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Abstract Limnologists have regarded temporal coher-
ence (synchrony) as a powerful tool for identifying the
relative importance of local-scale regulators and regional
climatic drivers on lake ecosystems. Limnological
studies on Asian reservoirs have emphasized that climate
and hydrology under the influences of monsoon are
dominant factors regulating seasonal patterns of lake
trophic status; yet, little is known of synchrony or
asynchrony of trophic status in the single reservoir
ecosystem. Based on monthly monitoring data of
chlorophyll a, transparency, nutrients, and nonvolatile
suspended solids (NVSS) during 1-year period, the
present study evaluated temporal coherence to test
whether local-scale regulators disturb the seasonal
dynamics of trophic state indices (TSI) in a giant
dendritic reservoir, China (Three Gorges Reservoir,
TGR). Reservoir-wide coherences for TSICHL, TSISD,
and TSITP showed dramatic variations over spatial
scale, indicating temporal asynchrony of trophic status.
Following the concept of TSI differences, algal

productivity in the mainstream of TGR and Xiangxi
Bay except the upstream of the bay were always limited
by nonalgal turbidity (TSICHL−TSISD <0) rather than
nitrogen and phosphorus (TSICHL−TSITN <0 and
TSICHL−TSITP <0). The coherence analysis for TSI
differences showed that local processes of Xiangxi Bay
were the main responsible for local asynchrony of
nonalgal turbidity limitation levels. Regression analysis
further proved that local temporal asynchrony for TSISD
and nonalgal turbidity limitation levels were regulated
by local dynamics of NVSS, rather than geographical
distance. The implications of the present study are to
emphasize that the results of trophic status obtained
from a single environment (reservoir mainstream)
cannot be extrapolated to other environments (tributary
bay) in a way that would allow its use as a sentinel site.

Keywords Temporal coherence . Trophic state
indices . Nonalgal turbidity limitation . Three Gorges
Reservoir

1 Introduction

Eutrophication has proven to be one of the foremost
problems in protecting aquatic ecosystems all over the
world (Carpenter et al. 1999; Smith 2003; Carpenter
2005; Nyenje et al. 2010). In the middle of the 20th
century, eutrophication was recognized as a serious
pollution problem for many western European and
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North American lakes and reservoirs, and began to
catch some attention from limnologists since that time
(Smith et al. 2006). Research work on the eutrophication
process was accelerated in the 1960s and 1970s, and
major advances in the scientific assessment, understand-
ing, and management of eutrophication have been made
since the late 1960s (Schindler 2006). For example,
“Carlson-type” trophic state index (TSI) and its two-
dimensional graphical approaches have been used
frequently for the diagnosis of lake trophic status and
its limiting factors (Carlson 1977, 1991; Fernández et al.
2009; Lee et al. 2010). To control eutrophication, the
need to reduce anthropogenic nutrient inputs to aquatic
ecosystems has been widely recognized (Carpenter et al.
1998, 1999; Conley et al. 2009). In addition, the
contribution of water residence time to eutrophication
has also been emphasized (Dillon and Rigler 1974; An
and Park 2003). In spite of many advances, eutrophica-
tion is often a combined effect problem, and much
attention is still devoted to the underlying mechanisms
of eutrophication (Schindler 2006).

Studies of synchrony in trophic state would
contribute to improve our understanding of the
relative role of local regulators and regional drivers
on eutrophication processes. Many ecological pro-
cesses are spatially autocorrelated (Lichstein et al.
2002; Shurin et al. 2009), so many ecologists have
become more interested in temporal coherence of
ecosystem property occurring over spatial scales
(Satake and Koizumi 2008; Knowlton and Jones
2007; Patoine and Leavitt 2006; Liebhold et al.
2004) since the concept “synchronization” initially
proposed by Moran (1953). Magnuson et al. (1990)
defined temporal coherence as “the phenomenon of
synchronous fluctuations in one or more parameters
among different locations within a geographic region”.
A key question in ecology concerns is what factors
affect the fluctuation of ecosystems over time and space
(Heisler and Knapp 2008). The simplicity and gener-
ality of temporal coherence make it seductive as a tool
to quantify the relative importance of intrinsic factors
and extrinsic environmental variations in regulating
ecological processes (Grenfell et al. 1998; Hudson and
Cattadori 1999; Rusak et al. 1999; Liebhold et al.
2004; Hessen and Faafeng 2006; Rusak et al. 2008;
Pöyry et al. 2009). For instance, a significant pattern of
synchrony might indicate the prevalence of regional,
extrinsic drivers (e.g., climate and hydrology) on the
dynamics of the limnological variables. Conversely, if

