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Abstract
This paper seeks to address the deficiency of utilizing satellite-based GRACE observa-
tions and model-based GLDAS water budget components in estimating the changes in the 
groundwater storage in Konya Endorheic Basin (KEB), a basin experiencing considerable 
land use land cover (LULC) change, primarily agricultural expansion. Cereal cultivation 
in the basin has a slight decreasing trend, however, the cultivation of crops with high 
water consumption, such as maize and sunflower, is increasing substantially. And total 
agricultural areas are increasing. GRACE-GLDAS approach does not accurately give the 
long-term groundwater decline in the basin, mainly because the land surface models em-
ployed in GLDAS cannot realistically simulate variations in water budget components as 
they do not consider the changes in LULC and do not possess an elaborated irrigation 
scheme. Here, we used a fully-distributed mesoscale hydrologic model, mHM, that can 
handle multiple LULC maps from different years. The model was modified to incorporate 
the spatio-temporal changes of agricultural fields in KEB and an explicit irrigation scheme 
since we hypothesized that the groundwater depletion is mainly caused by well irriga-
tion. mHM was calibrated against streamflow observations for the period 2004–2019. The 
simulations show that the use of mHM with the incorporated features gives groundwater 
storage changes that are more consistent with the well-based observations than those ob-
tained from the GRACE-GLDAS approach. On the other hand, the mHM simulation with 
a static LULC map, as in GLDAS models but with a better representation of irrigated 
fields, provides groundwater anomaly changes that are more consistent with the GRACE-
GLDAS results, a further justification of insufficiency of the GLDAS-based approach in 
estimating groundwater variations for basins with considerable landscape change.
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1 Introduction

Endorheic basins account for almost one-fifth of the Earth’s land surface, and about half 
of the regions experiencing water stress (Wang et al. 2018). The endorheic basins have a 
water balance in which the surface flow cannot overcome the topographical barriers and 
the effect of evapotranspiration is usually strong. In addition to their sensitive hydrology, 
the water demand has been increasing with time with the rising population in these basins. 
Considering the impact of climate change, endorheic basins are at the forefront of the basins 
that experience significant water stress (Wada et al. 2011). The increase in human impacts 
on the world’s surface has increased the drought effects and groundwater consumption in 
the basins (Rodell et al. 2018; Cavus et al. 2022). Human water consumption has increased 
the frequency of global drought by 27% and its severity by 10–500% (Wada et al. 2013).

The land use/cover change (LULC) is one of the most important human impacts, influ-
encing the hydrological cycle on global as well as local scales. Anthropogenic effects such 
as changes in carbon emissions due to industrialization and urbanization also affect the 
hydrological cycle parameters (Jiongxin 2005). Groundwater resources are exposed to 
excessive use due to insufficient surface water resources in arid regions. This situation leads 
to the extinction of the flora as a result of insufficient water intake, and then to a decrease in 
fauna due to problems in the nutrient supply. This chain of cause and effect has an adverse 
effect on human lives. Improper agricultural practices to meet human needs cause inefficient 
use of freshwater resources (Wu et al. 2013).

Deforestation, desertification, and agricultural activities that are not planned with sustain-
able strategies are at the forefront of the LULC change that negatively affects the hydrologi-
cal cycle. Therefore, LULC is an important parameter in the management of water resources 
(Findell et al. 2017). Improper agriculture leads to rapid depletion of water resources as 
well as low productivity. With the spread of agricultural activities and urbanization, forest 
areas are rapidly being destroyed. Forests prevent the rapid outflow of water coming in 
through precipitation. In addition, they contribute to the persistence of precipitation in the 
region where they are located. In deforested land, precipitation will quickly turn into surface 
runoff, and water resources will be more difficult to manage. The severity and frequency 
of floods also increase depending on the increase in surface flow (Al-Masnay et al. 2022; 
Al-Aizari et al. 2022, 2024). Drylands cover 41% of the Earth’s land surface and 45% of the 
world’s agricultural land. These arid areas are regions where human impact is intense and 
where the effects of climate change are strongly manifested (Burrell et al. 2020).

Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimila-
tion System (GLDAS) are frequently used to observe global hydrometeorological changes 
under human and climatic effects. The GRACE satellite, which observes total water storage 
(TWS) anomalies, allows the hydrological cycle to be examined as a whole, globally, and 
regionally (Save et al. 2016; Wiese et al. 2016; Nemati et al. 2020). With the information 
obtained from the GRACE and GLDAS data, research is also carried out on changes in the 
global water budget and groundwater resources (Brookfield et al. 2018; Long et al. 2016; 
Soni and Seyd 2015; Tregoning et al. 2012).

