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Abstract
Water management in mountainous regions faces significant challenges due to deep uncer-
tainties arising from data scarcity, knowledge gaps, and the complex interplay of climate 
and socio-economic changes. While existing approaches focused on uncertainty reduction 
and water system optimization contribute to managing uncertainties, they often require 
probability distributions that can be difficult to obtain in data-scarce mountain regions. To 
address these challenges, we demonstrate the effectiveness of Exploratory Modeling and 
Analysis (EMA) in assessing water management strategies and identifying operational 
ranges that avoid future water scarcity. Through a case study in the complex and data-
scarce Peruvian Andes, we employed EMA to run 12,000 simulations by 2050, incorpo-
rating deep uncertainties from climate and socio-economic scenarios, and hydrological 
modeling parameters. This analysis identified specific policy combinations demonstrating 
greater robustness across diverse scenarios and uncertainties. EMA explicitly identifies 
operational ranges of policies to avoid water scarcity but also highlights the conditions 
that might trigger policy failure. We also delve into the roles of the different factors used 
in EMA and their significance in water management applications. Our research illustrates 
that an exploratory hydrological modeling approach based on robust decision-making can 
foster a more informed decision-making process for long-term water adaptation in rapidly 
changing mountain regions under data scarcity and deep uncertainties.

Keywords Climate change · Socio-economic change · Deep uncertainty · Exploratory 
modeling and analysis · Water management · Social-ecological system

1 Introduction

Mountains play a crucial role as a freshwater source, supporting the livelihoods of nearly 
two billion people globally (Schneiderbauer et al. 2021). At the same time, mountains face 
complex challenges from climate and socio-economic changes that threaten water supply 
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and other essential ecosystem services (IPCC et al. 2018; Hock et al. 2019; Shah 2021). 
Despite their importance, mountain regions remain understudied leading to a wide range 
of uncertainties that challenge the design of adequate adaptation measures (Adler et al. 
2023; Doblas-Reyes et al. 2023). There is an urgent need to develop suitable methods to 
identify robust and locally tailored adaptation measures that ensure long-term water supply 
for social-ecological systems under current and future conditions (Poff et al. 2016; Hasan 
et al. 2023).

In mountain regions, uncertainties arise from a combination of scarce data, limited 
understanding of the glacio-hydrological and socio-economic processes, and from the vari-
ability in climate and socio-economic projections (Berkhout et al. 2014; Hock et al. 2019). 
The limited understanding of glacial meltwater contribution, groundwater dynamics, and 
the role of wetlands hinders mathematical representations and models (Buytaert et al. 2017; 
Correa et al. 2020). Further limited socio-economic understanding is related, among others, 
to missing data on local economic development, demographic dynamics, and changes in 
water demand (Berkhout et al. 2014; Scott et al. 2021). Climate models, though useful glob-
ally or regionally, are yet unable to incorporate local variability realistically, strongly influ-
encing projections of hydrological changes (Vetter et al. 2017; Kundzewicz et al. 2018). 
Inherent dynamics and uncertainty when projecting long-term social and economic trends 
limit the ability to assign probabilities to future socio-economic scenarios (Riahi et al. 2017; 
Kundzewicz et al. 2018). Furthermore, errors in input data and knowledge gaps can hinder 
the accuracy of model predictions to conditions beyond those used for model calibration.

The described uncertainties are usually quantified through methods such as uncertainty 
bounds, error propagation, or sensitivity analysis (Huss and Hock 2018; McMillan et al. 
2018). Beyond these, more sophisticated approaches, such as interval, stochastic, and fuzzy 
mathematical programming address variability and ambiguity by modeling and optimizing 
water management systems (Wang et al. 2024). However, these methods require probability 
distributions which can be difficult to obtain in data-scarce regions. This lack of clear prob-
abilities leads to deep uncertainty, a situation where decision-makers deal with unknown 
probabilities for key factors, making the range of future system states unclear (Lempert 
2019; Marchau et al. 2019).

Most often, the design of water policies relies on historical data, e.g. precipitation or 
water demand patterns (Cosgrove and Loucks 2015). However, using the past to predict 
the future has limitations given that climate change leads to conditions not observed in 
the historical record (van Vuuren et al. 2012; Poff et al. 2016). Recent progress in integra-
tive optimization methods enables identifying optimal water management strategies across 
multiple criteria and uncertain futures to supports decision-making (e.g. Ucler and Kocken 
2023; Wang et al. 2024).