a low level of temporal coherence is found, one may
infer the predominance of local-scale regulators. Some
studies pointed out that lakes can provide an excellent
system to understand synchrony of ecological processes,
since the shoreline boundaries enable us to distinguish
forces acting from within and from outside the system
(Kent et al. 2007). However, recent studies argued that
levels of temporal coherence may vary within a single
reservoir system with diverse aquatic habits, and
emphasized that good tests of temporal coherence
within a single system would be its ability to
understand the controlling factors of ecosystem and
design the excellent monitoring programs (Lansac-Tôha
et al. 2008; Xu et al. 2009a).

Three Gorges Reservoir (TGR) located in the
mainstream of the Yangtze River (China, Fig. 1) is
one of the largest man-made lakes in the world
(Huang et al. 2006; Xu et al. 2009b). Since the
reservoir was filled to 135 m above sea level in June
2003, eutrophication and its important characteristics
referred to algal bloom have became major problem
of water environment in most tributary bays of TGR,
and received a lot of attention in recent years (Cai
and Hu 2006; Ye et al. 2007; Xu et al. 2009a,
2010a). Taste and odor problems increased in
frequency and severity in tributary bays, especially
in their middle-upper part, when red tide and blue-
green algal bloom were formed during spring and
during summer, respectively (Wang et al. 2009; Xu
et al. 2010b). Furthermore, water treatment and
recreational activities were physically impeded by
eutrophication-driven algal blooms. The elucidation of
the key factors regulating trophic state has important
theoretical and practical significance in the development
of management strategy for the reservoir and its
watershed management (Straškraba and Tundisi 1999;
Wetzel 2001; Poor 2010). While Xu et al. (2010b) had
already pointed out that the temporal variation of
runoff and suspended solids regulated by subtropical
monsoon climate was key regional driver on trophic
state of the mainstream of TGR, the effects of local-
scale regulators on the trophic state of the tributary bay
should also be noted due to the obvious difference of
aquatic habits from the reservoir mainstream. For
example, the mainstream of the TGR was still riverine
dominance, while most of tributary bays were lacus-
trine dominance (Zheng et al. 2006; Xu et al. 2009b),
according to the calculated residence time, a useful
predictor of similarities and differences among aquatic
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ecosystems (riverine and lacustrine characteristics)
(Soballe and Kimmel 1987; Ambrosetti et al. 2003).
Moreover, Xu et al. (2009b) further found that the
residence time of the mainstream and Xiangxi Bay of
TGR caused a clear variation in nonvolatile suspended
solids (NVSS), an important factor regulating trophic
state of aquatic ecosystems through the limitations of
light availability to algal productivity. Therefore,
further research is necessary to test whether local-scale
regulators play a key role on temporal asynchrony of

trophic state between the mainstream and tributary bay
of the reservoir.

Based on monthly data of chlorophyll a (chl. a),
transparency (SD), total nitrogen (TN), total phosphorus
(TP), and NVSS between August 2005 and July 2006
from the mainstream and Xiangxi Bay, the present study
analyzed temporal coherence for “Carlson-type” trophic
state index and their deviations to determine the relative
strength of local regulators and regional drivers on
eutrophication processes.

Fig. 1 Location of sampling sites at the mainstream and Xiangxi Bay of TGR
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2 Material and Methods

2.1 Design of Sampling

The TGR was built to reduce the potential for flood,
to increase shipping capacity, to produce electricity,
and to provide water for irrigated agriculture, domestic,
or industrial use. Comprised by the mainstream and
around 40 large reservoir-bays, TGR has a capacity of
3.93×1010 m3, a water level of 175 m a.s.l., a surface
area of 1,080 km2, and a watershed area of over 1.00×
106 km2 (Huang et al. 2006). The mainstream and
Xiangxi Bay of TGR were selected as the main area for
ecological observation and research by the Xiangxi
Ecosystem Station, the Chinese Academy of Sciences,
and the China Three Gorges Corporation (Fig. 1). Five
transverse transects (CJ01–CJ05) were set up along the
mainstream of TGR, over a distance of ca. 40 km. CJ01
was just upstream from the dam, and CJ05 was 7 km
upstream from the mouth of Xiangxi Bay. Three sites,
located in the left, middle, and right part of the channel,
respectively, were set up in each transect, except CJ03
(only two sites) due to the narrow channel. Water depth
of sampling site ranged from 21 to 107 m in the