It is stated that the groundwater anomalies obtained from GRACE and GLDAS data in 
some parts of the world are inconsistent with the in-situ well measurement data (Brookfield 
et al. 2018). Ali et al. (2022) compared GRACE-GLDAS-based groundwater anomalies 
with in-situ well data in the highly irrigated Indus basin, the majority of which is located 
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in Pakistan. They found that the magnitude of the estimated trend was not consistent with 
that of in situ observations (a decreasing trend of 3–4 mm/yr), although the direction of 
the trends was the same. The low resolution of GRACE and anthropogenic effects were 
cited as reasons for the discrepancy. Amiri et al. (2023) evaluated GRACE-GLDAS-based 
groundwater storage (GWS) anomalies with in-situ well data in Yazd province, Iran, where 
groundwater is used extensively. They also found that, while the decreasing trend direction 
is consistent, there is no consistency in terms of magnitude. They attributed this discrepancy 
to the non-uniform distribution of the in-situ wells. Rusli et al. (2023) combined hydro-
logical and groundwater flow models with GRACE satellite observation data to observe 
the groundwater anomaly in the data-scarce Bandung basin in Indonesia for the 2005–2015 
period. They noted that the missing GRACE data and local time-lags might cause bias in the 
water budget estimates. Shen et al. (2015) investigated groundwater anomalies in the highly 
irrigated Hai River basin in northern China. They found inconsistency between the trend 
of in situ well observations, reaching -83.8 mm/yr, and that of the GRACE-based GWS 
anomaly, estimated as -17 mm/yr. Similar inconsistencies were reported for the California 
Central Valley, Mississippi Basin, and Bangladesh (Scanlon et al. 2012).

This study is the first comprehensive study incorporating land cover change into a hydro-
logical model to address the inconsistent groundwater anomaly trends estimated by the 
GRACE-GLDAS approach. The novelty of this study lies in proposing a robust hydrologic 
model-based framework for groundwater analysis in irrigated endorheic basins after ana-
lyzing the overlooked issue of GLDAS data in groundwater depletion analysis as stated 
in the literature. The objectives of this study are (i) to modify the physically-based fully-
distributed hydrological model, mHM, to incorporate an irrigation scheme and temporal 
evolution of land cover change, (ii) to calibrate the hydrological model against stream-
flow observations, (iii) to examine the temporal and spatial variation of evapotranspiration, 
(iv) to comparatively analyze the groundwater anomaly changes obtained from in-situ well 
observations and different approaches including the GRACE-GLDAS.

2 Study Area

KEB is located in the Anatolian Plateau, between 36°51’ − 39°29’ North and 31°36’ − 34°52’ 
East coordinates, with a karstic formation (Fig. 1). The altitude in the basin varies between 
850 and 3450 m. Its climate is characterized as continental. Annual precipitation varies 
between 280 and 1000 mm. Average annual precipitation in the basin is about 400 mm. 
South of the basin, as elevation increases with the Taurus Mountain range, forest areas 
become common, while agriculture is carried out intensively in the low-altitude plains 
(Gokmen et al. 2013). Several water resources control structures have been built in the basin 
in the last 20 years (KOP 2016). Furthermore, developing agricultural technology and food 
demand of increasing population have caused rapid expansion of agriculture. Although the 
limited surface water resources are used extensively in agricultural activities, main water 
resources remain to be the groundwater systems (Koycegiz et al. 2023).

The KEB spatially averaged monthly Leaf Area Index (LAI) time series, obtained from 
the MODIS dataset for the period 2004–2019 (Table 1), shows an increasing trend (Figure 
S1a). The distribution of LAI in May with the highest values for the years 2004, 2006, 2009, 
2011, 2013, 2015, and 2019 clearly indicates that the basin is getting greener with agricul-
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Fig. 1 Map of the Konya Endorheic Basin (KEB) with the locations of the streamflow gauges and moni-
toring wells
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tural activities, although there are interannual variations most likely because of precipitation 
alterations (Figure S1b).

