineral horizons. It is conceivable that the concentration
of hydrogen and aluminium in the soil solutions in the
upper mineral horizons in the following years will in-
crease (Guckland et al. 2012), which may contribute to
the inhibition of growth and development of new seed-
lings as well as stands which grow there.

The antagonism between calcium and magnesium
can decide about the negative impact of liming on plant
growth. It is supposed that a harmful effect of high doses
of lime on the yield of plants is caused by an imbalance
between calcium and magnesium in the soil (Gorlach &
Gorlach 1983a). The correct ratio of Ca:Mg in the soil
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and in the plant may be an important factor in optimal
plant growth. The correct ratio of these macronutrients
depends on the plant species. According to Warchotowa
(Gorlach & Gorlach 1983a), the ratio Ca:Mg=1:1 is the
most favourable for plants requiring low calcium levels
(e.g. grasses). The physiological needs regarding calci-
um, particularly in coniferous trees, are relatively small
(Huber et al. 2004). The pot experiments carried out by
Gorlach & Gorlach (1983a, b) show that MgCO; used
in a dose according to the 0.5 and 1.0 hydrolytic acidity
(Hh) worked depending on the species and variety of
plant, similarly or better than CaCO3, but MgCO; used
in a dose 2.0 of Hh with the exception of some plants
used in the experiment, significantly inhibited the
growth of plants. The negative impact on the yield of
MgCO; plants depended on soil properties and de-
creased with increasing sorption capacity of the soil. It
was associated with a significant decrease in Ca content
in plants and the reduction of the equivalence ratio
Ca:Mg in aboveground parts to less than 1 (Gorlach &
Gorlach 1983a). Magnesium fertilization was negative
that liming affected B, Cu, Mn and Zn intake from
plants, while it positively affected the intake of Mo
(Gorlach & Gorlach 1983b). According to research
conducted by Silva et al. (2001a, 2001b), magnesium
was 100 times more effective than calcium in relieving
aluminium toxicity for roots. Dolomitic soil spruce on
the experimental plot in Hoglwald (southern Bavaria)
had only a significant and permanent effect on the
concentration of Ca in the needles. Magnesium concen-
tration did not increase in the same way, despite the fact
that the amount of Ca and Mg in the dolomite was the
same (Huber et al. 2004). The physiological need for
calcium, especially in conifers, is relatively small. Cal-
cium uptake by plant roots is mainly a passive process
because plants cannot avoid absorbing Ca in excess.
Hence, Ca must change in the form of detoxification
of calcium oxalate (Huber et al. 2004). As a result of
fertilization, ratio of Ca:Mg was significantly reduced in
the soils and soil solutions. This has a positive impact on
facilitating the intake of magnesium by the stands and
plantings under the canopy of weakened forests. The
effects of liming (2.0 and 4.0 Mg ha ') on chemical
properties of soil, nutrient concentrations of needles and
growth of Scots pine (Pinus sylvestris L.) transplants
were investigated by Saarsalmi et al. (2011). The effect
of liming is visible mainly in the humus layer and in the
upper mineral layer A (Sramek et al. 2012). In the
deeper mineral soil (down to 30 cm), only the increase
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of pH and exchangeable magnesium was found signif-
icant. Effects of Mg fertilization on yellowing of Nor-
way spruce needles at higher elevations of the Sumava
Mountains, Czech Republic were investigated by Vacek
etal. (2006). The fertilization resulted in stabile foliation
while marked defoliation was reported from control
plots in both vegetation zones. Magnesium deficiency
can be effectively eliminated through fertilization. Bal-
anced nutrition contributes to long-term vigour and
stability of forest stands.

A significant increase in the concentration of nickel
in the Oth horizon of soil on the Wista plots fertilized
with serpentinite did not contribute to a reduction in
enzyme activity, which will be the subject of a separate
publication.

5 Conclusions

The liming of forest soils, characterized by thick, strong-
ly acidified surface organic layers, by using single, large
doses of carbonate fertilizers, contributes to an increase
in the concentration of hydrogen in surface mineral
levels. The litter was released from organic colloids of
the higher located organic levels; this phenomenon may
contribute to reductions in stand growth rates. Forest
soil liming is recommended with the use of low doses of
carbonate calcium and magnesium fertilizers, which
make these layers reach pH in 1 M KCI that does not
exceed the value of 4.5.

To enrich acidified forest soils with surface humus
layers with alkaline cations and to avoid stronger acid-
ification of lower mineral levels after liming, it is safer to
use slow-performance silicate fertilizers. We recom-
mend those containing calcium and/or magnesium
and/or potassium, depending on the range of the deficit
alkaline cations.

As a result of magnesite and serpentinite fertili-
zation, ratio of Ca:Mg was significantly reduced in
the soils and soil solutions. This has a positive
impact on facilitating the intake of magnesium by
the stands and plantings under the canopy of weakened
forests.

Differences in the composition and concentrations of
the analytes in waters from these research plots, related
to the periods of their sampling, are connected with the
chemical composition of the fertilizers applied and rate
of mineralization. This indicates further progress of the

processes of removal of Ca®" by Mg®" as well as in-
creased removal of Al and H from the sorptive complex.

The saturation of the analyzed waters with alkalis
(BS) was very low, especially in Wista Forest District
.The values obtained show moderate flexibility of soil
water solutions in relation to the acid load, whereas the
results from the plots in Ujsoly Forest District indicate
high flexibility of the solutions. The opposite tendencies
were noted for the degree of soil acidity (Ma%). The
fertilization applied did not basically change these
values. The acid-neutralizing capacity (ANC,q) of the
analyzed waters increased on research plots as did alka-
linity. These waters may respond with strong pH fluctu-
ations even to the smallest changes in the composition
of the solution.

There was further change of the reaction of soil
waters and of the saturation with alkalis (BS) with
simultaneous lowering of the degree of acidity (Ma%),
especially on plots with dolomite and, above all, in
Wista Forest District. The phenomenon intensified dur-
ing the growing season. Fertilization with magnesite
increased the saturation of the solid soil phase with the
alkalis of the exchangeable complex (Mb), mainly in
Wista Forest District. In this forest district, soils undergo
leaching of metal hydroxides (aluminium buffer),
whereas in Ujsoly Forest District, alkaline cations were
released from silicates and exchangers. The saturation of
soils water under spruce stands in Wista Forest District
with alkalis is moderate; it is high in Ujsoty Forest
District.

A negative correlation was noted between the pH
values, the sum of alkalis as well as the degree of
saturation of the sorptive complex with alkalis in surface
horizons of the analyzed soils and the acid-neutralizing
capacity as well as alkalinity of the analyzed solutions at
the depth of 20 cm. This relationship may be explained
by an increased rate of organic matter mineralization
and the activation of the nitrification process.
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