mainstream of TGR (Shao et al. 2008a). Seven sampling
sites (XX01–XX07) were set up from the mouth to the
headwater of Xiangxi Bay, and their water depth varied
between 5 and 70 m (Shao et al. 2008b). During the
survey periods, the sampling sites were recorded using a
geographical positioning system (GPS).

2.2 Field Observation and Samples Measurements

Twelve surveys were performed monthly from August
2005 to July 2006. Transparency was in situ determined
with a 20-cm Secchi disk. Water samples for TN and TP
measurements were stored in a 500-ml precleaned plastic
bottle, acidified with H2SO4 to pH<2 and held on ice
until laboratory measurement (Huang et al. 2000; Cai
2007). Phytoplankton cells were concentrated by
filtering a known volume of water through a microfilter
(0.8 μm) for chl. a determination (Huang et al. 2000;
Cai 2007). An additional known volume of water was
filtered through a weighed preignited glass fiber filter
(Whatman type GF/F) for suspended solid measure-
ments. All filters were immediately placed in a dark
cooler and packed in ice until the laboratory analysis.
The chl. a concentrations were determined on a

Fig. 2 Mean and standard deviation (bar) of trophic state indices for each sampling site. The dashed lines indicated the threshold
value of hypertrophic (70), eutrophic (50), and mesotrophic (40) state
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spectrophotometer (Shimadzu UV-1601, Japan) accord-
ing to the standard observation methods of aquatic
ecosystem (Huang et al. 2000; Cai 2007). The concen-
trations of TN and TP were analyzed according to the
user manual of Skalar on a segmented flow analyzer
(Skalar SAN++, the Netherlands). The concentrations of
NVSS were measured according to a standard operating
procedure for suspended solids analysis (EPA 1993).

2.3 Data Analysis

Trophic state indices of the reservoir were calculated
using the methods described by Carlson (1977) and
Kratzer and Brezonik (1981). The equations are as
follows:

TSISD ¼ 60� 14:42 lnðSDÞ

TSITN ¼ 54:45þ 14:43 lnðTNÞ

TSITP ¼ 14:42 lnðTPÞ þ 4:15

TSICHL ¼ 9:81 lnðCHLÞ þ 30:6

The waters with TSI less than 40 are grouped into
oligotrophic state, and the waters with TSI ranging
from 40 to 50 are distinguished into mesotrophic
state. If the TSI values range from 50 to 70, the waters
belong to eutrophic state. The value of TSI is higher
than 70, suggesting hypertrophic state (Kratzer and
Brezonik 1981).

The significant differences of TSICHL from other
trophic state indices (TSISD, TSITN, and TSITP) were
evaluated with paired-samples t test. Intraclass corre-
lation coefficient (r) between the time series of two
sampling sites was regarded as a measure of temporal
coherence for trophic state indices and NVSS and was
calculated as (modified from Rusak et al. 1999):

r ¼ ðMSM �MSEÞ=ðMSM þMSEÞ
where MSM and MSE are the mean squares for the
months and for the error of a two-way ANOVA (sites
and months) without replication, respectively. When
synchrony increases, MSE approaches zero, and r
approaches 1. When fluctuations are asynchronous,
MSE will increase until it becomes higher than MSM,
and r approaches −1. The relationships between
geographical distance, coherence for NVSS, and

Fig. 3 Mean and standard deviation (bar) of TSI deviation for each sampling site. The star closed to bar represents that TSICHL of the
sampling site was significantly (p<0.05, t test) lower than the other indices
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asynchrony of trophic state indices were modeled
by the regression analysis. Geographical distance
between sites i and j was measured with Measure
Tool based on Arc GIS 9.0 software. Statistical
analysis including paired-samples t test, intraclass
correlation analysis, and regression analysis were run
with SPSS 13.0.