3 Data

Table 1 gives information about the datasets used in this study. GRACE-RL06 TWSA data 
was obtained from the mass concentration (mascon) solutions produced at the National 
Aeronautics and Space Administration (NASA)’s Jet Propulsion Laboratory (JPL) process-
ing centers (Wiese et al. 2016) and the University of Texas Space Research Center (CSR) 
in Austin (Save et al. 2016). Its spatial resolution is 0.5°×0.5°; the temporal resolution is 
monthly. The time series data obtained by averaging the JPL and CSR data covers the period 
from August 2002 to December 2019. We utilized precipitation, soil moisture, canopy water, 
snow water equivalent, surface water, and evapotranspiration data from GLDAS (GLDAS 
2.1; Rodell et al. 2004), with a spatial resolution of 0.25°×0.25°, and a temporal resolution 
of monthly.

Variable Product/Source Temporal 
Resolution

Spatial 
Resolution

Terrestrial Water 
Storage Anomaly 
(TWSA)

GRACE mascon 
solutions (CSR)

Monthly 0.50°

Terrestrial Water 
Storage Anomaly 
(TWSA)

GRACE mascon 
solutions (JPL)

Monthly 0.50°

Soil Moisture Stor-
age (SMS)

GLDAS Monthly 0.25°

Canopy Water 
Storage (CWS)

GLDAS Monthly 0.25°

Snow Water 
Equivalent (SWE)

GLDAS Monthly 0.25°

Surface Water Stor-
age (SWS)

GLDAS Monthly 0.25°

Evapotranspiration GLDAS Monthly 0.25°
Precipitation ERA5 Daily 0.25°
Average 
Temperature

ERA5 Daily 0.25°

Groundwater Level 
(GWL)

GDSHW Monthly Point

Streamflow GDSHW Monthly Point
Land Use/Cover 
(LULC)

MODIS Annual 0.001953125°

Leaf Area Index 
(LAI)

GIMMS Monthly 0.001953125°

Leaf Area Index 
(LAI)

MODIS Monthly 0.001953125°

Digital Elevation 
Model (DEM)

SRTM - 0.001953125°

Cultivated Areas of 
Crops

TURKSTAT Annual -

Crop Yields TURKSTAT Annual -

Table 1 Information about the 
datasets used in the study
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Daily total precipitation and daily average temperature data used as spatially distributed 
hydrological model input were obtained from European Center for Medium-Term Weather 
Forecasts (ECMWF) Reanalysis v5 (ERA5) (ECMWF 2021). Its spatial resolution is 
0.25°×0.25°. Monthly groundwater level and streamflow data were obtained from the Gen-
eral Directorate of State Hydraulic Works (GDSHW) of Türkiye. In-situ well measurements 
were converted to groundwater level with specific yields defined for the basin (Koycegiz et 
al. 2023). The locations of streamflow gauges and in-situ wells are given in Fig. 1.

The annual LULC data were obtained from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) datasets. The LAI used as input to the hydrological model was obtained 
monthly from the Advanced Very High Resolution Radiometer (AVHRR) Global Inventory 
Modeling and Mapping Studies (GIMMS) data set. The spatial resolution of both LULC and 
LAI data is 0.001953125°. The Digital Elevation Model (DEM), which was required during 
the preparation of the inputs of the hydrological model run, was obtained from the Shuttle 
Radar Topography Mission (SRTM), with a spatial resolution of 0.001953125°. The culti-
vated areas and crop yields of different products were obtained from TURKSTAT. The data 
for cereals (barley, wheat, rye), sugar beet, maize, melon, watermelon, sunflower, pumpkin 
and potato are provided annually.

4 Methodology

Figure 2 shows the workflow diagram of the study including the incorporation of the irriga-
tion processes into mHM, estimation of uniform irrigation (see Supplementary Materials 
S2.3 and S2.4 for details), and the five scenarios involving GRACE, GLDAS and mHM (see 
Table S2 for details). The GRACE-GLDAS based groundwater anomaly methodology and 
performance metrics used in this study are provided in the Supplementary Materials S2.1 
and S2.5, respectively.