Currently, management strategies focus on engineering-based increases in water supply, 
followed by measures to enhance water efficiency, while explicit efforts towards reducing 
water demand or improving water governance and policies have often been neglected (Shah 
2021; Drenkhan et al. 2022). To increase the water supply side, efforts have long been 
put into grey infrastructure including large reservoirs and dams (Shah 2021). Nonetheless, 
reservoirs often imply considerable impacts on local and downstream ecosystems, substan-
tial investments, and social feasibility (Haeberli et al. 2016). Increasing water efficiency 
can potentially reduce water losses, particularly in mountain regions where water-intense 
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flood irrigation and low investments in water infrastructure prevail (Cunha et al. 2019; 
Motschmann et al. 2022).

Recent studies reveal that adaptation strategies can unintentionally increase vulnerabili-
ties and risks, known as maladaptation, due to an inappropriate project design and future 
uncertainties (Aggarwal et al. 2022; Adler et al. 2023). This highlights the value of robust 
decision-making which focuses on making informed decisions rather than improving pre-
dictions, an alternative paradigm to traditional approaches such as predictive or optimi-
zation models (Haasnoot et al. 2013; Marchau et al. 2019). Robust decision-making can 
be operationalized through Exploratory Modeling and Analysis (EMA) that maps diverse 
future scenarios without fixed probabilities and, as a result, all future (and potentially con-
tradicting) scenarios are equally assessed (Lempert et al. 2003; Bryant and Lempert 2010). 
Through this approach, EMA goes beyond the “what if” question, exploring the circum-
stances under which a policy would succeed or fail (Kwakkel 2017; Moallemi et al. 2020). 
EMA has been successfully applied in the water sector, particularly for assessing urban 
water management or operational dam plans (cf. Kalra et al. 2015; Giuliani and Castel-
letti 2016). While these applications demonstrate EMA’s effectiveness in addressing water 
management challenges, their focus on specific and data-rich areas limits their ability to 
capture the complex dynamics occurring across entire catchments. Therefore, applications 
that show how EMA can contribute to support robust decision-making in data-scarce and 
complex regions are still missing.

This study aims to illustrate the potential of EMA to design robust water management 
strategies and define operational ranges at the catchment scale under uncertain climate and 
socio-economic changes in data-scarce and complex mountain environments. Through a 
case study in the Peruvian Andes, water management strategies are assessed to avoid poten-
tial water scarcity by 2050. Such an approach transcends conventional modeling approaches, 
offering significant advantages for informed decision-making processes.

2 Study Site

The case study is situated in the headwaters of the Vilcanota-Urubamba Basin in Cusco, 
Peru, specifically in the glacierized and data-scarce Pitumarca catchment (685 km2) (Fig. 1-
A). The catchment elevation ranges from 3,413 to 6,315 m a.s.l. with a glacier surface of 
20.6 km2 in 2016 which has decreased by about 30% in the last 40 years (INAIGEM 2018). 
The region is characterized by strong seasonality with most precipitation occurring from 
December to April and a pronounced dry season (June – August) when human and natural 
systems strongly rely on glacial meltwater (Buytaert et al. 2017; Drenkhan et al. 2019).

The Pitumarca catchment consists of two districts, Pitumarca and Checacupe, with 
7,170 and 4,720 inhabitants, respectively (INEI 2020). The catchment covers only 59% of 
the Pitumarca district and 3% of the Checacupe district. The local economy considerably 
depends on traditional agriculture of potatoes, wheat, corn, and small-scale horticulture 
(INCLAM 2015). Approximately 45% (5,812 hectares) of cropland in both districts are 
irrigated, mostly with limited water infrastructure and inefficient practices such as flood 
irrigation (INCLAM 2015; INEI 2020).
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Fig. 1 Panel A Map of the study site including land cover – see Supplementary material S1 (MINAM 
2015), the change in glacier surface from 1986 (see Sect. 3.1) to 2016 (INAIGEM 2018), as well as the 
lakes (ANA 2014) selected to be used as reservoirs (see Sect. 3.2). Panel B Schematic representation of 
the methods used in the study
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3 Data and Methods

In this study, we used EMA to identify the operational ranges of two widely implemented 
water management strategies to avoid water scarcity, while considering uncertainties from 
hydrological simulation and climate and socio-economic projections by 2050 (Fig. 1-B): 
(i) water reservoirs to increase water availability, and (ii) changes in water infrastructure 
efficiencies to reduce water losses.