3 Results

3.1 Assessment of Trophic Status

There were clear spatial and temporal variations in
four trophic state indices across the selected study
area of TGR (Fig. 2). The mean TSICHL of each site
located in the mainstream were all less than 40,
suggesting an oligotrophic state, while the trophic
state of Xiangxi Bay raised from oligotrophic state at
the mouth to eutrophic state at the headwater. The

seasonal variations of TSICHL were observed in the
mainstream and Xiangxi Bay of TGR, as showed by
standard deviation (SD) of TSICHL for each site
(6.8~19.3). The mainstream and Xiangxi Bay of
TGR were both characterized as eutrophic state, when
the trophic state was based on mean TSISD
(54.9~64.4) or mean TSITN of each site (57.6~62.4).
The seasonal variation degree of TSISD in the TGR
mainstream (15.9≤SD≤21.9) was higher than that in
Xiangxi Bay (8.2≤SD≤13.7), while the variation
degree of TSITN had no obvious difference between
the TGR mainstream (3.2≤SD≤4.8) and Xiangxi Bay
(4.1≤SD≤5.1). As showed by assessments based on
mean TSITP, most sites of the mainstream were
grouped into eutrophic state, while the trophic state
of Xiangxi Bay changed from eutrophic state of the
mouth to hypereutrophic state of the headwater. The
seasonal variation degree of TSITP in the TGR
mainstream (1.9≤SD≤5.9) was lower than that in
Xiangxi Bay (6.3≤SD≤11.6).

Fig. 4 Spatial pattern of
temporal coherence (r) for
TSICHL (upper triangle) and
for TSITP (lower triangle)
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TSICHL was significantly (p<0.05, t test) lower than
TSISD, TSITN, and TSITP at most sampling sites of
selected area (Fig. 3). It showed that nonalgal turbidity
dominated light attenuation (TSICHL−TSISD <0), and
nutrient inputs substantially exceeded the actual nutrient
availability for algal production (TSICHL−TSITN <0 and
TSICHL−TSITP <0), following the concept of TSI
differences (Carlson 1991). In other words, algal
productivity in the mainstream of TGR and Xiangxi
Bay except the upstream of the bay was always limited
by nonalgal turbidity rather than nitrogen and phospho-
rus. Nonalgal turbidity had higher degree of limitation
in the mainstream of TGR (−39.9 ≤ mean of
TSICHL−TSISD ≤−20.1) than that in Xiangxi Bay
(−16.9 ≤ mean of TSICHL−TSISD ≤−3.0). The seasonal
variations in the limitation degree of nonalgal turbidity
for the TGR mainstream (16.8 ≤ SD ≤ 25.3) were often
higher than that for Xiangxi Bay (11.3 ≤ SD ≤ 19.0).
The mean of TSICHL−TSITN and TSICHL−TSITP at the
mainstream ranged from −40.3 to −23.6 and from −47.2

to −24.9, respectively, while those at Xiangxi Bay
varied from −22.2 to −2.2 and from −29.6 to −20.5,
respectively. It indicted that the mainstream of TGR had
higher degree of nutrient excess than Xiangxi Bay.

3.2 Temporal Asynchrony for Trophic Status

Among four trophic state indices, the lowest degrees
of coherence were detected for TSICHL and TSITP
(Fig. 4). The correlation coefficients of TSICHL and
TSITP between all sampling sites ranged from −0.368
to 0.944 and from −0.493 to 0.940, respectively, and
the average coherences were both lower than 0.500.
Significant high levels of temporal coherence were
observed between only 33.8% site-pairs for TSICHL
and between only 20.5% site-pairs for TSITP. The
regional temporal asynchrony suggested that the
intrinsic factors acting in each sites are the main
responsible for temporal fluctuations of TSICHL and
TSITP. The highest levels of coherence were found for

Fig. 5 Spatial pattern of
temporal coherence (r) for
TSITN (upper triangle) and
for TSISD (lower triangle;
the pane indicated the
coherence between the
mainstream and Xiangxi
Bay of TGR)
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TSITN (Fig. 5). All r values of TSITN were statistically
significant, and the correlation coefficients of TSITN
between all sampling sites ranged from 0.510 to
0.991, with mean and median values of 0.895 and
0.927, respectively. The regional synchrony indicated
that temporal fluctuations of TSITN were not
regulated by local-scale factors. The coherence for
TSISD was also relative high (mean r=0.750), but
displayed substantial variation over spatial scale,
ranging from 0.097 to 0.996 (Fig. 5). The lowest
coherences for TSISD were often observed between
sites from the upstream of Xiangxi Bay and that from
the downstream and the reservoir mainstream. It
indicated that local processes of Xiangxi Bay played
a role on the local asynchrony in temporal fluctua-
tions of TSISD.