4.1 Mesoscale Hydrologic Model (mHM)

In this study, we utilized the open-source, fully-distributed hydrological model, mHM. The 
physically-based mHM makes calculations with the finite element method (Samaniego et al. 
2018). The main feature that distinguishes mHM from other fully-distributed hydrological 
models is that each year’s LULC data can be introduced into the model as input (Ergün and 
Demirel 2023). Thus, more consistent results can be obtained in water budget calculations 
in regions where the land cover changes over time. More accurate evapotranspiration out-
puts can be obtained by correcting the potential evapotranspiration (PET), a meteorological 
input of mHM, with the LAI and aspect maps. In this way, mHM can effectively adapt to 
the wilting and growth dynamics of plants. Hydrological models have difficulty producing 
accurate results for the soil moisture zone. While the surface cover of the basin dynamically 
affects soil moisture, groundwater storage is in a hydrological relationship with the soil 
moisture zone. Feddes et al. (1976) and Jarvis (1989) equations are used to calculate soil 
moisture, root water intake, and evaporation in mHM. Four different application options 
developed based on these equations are available in mHM (Demirel et al. 2018).

Dynamically Dimensioned Search (DDS) algorithm was preferred in the mHM calibra-
tion phase. DDS algorithm produces very effective results in calibrating physically based 
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models (Lespinas et al. 2018). It is stated that DDS achieves successful results in conver-
gence problems to a good solution (Tolson and Shoemaker 2007). Behrangi et al. (2008) 
stated that DDS can produce successful results, especially in calibrating models that require 
compelling computation. In this study, the 2002–2003 warm-up period, 2004–2015 calibra-
tion, and 2016–2019 validation period were evaluated. The Kling-Gupta Efficiency (KGE) 
(Gupta et al. 2009) performance metric was preferred as the objective function.

4.2 Integrating the Irrigation Process into the mHM

Limited surface water resources in KEB force farmers to use subsurface water resources 
for irrigation purposes. To integrate irrigation information into the hydrological processes 
simulated by the calibrated mHM, the irrigation amount per grid determined for KEB was 
added to precipitation. The groundwater anomalies were then updated by subtracting the 
irrigation amount from the previous groundwater anomalies.

Total irrigation water requirement was determined depending on annual yields of cere-
als (barley, wheat, and rye), maize, sugar beet, melon, watermelon, sunflower, potato, and 
pumpkin which are the main agricultural products of KEB. Table S1 presents the plant 
water consumptions of the main agricultural products in KEB. The irrigation amount, which 
changes depending on the annual yield values and amount of precipitation, is added to the 
modeled precipitation in accordance with the resolution of the grids (0.25°) in the meteorol-
ogy layer of mHM. Details of the irrigation module are given in Supplementary Materials 
S2.3.

Fig. 2 Workflow diagram of the study providing with the details of the irrigation module incorporated 
into mHM, calibration of the model and groundwater anomaly estimations involving one or more of the 
GRACE, GLDAS and mHM data
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4.3 LULC Scenarios

We considered five different LULC change scenarios to observe the hydrological effects 
(Fig. 2 and Table S2). The first two scenarios were simulated with mHM. In mHMF, the 
model (mHM) was configured to include a fixed LULC map and long-term monthly aver-
aged LAI, while in mHMV it included annually varying LULC and monthly varying LAI. In 
the simulations involving these two scenarios, groundwater storage anomaly (GWSA) was 
calculated directly from the mHM outputs. The GRACE-GLDAS scenario was constructed 
with the help of GRACE and GLDAS datasets. It should be noted that the GLDAS mod-
els use fixed LULC and monthly changing LAI. The GRACE-mHMF and GRACE-mHMV 
used the simulations from the mHMF and mHMV, respectively. However, GWSA was cal-
culated by considering the GRACE-based total water storage anomaly (TWSA), as in the 
GRACE-GLDAS scenario but it involved mHM outputs instead of GLDAS outputs.

5 Results

5.1 Performance of mHM in Simulating Streamflow

The streamflow performance of mHM for two scenarios (mHMF and mHMV) is shown 
through the time series and radar graphs utilizing data from the 10 streamflow gauges (Fig-
ure S5 and Fig. 3, respectively). The months with missing observational data are excluded 
from the performance evaluation. In general, mHM simulates the streamflow in all sta-
tions fairly well, but both underestimations (e.g., at 16015) and overestimations (e.g., at 
16014, 16111) are also evident. The model is also able to successfully simulate the impact of 

Fig. 3 Performance results of mHM streamflow estimations for both calibration and validation periods
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2007–2008 drought on streamflow at most stations. The radar graphs (Fig. 3) show similar 
and satisfactory performance for the mHMF and mHMV simulations across various metrics. 
Scatter plots related to mHM flow estimation results and a table of performance metrics are 
given in Figure S4 and Table S3, respectively.