3.1 Historical Glacio-Hydrological Simulation

Here we used the lumped and water balance model Shaman (Muñoz et al. 2021) because of 
its parsimonious approach and its successful application in the region (Muñoz et al. 2021). 
The model integrates surface and subsurface discharge, including a glacier routine that 
simulates the seasonal meltwater variability of tropical glaciers. The model accounts for 
sectorial water demand with backflows linked to water supply efficiencies (Supplemen-
tary material S2). We conducted calibration (1981–2000) and validation (2000–2016) at 
monthly time step, using multi-data calibration parameters and assessing runoff components 
(cf. Vetter et al. 2017; Muñoz et al. 2021). Glacier meltwater contribution to river discharge 
was compared to the regional dataset of Buytaert et al. (2017), while simulated runoff was 
compared to the national dataset on simulated river discharge by Llauca et al. (2021) (Sup-
plementary material S3).

The Shaman model calculates water supply as a function of precipitation, potential 
evapotranspiration, and glacier discharge (Table 1). We obtained historical monthly pre-
cipitation and temperature data from the Peruvian-wide available 10 km gridded datasets 
PISCOp v2.1 and PISCOt v1.1, respectively (Huerta et al. 2018; Aybar et al. 2020). Poten-
tial evapotranspiration was calculated with the Penman-Monteith equation using the FAO 

Table 1 Datasets used for historical and future glacio-hydrological simulations
Data Description Reference
Historical daily precipitation 
and max and min temperature

Gridded data from 1981 to 2016 from PISCOv2p1 
precipitation and PISCOv1p1 temperature

(Huerta et al. 2018; 
Aybar et al. 2020)

Reference Evapotranspiration Calculated with FAO calculator using max and min 
temperature

(Allen et al. 1998)

Historical glacier surface Peruvian glacier inventories in 2010 and 2016, and 
satellite imagery from 1987 and 1998

(ANA 2014;  
INAIGEM 2018)

Current lake surface Peruvian glacier lakes inventory in 2014 (ANA 2014)
Historical population on a 
district scale

From census and governmental projections from 
1981, 1993, 2007, and 2017

(INEI 2020)

Historical irrigated areas From the census in 1994 and 2012 and report from 
the Water Authority

(INCLAM 2015; 
INEI 2020)

Historical reference monthly 
discharge

Gridded data from PISCO v1p1 from 1981 to 2016 (Llauca et al. 2021)

Future precipitation and max 
and min temperature

SSP1-1.9, SSP1-2.6, SSP5-8.5 scenarios from 
CMIP6

(O’Neill et al. 2016)

Projected population From SSP scenarios and governmental reports on a 
country scale

(Riahi et al. 2017; 
INEI 2019)

Projected irrigated areas From SSP scenarios on a country and regional scale (Riahi et al. 2017)
SSP: Shared Socio-economic Pathways
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calculator (Allen et al. 1998). Glacier discharge in Shaman is estimated through a sinu-
soidal function that depends on seasonal melting factors and glacier surface (Supplemen-
tary material S2). The latter was obtained by computing the Normalized Difference Snow 
Index (Hall and Riggs 2011) from multispectral satellite imagery of Landsat 5 (1987) and 
Landsat 7 (1998), and from the two Peruvian glacier inventories in 2010 and 2016 (cf. 
Muñoz et al. 2021).

We calculated historical domestic water demand by multiplying population data (from 
national censuses) with water allocation per person and day of 120 L/capita/day, an estimate 
that represents water needs for rural areas and considerable water losses (about 70%) in 
Peru (Drenkhan et al. 2019; Motschmann et al. 2022). Likewise, we calculated irrigation 
needs using irrigated areas (from national censuses) and the average catchment-wise crop 
water allocation of 18,000 m3/hectare/day that considers dominant crops such as potato, 
wheat, corn, and horticulture (INCLAM 2015). Catchment population and irrigated areas 
were a function of the district fraction inside the catchment because census data is available 
on a district level only. Environmental flow requirements were calculated as the equiva-
lent of a discharge with 95% persistence (percentile 5%) at the catchment outlet assessed 
from 1981 to 2016 following an official methodology by the Peruvian Water Authority (R.J. 
N°098-2016-ANA).

The lumped Shaman model neglects spatial allocation of water, focusing instead on pri-
oritized sectoral demands. Water is allocated first to domestic use, then to irrigation, and 
lastly to environmental needs.