Patterns of synchrony in seasonal dynamics were
also analyzed for deviations from trophic state
indices. The lowest degrees of coherence were

detected for TSICHL−TSITN and TSICHL−TSITP
(Fig. 6). The correlation coefficients for TSICHL−TSITN
and TSICHL−TSITP ranged from −0.323 to 0.935 and
from −0.406 to 0.929, respectively, and the mean and
median of coherences were lower than 0.500. Signif-
icant high levels of temporal coherence were only
found between 39.5% site-pairs for TSICHL−TSITN and
between 20.0% site-pairs for TSICHL−TSITP. Regional
asynchrony suggested that the intrinsic factors of each
site were the main responsible for temporal fluctuations
of nutrient excess degree. The coherence for
TSICHL−TSISD was relatively high (mean r=0.572),
but also showed substantial variation over spatial scale,
ranging from −0.260 to 0.982 (Fig. 7). Low coherences
for TSICHL−TSISD were recorded between the main-
stream and Xiangxi Bay or between sites within
Xiangxi Bay, indicating that local processes of Xiangxi
Bay were the main responsible for local asynchrony of
nonalgal turbidity limitation levels.

Fig. 6 Spatial pattern of
temporal coherence (r)
for TSICHL−TSITN
(upper triangle) and
for TSICHL−TSITP
(lower triangle)
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3.3 The Influencing Factors of Temporal Asynchrony

Geographical distance between pair sites greatly ranged
from 0.3 to 50.2 km, and was significantly related to
temporal asynchrony for trophic state indices except
TSICHL, but accounted for only 1.1~18.7% of the
spatial variations in their coherences (Fig. 8). Temporal
coherence for NVSS showed dramatic variations over
spatial scales, ranging from −0.179 to 0.992, and
explained 85.2% of the spatial variation in coherences
for TSISD, but accounted for only 2.8% and 4.3% of
the variance in coherences for TSICHL and TSITP,
respectively. The coherences of TSI deviations
between pair sites significantly decreased with geo-
graphical distance, but only 2.3~18.6% of the variance
in coherences can be explained (Fig. 9). Coherence for
NVSS was also a strong predictor of coherence for
TSICHL−TSISD, while it was a weak predictor of
coherence for TSICHL−TSITN and TSICHL−TSITP.
Those results of regression analysis indicated that local
temporal asynchrony for TSISD and nonalgal turbidity

limitation levels were regulated by local dynamics of
NVSS, rather than geographical distance.

4 Discussions

In the derivations of original TSI, Carlson's intention
was to set up equations that would produce the same
TSI value for a particular lake, regardless of whether
chlorophyll a, phosphorus, or transparency was used
to calculate the index of trophic state (Carlson 1977).
The accuracy of the index values based on chlorophyll
a, phosphorus, and transparency depends on the
assumption that phosphorus was the main algal
biomass-limiting factor, and that underwater light
climate was dominated by phytoplankton rather than
nonalgal turbidity. In reality, these assumptions are not
easy to be demonstrated in many water bodies, and
there are often obvious differences in the calculated
trophic state (Matthews et al. 2002; An and Park 2003;
Lee et al. 2010). In this case, Carlson (1991) suggested

Fig. 7 Spatial pattern of
temporal coherence (r) for
TSICHL−TSISD (the pane
indicated the coherence
between the mainstream and
Xiangxi Bay of TGR)
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giving priority to biological parameters such as
chlorophyll a that represents visible symptoms of
eutrophication, when classifying a lake's trophic status.
Most researchers supported Carlson's idea that the
trophic state index determined with chlorophyll a
would provide a better indication of lake trophic state
than one determined with total phosphorus concen-
trations or transparency (e. g., Matthews et al. 2002;
An and Park 2003; Lee et al. 2010). Following the
common view, the results of this present study
indicated that the mainstream of TGR would be placed

in an oligotrophic category, and Xiangxi Bay changed
from oligotrophic to eutrophic category between the
mouth and headwater. The conclusions coincided with
the frequent blooms observed inXiangxi Bay, especially
in its middle and upstream, instead of the mainstream of
TGR (Ye et al. 2007; Wang et al. 2009; Xu et al. 2009a,
2010b), where no algal blooms have been reported
until now.