5.2 Harvested Areas and Irrigation of KEB Major Crops

Figure 4 illustrate the harvested areas of KEB’s major products and the amount of irrigation, 
respectively (TURKSTAT 2022). The KEB agricultural lands have increased significantly 
(Fig. 4). It should be noted that cereals occupy the most space in agriculture of KEB. How-
ever, it shows a decreasing trend. There is a remarkable increase in maize-cultivated areas. 
The drought experienced in 2007–2008 also affected the agricultural activities throughout 
the basin. There is usually a decrease in the harvested areas in these years. Along with 
maize, sunflower, melon, and watermelon are among the agricultural products whose cul-
tivated areas have increased in recent years. The areas for sugar beet, pumpkin, and potato 
show an increasing trend over the study period, albeit with some yearly variations.

Uniform irrigation load time series on the total agricultural land of KEB major crops 
shows that, after the drought of 2007–2008, the amount of irrigation in the basin has increased 
significantly (Fig. 4). During the drought, although there was no significant change in agri-

Fig. 4 Cultivated agricultural areas and uniform irrigation amounts on the total agricultural area for dif-
ferent crops in KEB
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cultural areas, there was a sudden decrease in the amount of irrigation. While there wasn’t a 
significant change in the amount of irrigation until 2012, a significant increase was observed 
in the agricultural areas, which could be due to an increase in dry farming. Subsequently, the 
amount of irrigation shows a significant increasing trend. This strong upward trend seems 
to be unaffected by the reduction of agricultural land towards the year 2016, which could 
be due to the preference for irrigated agriculture in dry farming areas and the preference for 
products that demand more water instead of products that demand less water. It should be 
noted that the water allocation of cereals is gradually decreasing, while irrigation for maize, 
sunflower, pumpkin, melon, and watermelon shows a strong increasing trend, especially 
during recent years. Although the total irrigation shows a general increasing behavior over 
the second half of the period, water allocation for sugar beet and potato does not illustrate a 
clear increasing or decreasing trend.

5.3 Evapotranspiration

The violin graphs of the actual and potential evapotranspiration values are given in Fig. 5. 
It seems that both the distribution and mean of the simulated aET values in mHMF and 
mHMV are very similar to each other while they are substantially different from those of 
the GLDAS aET values. The mean of the GLDAS aET data is approximately 15 mm lower. 
Also, the base of the violin graph of GLDAS shows a lower height stack compared to those 
of the mHMF and mHMV simulations (Fig. 5a). PET provides information about the atmo-
spheric demand for water vapor. In mHMF, the highest PET estimations show an agglomera-
tion of around 300 mm and the lowest estimations around 60 mm. In mHMV, it is seen that 
the highest values are accumulated around 260 mm and the lowest values around 50 mm. 
The PET averages are 158.09 mm and 145.07 mm for mHMF and mHMV, respectively 
(Fig. 5b). For further insight, the long-term variations of aET and PET for the KEB given in 
Figures S6-S9 could be examined.

In general, the higher aET estimations of the mHM simulations come from the incorpora-
tion of irrigation into the model. Although the GLDAS models can simulate the irrigation 
processes, the LULC map they used, belonging to earlier years, does not adequately reflect 
the present time irrigation crop distribution in the basin. In general, climatic trends are 
observed in both mHM and GLDAS estimations. The mHMV simulation indicates a bigger 
trend than both mHMF simulation and GLDAS data, and this is most likely a result of the 
inclusion of a yearly varying LULC into the model (Figure S7).

Figures 5c and 5d exhibit the annual total aET time series and monthly distribution of 
long-term averaged aET for a point (32.84375°E, 38.09375°N) where agriculture is intense. 
GLDAS has very low aET values (mostly < 500 mm), which is most likely related to the 
inconsistent LULC assignment for that grid (i.e., a LULC class other than irrigated crop). 
More realistic aET estimates are made in the scenario in which the LULC is variable 
(mHMV). The scenario in which the LULC is fixed (mHMF) also provides realistic estimates 
for an irrigated grid. The difference between these two mHM simulations occurs because the 
LAI values are larger in the mHMV scenario than in the mHMF scenario, which is implied 
by the differences in their seasonal aET variations.