3.2 Setting the Problem

In EMA all variables are categorized as uncertainties (X), policy levers (L), relationships 
(R), or metrics (M) using the XLRM framework (Lempert et al. 2003; Bankes et al. 2013). 
It structures variables into testable hypotheses to determine the operational range for pol-
icy options, while also accounting for uncertainties. In the case study, each input data to 
the hydrological model was considered as an uncertainty, namely future climate scenarios 
(X1_sce), future population (X2_pop), future irrigated areas (X3_irr), and backflows from 
domestic (X4_backd) and agricultural (X5_backi) water systems. We also defined three pol-
icy levers as changes in the efficiency from irrigation (L1_irreff) and domestic (L2_domeff) 
water systems, and water reservoir schemes (L3_res). Next, we defined variability ranges 
for uncertainties and policies (Table 2) based on diverse criteria (see following paragraphs). 
These uncertainties and policies then served as input data for the calibrated Shaman model, 
which accounts for the relationships (R) among these factors. Finally, the model output 
(metric M) is used for further analysis of policy performance. In the case study, this metric 
measures water sufficiency by counting the number of months in the dry season (May to 
September, 2022 to 2050) where total water supply exceeds 80% of total water demand 
including environmental flow requirements. The 80% considers that not all water demands 
can be fulfilled because of real-world limitations, as documented in local reports (INEI 
2018).

We used future climate series for precipitation and temperature (X1_sce) from the 
Coupled Model Intercomparison Project Phase 6 (O’Neill et al. 2016), bias-correcting 
them with the quantile-quantile mapping method (Teutschbein and Seibert 2013; Andres 

1 3



Assessing Water Management Strategies in Data-Scarce Mountain…

et al. 2014). Glacier surface by 2050 was estimated according to Schauwecker et al. 
(2017) using projected changes in the freezing level heights derived from future tem-
perature data. Future population (X2_pop) and irrigated areas (X3_irr) were calculated 
by applying rates of change, derived from the SSP database 2.0 (Riahi et al. 2017) and 
governmental projections (INEI 2019) at country scale, to historical data. X3_irr was 
exclusively derived from SSP scenarios due to the absence of local data from govern-
mental reports. As backflows from the domestic and agricultural water systems (X4_
backd, X5_backi) are widely uncertain (Cunha et al. 2019), an arbitrary range of 10 
− 50% was set to represent the efficiency degree in the region (Drenkhan et al. 2019; 
Motschmann et al. 2022).

Changes in irrigation (L1_irreff) and domestic water use (L2_domeff) efficiencies were 
considered in a wide range considering both, currently low efficiencies and future scenar-
ios with high efficiencies driven by new technical development, e.g. drip irrigation (cf. 
INCLAM 2015; Drenkhan et al. 2019). We considered four reservoir management schemes 
(L3_res), ranging from no reservoirs to scenarios that combine one large reservoir with the 
utilization of multiple smaller lakes. All schemes uniformly released water solely during the 
dry season. The size of the large reservoir was set to 10 km2 representing a medium-sized 
lake in the region. Small lakes were selected according to their proximity to downstream 
areas where water demands are high (Fig. 1). Due to the lack of bathymetric data, small lake 
volumes were estimated using lake area and an empirical relationship between lake width 
and mean depth following Muñoz et al. (2020).

Table 2 Description of the uncertainties (X), policy levers (L), and the metric (M) used in this study
Name Description Range or variability
X1_sce Uncertainty due to climate models and 

scenarios
15 climate series:
3 climate scenarios (SSP1-1.9, SSP1-2.6, 
SSP5-8.5) each with 5 climate models 
(Supplementary material S4)

X2_pop Uncertainty due to changes in 
population

-10% to + 30% of population in 2016

X3_irr Uncertainty due to changes in irrigated 
areas

+ 5% to + 35% of irrigated areas in 2,080,017

X4_backd Uncertainty due to backflows from the 
domestic water sector

10–50% of non-water used from domestic 
demand

X5_backi Uncertainty due to backflows from the 
agricultural water sector

10–50% of non-water used from agricultural 
demand

L1_irreff Changes (%) in efficiency of irrigation 
system

30% (current levels) to 70% (e.g. drip irriga-
tion system)

L2_domeff Changes (%) in efficiency of domestic 
water system

45 (current levels) to 85% (efficiencies in 
urban areas)

L3_res Reservoir scheme 4 schemes:
i) no reservoir (0 ≤ L3_res < 1)
ii) large reservoir (1 ≤ L3_res < 2)
iii) lakes as reservoirs(2 ≤ L3_res < 3)
iv) lakes + large reservoir (3 ≤ L3_res < 4)

Metric Fraction of: number of months where 
water supply is larger than 80% of 
water demand in the dry season (May to 
September)