Interestingly, Carlson (1991) expanded on the
concept of TSI differences by providing a two-
dimensional graphical approach, in order to assess

Fig. 8 Relationship between temporal asynchrony (r) for trophic state (TSICHL, TSISD, TSITP), geographical distance (km), and
temporal coherence (r) for NVSS
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the type and degree of limitation in lake ecosystems.
When TSICHL is equal to or greater than TSISD, one
may infer that algae dominate light attenuation. When
TSICHL is substantially lower than TSISD, this
provides evidence that something other than algae,
perhaps color or nonalgal seston, is contributing to the
light attenuation. When TSICHL is equal to or greater
than TSITP, phosphorus generally is limiting to algal
growth. When TSICHL is substantially lower than
TSITP, this indicates that there is less algal material
present than expected based on total phosphorus, and

that some other factors may be limiting. In the same
manner, the deviation between TSICHL and TSITN can
be used to infer whether or not nitrogen limitation
occurs. Those relationships have been extensively
used by most related studies (e.g., Matthews et al.
2002; An and Park 2003; Lee et al. 2010). For
instance, Matthews et al. (2002) employed the
concept of TSI differences to assess the trophic state
and nutrient limitation of Lake Whatcom (WA, USA).
An and Park (2003) used deviations of the trophic
state index to illustrate that factors other than

Fig. 9 Relationship between temporal asynchrony (r) for TSI deviations, geographical distance (km), and temporal coherence (r) for
NVSS
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phosphorus limited algal growth, and that nonalgal
particles affected light attenuation in an Asian
reservoir (Taechung Reservoir, Korean). In the pres-
ent study, the trophic state index determined with
chlorophyll a presented lower values than those
determined with total nitrogen, total phosphorus, and
transparency, indicating that nonalgal turbidity rather
than nitrogen and phosphorus limited phytoplankton
growth.

Limnological studies have demonstrated that climate
and hydrology are dominant factors regulating lake
processes and functions (Lee et al. 2010). In Asian,
monsoon rainfall accounts for 50–70% of total annual
precipitation, and the importance of the monsoon in
determining seasonal patterns of lake trophic status has
been proved by many previous studies (An and Park
2003; Lee et al. 2010; Xu et al. 2010a). For instance,
An and Park (2003) explored how the Asian monsoon
influenced the trophic state of the Taechung Reservoir,
Korea, and found that the disparity of the trophic state
index during the intensive monsoon was a result from
the short water retention time and the reduced light
availability through dominance of NVSS. Lee et al.
(2010) concluded that the trophic state of Imha
Reservoir (Korean) was primarily controlled by the
effect of phosphorus during the premonsoon and
postmonsoon seasons, while the state was directly
influenced by nonalgal light attenuation during intense
monsoon. In the mainstream of TGR, the inflow
discharges mostly concentrated from June to September
(the flood season) under the regulation of summer
monsoon, accounting for 61% of annual total (Huang et
al. 2006), and the regulating role of the monsoon on
trophic status has also been found by a recent research
work (Xu et al. 2010a). Overall, those studies from the
Asian reservoirs had considered the timing and
intensity of the monsoon as the regional drivers of
seasonal and year-to-year variations of trophic status,
but there were a few prior investigations on temporal
asynchrony of trophic status, and the role of local-scale
regulators were often ignored by most researchers.
According to the theory of Moran effect (Hudson and
Cattadori 1999; Liebhold et al. 2004; Satake and
Koizumi 2008), regional climatic factors could exert
synchronous effects on trophic status in a single
reservoir system. However, the present study did not
show a clear case of the Moran effect, and found that
local-scale regulators of Xiangxi Bay could disturb the
responses of nonalgal turbidity limitation on regional

scale factors. These findings were strongly supported
by asynchronous dynamics of NVSS. Therefore, we
argued that the results of trophic status obtained from a
single environment (reservoir mainstream) cannot be
extrapolated to other environments (tributary bay) in a
way that would allow its use as a sentinel site.
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