Evapotranspiration is a parameter that is highly variable as spatially. Both mHMF and 
mHMV simulations produce very similar aET patterns to each other (Figure S10). The 
mHMV simulation tends to estimate more aET in some areas of the basin, especially in 
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Fig. 5 (a) Monthly aET violin plots from mHMF and mHMV simulations, and GLDAS data, (b) Monthly 
PET violin plots from mHMF and mHMV simulations, (c) yearly and (d) monthly aET change in an ag-
ricultural point in KEB
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the agricultural fields where expansion of irrigation is evident. In both simulations, aET 
is quite high in the middle of the basin (over 1500 mm). It is also larger around Beyşehir 
Lake. In areas where there is no irrigation, aET could not exceed 500 mm. aET values of 
250–750 mm are observed around Salt Lake.

5.4 Groundwater Anomalies

The groundwater level anomaly (GWA) timeseries created using the mHM estimations and 
GRACE and GLDAS data and those based on in situ measurements are given in Fig. 6. The 
groundwater observations show a declining trend in groundwater level (GWL). In addition, 
the drought of 2007–2008 is clearly seen in Fig. 6. The GRACE-GLDAS evaluation does 
not exhibit a clear declining GWL trend as in the observations. It also shows higher sensitiv-
ity to the variations in climate.

It is known that the water drawn from the groundwater storage system by the wells 
is used in agricultural activities. It seems that the mHMV simulation represents this pro-
cess successfully and produces a trend that is in agreement with the observations. Lack-
ing the crucial information about the LULC change in the basin, the mHMF simulation, 
however, fails to produce a declining trend consistent with the observations. When we use 
water budget components estimated by mHMV, instead of GLDAS, in a GRACE-mHMV 
co-evaluation it reveals a more successful GWA estimation than the GRACE-GLDAS co-
evaluation. It should also be noted that the GRACE-mHMF co-evaluation yields a GWA 
evolution that is very similar to that produced by GRACE-GLDAS co-evaluation, which is 
an attestation of insufficiency of the latter approach in estimating the long-term changes in 
the GWA of the basins where LULC change is relatively rapid. Overall, the mHMV simula-
tion (with R2 = 0.840 and NSE = 0.822) performs much better than the others (Figure S11). 
The results indicate that the inclusion of a variable land cover into the assessments improves 
the groundwater anomaly estimation.

Fig. 6 Annual time series of KEB groundwater level anomalies from five different scenarios (mHMF, 
GRACE-mHMF, mHMV, GRACE-mHMV, GRACE-GLDAS) and in-situ observations (GWL)
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6 Discussion

The mHM model is a physically-based, spatially distributed model, and its use has advan-
tages and disadvantages. For instance, its ability to run water balance equations by estab-
lishing relationships between data sets with different resolutions is an important advantage. 
Detailed data requirement and high computational cost incurred to simulate the physical 
processes in detail (Samaniego et al. 2018) are among the disadvantages. The fact that the 
study area is an endorheic basin with a complex hydrological cycle has led to the need for 
a comprehensive model such as mHM in this study. The model, used for different basins 
in Europe, is shown to generally achieve 0.6–0.7 KGE values, which is a sign that it is an 
acceptable physically-based model in the literature (Rakovec et al. 2016). Thus, the KGE 
values obtained for the calibration process against the observations from the 10 streamflow 
stations in KEB stand out to be satisfactory.

This study also explores the consistency in other physical parameters beyond streamflow 
estimations mostly coming from the stations that are located towards the mountainous parts 
of the basin, which are not subject to much LULC change. For the large lowland areas, 
which experience substantial LULC change in the form of agricultural expansion depend-
ing on groundwater resources, surface data to calibrate the model lack. For that reason, we 
choose to evaluate the model performance in terms of its ability to simulate the groundwater 
anomaly, which could be acquired from the well measurements. It turns out that the use 
of a static land cover in the model produces inconsistent groundwater anomaly timeseries 
with the observations, however the incorporation of a realistic land use change into the 
model, a feature most hydrological models lack, yields more satisfactory results in terms of 
water budget components for the entire basin. It could be argued that the improvement most 
likely comes from the improved evapotranspiration estimations in the latter, as it considers 
the agricultural expansion augmenting the water loss through evapotranspiration. Thus, the 
use of GLDAS evapotranspiration data in water budget studies for KEB will lead to poor 
results, as the GLDAS models use static land cover data, which likely causes underestima-
tion of evapotranspiration in the basin. From this point of view, it could be concluded that 
the changes in surface features are quite important not only for the surface water budget 
estimations but also for the groundwater anomaly estimations.