0 to 1
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3.3 Operationalization and Scenario Discovery

We used the open-source Python library Exploratory Modeling and Analysis Workbench 
(ema-workbench) (Kwakkel 2017) to systematically run simulations and assess results. 
First, we integrated the calibrated Shaman model into the ema-workbench to conduct 12,000 
simulations from 2022 to 2050 and calculated the water sufficiency metric. Each simula-
tion combined uncertainties and policies from their respective ranges of variability using a 
Latin Hypercube sampling strategy. Second, we used the feature-scoring algorithm (Guyon 
2003) to illustrate how uncertainties and policies influence the variability of the metric via a 
heatmap. Subsequently, we employed the Patient Rule Induction Method (PRIM) algorithm 
(Friedman and Fisher 1999) to explore the uncertainty and policy space and to identify 
combinations of factors triggering water sufficiency values exceeding or falling below a 
pre-defined water security threshold. This threshold was set as insufficient water supply, 
defined as water supply dropping below water demand levels within a specific period, where 
threshold = 1 (100%) means water supply > water demand every month until 2050. In the 
domestic water sector, utilities aim for 75 to 90% (0.75 to 0.90) of temporal water supply 
(Kalra et al. 2015; SUNASS 2022). For irrigation, temporal water supply varies by crops 
and weather conditions making it difficult to obtain a single target value (Levy et al. 2013). 
Regarding the environmental flow requirements, no target value is available due to data and 
knowledge gaps in the Andes. In this context, we applied a unique threshold of 0.8 (80%) 
for both human and environmental needs at the catchment scale. That means policies where 
metric < 0.8 are considered unsuccessful in avoiding water scarcity, while those where met-
ric > = 0.8 are considered successful. This approach, known as stress-testing (Moallemi et al. 
2020), has been commonly applied in other EMA applications.

4 Results

4.1 Future Hydroclimatic and Socio-Economic Development

The analysis of 15 future climate series reveals significant changes in precipitation, tem-
perature, and glacier dynamics (Table 3 and Supplementary material S5), aligning with 
other research in the region (cf. Andres et al. 2014; Buytaert et al. 2017; Drenkhan et al. 
2019). Between the historical and projected period up to 2050, an increase in total annual 
precipitation of up to 5% is observed under various SSP scenarios, except SSP1-1.9, which 
shows no significant change. Mean air temperatures are expected to rise by 1.2 °C to 1.9 °C, 
contributing to increased freezing level heights by up to 296 m and considerable glacier 
area reductions of up to 52%. Runoff simulations indicate a wide range across scenarios, 
with a significant increase at the annual scale under SSP1-2.6 and SSP5-8.5, and a marked 
decrease in dry season runoff under SSP5-8.5. Overall, glacier contribution to total annual 
runoff in the Pitumarca catchment is expected to decline reducing its buffering capacity 
during the dry season.

Calculated environmental flow requirements range between 1.7 m3/s in July and 14.7 
m3/s in February. These estimates correspond to approximately 50% of monthly discharge 
in all months (Supplementary material S6) and align with global estimates that vary between 
20 and 50% (cf. Smakhtin et al. 2004).
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Overall, 42 lakes were identified in the Pitumarca catchment which range from 0.5 to 10 
hectares (total area: 0.91 km2) with an estimated total volume of 4.38 million m3 (Supple-
mentary material S7). From these, 22 lakes (2.25 million m3) are near the high-demand 
lower catchment and were selected as potential reservoirs (Fig. 1).

Population dynamics show SSP scenarios projecting a decline of up to 10% in contrast 
with governmental projections that report an increase of up to 30% in comparison with 
2016 levels. For all SSP scenarios, an expansion of irrigated areas between 5% and 35% is 
projected from 2017.

4.2 Scenario Discovery and Exploration

Simulations without policy implementation (Fig. 2-A and B) show that population changes 
have little impact on changes in water scarcity due to the low proportion (∼10%) of the 
domestic sector on overall water demand. However, expanding irrigated areas increases the 
risk of water scarcity (Fig. 2-A). In addition, climate scenarios (Fig. 2-B) potentially exert a 
strong influence on water scarcity levels. While optimistic scenarios such as SSP1-2.6 can 
prevent water scarcity, the pessimistic SSP5-8.5 scenario frequently leads to levels below 
the water scarcity threshold.