The GLDAS dataset is preferred by researchers around the world because of its com-
prehensive hydrometeorological outputs. The GLDAS-based regional or continental scale 
assessments may provide consistent results with observations (Rodell et al. 2004). For 
relatively small areas or basins, however, the role of anthropogenic factors could be quite 
strong, which cannot be neglected in the modeling. Agricultural activity is one of the anthro-
pogenic factors that significantly affect the hydrological processes. The rapidly changing 
land cover with agriculture differentiates permeability, evapotranspiration, retention, and 
convective precipitation events (Findell et al. 2017). Therefore, the surface changes should 
adequately be represented in the models where they become significant over the time of 
model integration. The GLDAS data are also readily used together with the GRACE data 
to estimate groundwater anomalies in different parts of the world (e.g., Long et al. 2016; 
Soni and Seyd 2015; Tregoning et al. 2012). However, it is stated that this co-evaluation 
may yield deviations from the observations depending on the surface and subsurface pro-
cesses in the basins (Brookfield et al. 2018). The present study also presents evidence that 
the GLDAS and GRACE co-evaluation approach could produce poor results, and therefore 
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studies involving this approach should first assess the extent of LULC change, especially in 
basins where the agricultural activities are intense. If it is deemed significant to change the 
basin-wide hydrological processes, the use of the GLDAS data should be avoided, instead 
a hydrological model that can handle the surface changes should be run to estimate water 
budget components that could be substituted for GLDAS data.

KEB is a water-limited basin, and the expansion of agricultural areas and cultivation of 
crops with high water consumption increase the need for irrigation (Fig. 4). Irrigation need 
is met from groundwater to a significant extent. Consequently, increased irrigation causes 
significant reductions in the groundwater storage system.

7 Conclusion

GLDAS data are commonly used together with GRACE TWSA observations to separate the 
anomalies in groundwater storage from the anomalies in other water storage components 
in basins. This approach does not provide satisfactory results in basins where land cover 
change is substantial over time. In this study, we incorporated the land cover change into a 
hydrological model, mHM, to estimate the anomalies in water storage components in KEB. 
The results were compared with GLDAS-GRACE based evapotranspiration and groundwa-
ter storage anomaly parameters.

Among the major agricultural products, maize and sunflower have a strong increasing 
trend in the basin. Cereals, the crops with the largest cultivation area, have a decreasing 
trend. The total agricultural areas in the basin have a strong increasing trend, leading to 
higher levels of water consumption. Expanding agricultural areas are cultivated with dif-
ferent crops. The amount of irrigation in the basin is very sensitive to climatic changes. It 
is observed that irrigation decreased significantly during the 2007–2008 drought. However, 
the amount of irrigation increased rapidly afterward.

The actual evapotranspiration estimations of two mHM simulations (involving a chang-
ing land cover in one and a static in the other) with a more realistic irrigation scheme are 
found to be higher than the GLDAS estimations. Thus, it could be said that the inclusion 
of land cover change and irrigation information into the hydrological model is crucial to 
obtain more realistic simulations of basin hydrological processes. The lack of land cover 
change and irrigation information in GLDAS caused it to contain biased results for evapo-
transpiration. It is observed that the introduction of an irrigation scheme to the hydrological 
model, supported by changing land cover information, significantly increases the success 
of prediction in groundwater storage anomalies. It should be noted that the accuracy of a 
hydrological model is not only dependent on the calibration of the streamflow parameter 
but also on the satisfactory representation of anthropogenic processes in basins subject to 
significant land cover change. The fixed land cover in GLDAS, ignoring anthropogenic 
changes, seems to be the main reason for the poor performance of the GRACE-GLDAS 
approach in revealing groundwater depletion in semi-arid KEB. Future work should inves-
tigate whether this poor performance of GRACE-GLDAS approach persists in areas with 
different hydro-climatology.

This study has some limitations, and the relatively coarse resolution of the data used is 
one of them. A higher spatial resolution would certainly provide more detailed information 
about the spatial variation of the physical information obtained. In addition, lack of data on 
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the spatial distribution of statistical data such as cultivated agricultural land and the yield 
of harvested crops was an issue. The availability of such information would be useful to 
incorporate the distribution of irrigation into the model.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11269-024-03826-8.
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