When considering all uncertainties and policies, out of 12,000 simulations, in 57% of 
these metric ≥ 0.8 showing success in avoiding water scarcity, while 43% of simulations 
failed (Supplementary material S8). The heatmap (Fig. 2-C) ranks all factors affecting the 
water sufficiency metric across the 12,000 simulations, showing policies, particularly the 
reservoir scheme (L3_res) and irrigation efficiency (L1_irreff), as key influencers. This sug-
gests that rather than uncertainties specific policies play a decisive role in water scarcity in 
the catchment (Poff et al. 2016; Drenkhan et al. 2022). In 32% of all simulations, policies 
have considerably improved the metric values. However, in 15% of all cases initially above 
the 0.8 threshold, policies had contributed to water scarcity. This highlights the importance 
of identifying operational ranges to avoid unsuccessful cases (Haasnoot et al. 2013; Poff 
et al. 2016). Figure 2-D, based on the analysis of successful against unsuccessful cases 

Table 3 Changes in hydroclimatic and socio-economic-related variables where a statistically significant 
change has been observed between the historical period (1981–2016) and the future climate series by end of 
2050 according to climate scenarios
Variables Climate Scenarios

SSP1-1.9 SSP1-2.6 SSP5-8.5
Climate ∆ Total annual precipitation (%) - + 4 + 5

∆ Mean annual temperature (°C) + 1.2 + 1.3 + 1.9
Glacier ∆ Glacier area (%) * -32 -34 -52

∆ FLH (m) * + 193 + 204 + 296
∆ Annual glacier discharge (%) † -26 -29 -41
Max glacier contribution to runoff † 23 22 18

Runoff ∆ Annual runoff (%) - + 4 + 3
∆ Dry season runoff (%) - + 10 -8

Socio-economic ∆ Population (%) * + 2 + 2 -10
∆ Irrigated areas (%) * + 6 + 6 + 35

*Baseline in 2016. † Baseline 2001 to 2015. FHL: freezing level height. Details are available in 
Supplementary material S5
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from the PRIM algorithm, shows that while factors L1_irreff and L3_res are consistently 
important in both cases, other factors differ (e.g. X2_pop for unsuccessful cases, X1_sce for 
successful cases) (e.g. Haasnoot et al. 2013; Buytaert et al. 2017). Figure 2-D also shows 
the operational ranges for each of the factors with their statistical significance, confirming 
the key roles of L1_irreff and L3_res (Supplementary material S8).

Building on results from the PRIM algorithm, Fig. 3 shows the successful (Fig. 3-A) and 
unsuccessful (Fig. 3-B) cases to avoid water scarcity. Scatter plots are a 2-dimensional rep-
resentation of an 8-dimensional problem (five uncertainties and three policies) that facili-
tates the analysis. Overall, Fig. 3 highlights specific combination of factors that helps to 
avoid water scarcity. For instance, in Fig. 3-A, the combination of X1_sce with L2_domeff 
does not show a particular region where metrics are below or above the threshold. In con-

Fig. 2 Panel A: metric values from simulations without policy implementation plotted in terms of change 
in population and irrigated areas with boxplots showing their variability. Panel B: simulations without 
policy implementation plotted according to the climate scenarios indicating the percentage of simulations 
from each scenario where the metric is above (success) or below (fail) the threshold. Panel C: heatmap 
that shows the influence (0 to 1) of each uncertainty (X) and policy (L) on the variability of the metric. 
Panel D: operational ranges and statistical significance of each of the relevant factors according to suc-
cessful ( > = 0.8) or unsuccessful (< 0.8) cases. Go to Table 2 for description of variables
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trast, X1_sce with L1_irreff or L3_res shows specific operational ranges to avoid water 
scarcity (L1_irreff > 0.45 and L3_res > 1).

Scatter plots also show the operational ranges to achieve metric ≥ 0.8 acknowledging 
overlaps between the analysis of successful and unsuccessful cases from Fig. 2-D. In Fig. 3-
A, the scatter plot of L1_irreff and L3_res outlines a broad operational range, although much 
of this range overlaps with water scarcity regions, as shown in the corresponding scatter plot 
in Fig. 3-B. Therefore, for this case study, decision-makers should focus on results from 
Fig. 3-B where the operational range suggests two water strategies to avoid water scarcity: 

Fig. 3 Scatter plots depicting 
the influence of selected fac-
tors (policies or uncertainties) 
on metric values, grouped by 
focus on successful (Panel A) or 
unsuccessful (Panel B) cases in 
avoiding water scarcity. The red 
rectangle highlights operational 
ranges. Density functions further 
reveal trends of each factor. Go 
to Table 2 for description of 
variables
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(i) high irrigation efficiency (> 0.63) with the large reservoir, or (ii) medium irrigation effi-
ciency (> 0.45) with the large reservoir plus lakes as additional reservoirs.

5 Discussion

5.1 Identifying Water Management Strategies in a Data-Scarce Context

As for other mountain regions, the Pitumarca catchment illustrates the challenges posed 
by data scarcity and deep uncertainties that hinder the application of e.g. probabilistic 
approaches to support water management. Although the lack of hydrometeorological mea-
surements can be increasingly compensated by satellite data, considerable errors and uncer-
tainties persist (Vetter et al. 2017; Aybar et al. 2020). Similarly, multitemporal and locally 
available socio-economic data are often lacking and had to be estimated using broader-scale 
data points. Projections for both climatic and socio-economic conditions by 2050 exhibited 
variability and partially contradictory results. For instance, while the Peruvian government 
projects a population decrease by 2060 (INEI 2019), SSPs data projects this to occur before 
2050 (Riahi et al. 2017).

Despite the deep uncertainty context, EMA leveraged the decision-making process by 
identifying the critical factors that influence the metric (policies L1_irreff and L3_res) and 
by reducing the analysis to select these factors (Bryant and Lempert 2010). While policies 
proved to be the most influential in the case study, uncertainties might dominate in other 
cases. The latter could be a signal of a need for model improvements. Alternatively, chosen 
policies might not perform well due to changing conditions, e.g. historically successful 
policies failing under changing climate conditions (Berkhout et al. 2014; Poff et al. 2016). 
Evaluating policies across many scenarios (e.g. 12,000 simulations) helps decision-makers 
to identify weaknesses and guide decision-makers to explore new, potentially, more effec-
tive policies (van Vuuren et al. 2012; Marchau et al. 2019).

EMA results highlighted that some policies can unintentionally lead to the risk of 
increased water scarcity which links to recent concerns about maladaptation (IPCC et al. 
2018; Kundzewicz et al. 2018; Aggarwal et al. 2022). Identifying such potential failures is 
challenging due to the complexity of social-ecological systems. For instance, Fig. 2-A shows 
a three-dimensional problem where patterns are identifiable, such as the little influence of 
population in the metric. However, with an increasing number of dimensions (8-dimensions 
problem in this case study), it becomes much harder to identify these patterns. While sta-
tistical tools, e.g. principal component analysis or cluster analysis, help to understand these 
multidimensional problems, they do not explicitly identify the related operational ranges.

EMA tackles multidimensionality with the PRIM algorithm by searching for a combina-
tion of policies and uncertainties that best cluster cases above or below the water security 
threshold (Bryant and Lempert 2010; Kwakkel 2017). The degree of clustering is expressed 
as coverage, so a high coverage value (like 0.8 in Fig. 3-B) means more successful cases 
within the identified operational range, but also a higher risk of including undesired cases 
(Bryant and Lempert 2010). Consequently, EMA does not identify the best or optimal solu-
tion rather than a solution that works well in most scenarios (Bankes et al. 2013; Kwakkel 
and Pruyt 2013). While selected operational ranges might still include unsuccessful policies, 
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EMA highlights these for further investigation, allowing researchers and decision-makers to 
refine strategies and identify which conditions will trigger policy failure.

5.2 EMA in Water Management: Key Considerations

5.2.1 Uncertainties

EMA can theoretically handle as many uncertainties as needed (e.g. Kalra et al. 2015; 
Giuliani and Castelletti 2016). However, exploring a large set of variables demands time 
and computing resources that must be considered (Moallemi et al. 2020), so users need to 
carefully select variables relevant to their objectives. While defining ranges for each uncer-
tainty is important, EMA does not require highly accurate values (e.g. Kalra et al. 2015). 
These ranges can be calculated (e.g., climatic projections in this case study) or estimated 
through sensitivity analysis. Broad ranges are also a viable option, an advantage in data-
scarce regions (Moges et al. 2021; Motschmann et al. 2022). For instance, EMA applica-
tions in Peru assessed the vulnerabilities of water plans using future precipitation ranges 
from − 60% to + 90% without specifying climate scenarios (Kalra et al. 2015).

5.2.2 Policy Levers

EMA focuses on testing policies across a broad spectrum of uncertainties, not designing new 
policies (Lempert et al. 2003; Marchau et al. 2019). Consequently, results depend on policy 
details. For instance, EMA might suggest high irrigation efficiencies to avoid water scarcity, 
but the lack of detailed information hinders policy implementation (Schneiderbauer et al. 
2021). Maintaining clarity regarding the relationships between policies, uncertainties, and 
metrics is crucial (Lempert et al. 2003; Bankes et al. 2013). Infrastructure policies are gen-
erally easier to assess in hydrological models, while others like governance might require 
extra steps for operationalization. Selecting and adjusting policies for EMA demands col-
laboration between scholars and decision-makers, underscoring a pivotal aspect of effective 
water management (Cosgrove and Loucks 2015; Scott et al. 2021).

5.2.3 Metric and Threshold

The selection of the metric(s) and threshold(s) is crucial for EMA, as these determine the 
criteria to categorize system performance as successful or unsuccessful (Kwakkel and Pruyt 
2013; Marchau et al. 2019). For instance, we focused only on water access, neglecting 
economic and social feasibility. As a result, EMA suggests the implementation of a large 
reservoir to avoid water scarcity, but its construction could be socially, environmentally, or 
financially challenging (Haeberli et al. 2016). By considering multiple metrics that address 
these concerns, potential trade-offs can be identified allowing for an informed selection of 
policies (Ucler and Kocken 2023).

Thresholds should be viewed as points on a gradient rather than fixed tipping points, as 
a marginal improvement in the system may lead to a shift from unsuccessful to successful 
cases (Bankes et al. 2013; Haasnoot et al. 2013). But thresholds can also help to incorporate 
the IPCC (2018) risk framework e.g. to identify the acceptable risk to unmet water demands. 
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Changing the threshold can yield different outcomes, prompting users to assess and under-
stand the implications of such changes (Kwakkel and Pruyt 2013).

5.2.4 Relationships

Choosing the hydrological model is key in evaluating water management strategies and 
their effectiveness (Vetter et al. 2017; Moges et al. 2021). In the case study, a lumped model 
was used, thus not allowing for a spatial analysis. Semi-distributed models would offer 
more detailed insights by considering the spatio-temporal distribution of water access and 
availability (Moges et al. 2021). Socio-hydrological models go further, integrating socio-
economic factors to assess e.g. governance strategies (Berkhout et al. 2014; Scott et al. 
2021). While the ema-workbench supports the integration with external software, Python-
based models offer easier implementation but might have limitations in representing real-
world complexities.

5.3 Beyond EMA: Links with Other Tools and Methods

EMA can complement and benefit from existing optimization and uncertainty reduction 
methods. Optimization methods (e.g. Vetter et al. 2017; Ucler and Kocken 2023; Wang et 
al. 2024), can identify viable strategies for specific scenarios. Then, EMA evaluates these 
strategies across uncertainties to identify weaknesses and operational ranges. Additionally, 
methods such as sensitivity analyses (e.g. Huss and Hock 2018; Moges et al. 2021) can help 
to find the ranges of uncertainties for exploration. Furthermore, collaborative approaches 
(e.g. Muccione et al. 2019), can be effective in delineating policies, metrics, and their associ-
ated thresholds through the engagement of policy-makers and stakeholders (Schneiderbauer 
et al. 2021; Hasan et al. 2023). This comprehensive approach allows practitioners to benefit 
from the diverse array of available tools in water management to identify robust solutions.

In this study, a stress-testing approach was adopted to implement EMA. However, other 
approaches are also available, such as the worst-case scenario discovery or the many-
objective optimization (cf. Moallemi et al. 2020). Finally, the dynamic policy pathways 
(Haasnoot et al. 2013) can further assist policy-makers in adapting strategies based on new 
information, e.g. adjusting plans if precipitation patterns change.

6 Conclusions

In this study, Exploratory Modeling and Analysis (EMA) is employed to address the chal-
lenges of water management in mountain regions under uncertain future climate and socio-
economic scenarios. The case study in the Peruvian Andes demonstrates the effectiveness 
of EMA to identify robust water management strategies that can accommodate a range of 
uncertain outcomes. Furthermore, EMA can support the identification of operational ranges 
of water policies. This allows to address deep uncertainties and avoid cases that trigger 
maladaptation. Although all factors assessed within EMA are important (uncertainties, poli-
cies, metrics, and relationship), metrics and their thresholds are key factors as they clas-
sify policies as successful or unsuccessful to achieve water security. EMA is suggested to 
complement existing methods based on probabilistic approaches. Further studies should 
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delve into the integration of semi-distributed socio-hydrological models in EMA to assess 
non-infrastructural-based policies, such as changes in governance and water culture.
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