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Abstract
In recent decades, demand for freshwater resources has increased the risk of severe water 
stress. With the growing prevalence of artificial intelligence (AI), many researchers have 
turned to it as an alternative to linear methods to assess water consumption (WC). Using 
the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
framework, this study utilized 229 screened publications identified through database 
searches and snowball sampling. This study introduces novel aspects of AI’s role in water 
consumption assessment by focusing on innovation, application sectors, sustainability, and 
machine learning applications. It also categorizes existing models, such as standalone and 
hybrid, based on input, output variables, and time horizons. Additionally, it classifies learn-
able parameters and performance indexes while discussing AI models’ advantages, disad-
vantages, and challenges. The study translates this information into a guide for selecting AI 
models for WC assessment. As no one-size-fits-all AI model exists, this study suggests uti-
lizing hybrid AI models as alternatives. These models offer flexibility regarding efficiency, 
accuracy, interpretability, adaptability, and data requirements. They can address the limita-
tions of individual models, leverage the strengths of different approaches, and provide a 
better understanding of the relationships between variables. Several knowledge gaps were 
identified, resulting in suggestions for future research.

Keywords PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
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1 Introduction

Water is used for various purposes, including drinking, fire control, garden irrigation, 
cleaning, and industrial and agricultural processes (Morain and Anandhi 2022). A sig-
nificant water resource management challenge is ensuring sufficient water to meet human 
needs (de Souza Groppo et  al. 2019). Over the past few years, water resources have 
become increasingly vulnerable due to several factors, including climate change, popula-
tion growth, city size, commercial and social conditions of people, supply costs, develop-
ment of global industries, overexploitation of sea resources, land use/land cover change, 
and water distribution characteristics (Anele et  al. 2017; Anandhi and Kannan 2018; 
Yang et al. 2023). Monitoring and forecasting water consumption (WC) are among the 
most critical aspects of making informed decisions to ensure water sustainability (Arsene 
et  al. 2022). Over the last few decades, considerable research has been conducted on 
using AI models as alternatives to statistical models for estimating and forecasting WC 
(Alhendi et  al. 2022). Several studies, such as Liu et  al. (2022), Pacchin et  al. (2019), 
and Rahmati et  al. (2014), have tested and compared different AI forecasting models 
by consideration of their accuracy, performance, and application convenience. In their 
respective papers, Liu et  al. (2019a, b), Vijayalaksmi and Babu (2015), and Wang and 
Liu (2016) applied single AI models to forecast WC, while Altunkaynak and Nigussie 
(2018) and González Perea et al. (2018) used multiple models. Similarly, other studies 
have used AI models to estimate WC (Wei et al. 2022), monitor consumption, extract and 
cluster consumption events, and predict WC sources (Arsene et al. 2022).

Numerous review articles have addressed different aspects of AI applications in 
water consumption. Rahim et  al. (2020) reviewed the contributions and limitations 
of AI models in digital water metering. Surendra and Deka (2022) and Niknam et  al. 
(2022) discussed the use of artificial neural network (ANN), fuzzy logic (FL), adap-
tive neuro fuzzy inference systems (ANFIS), and wavelet transforms (WA) in residen-
tial WC. Drogkoula et al. (2023) investigated machine learning (ML) methodologies in 
water management. The potential of evolutionary computation as a subfield of AI has 
been reviewed concerning water demand management policies (Oyebode and Ighravwe 
2019). An analysis of Strengths, Weaknesses, Opportunities, and Threats (SWOT) was 
conducted on AI-driven technologies as facilitators or barriers to sustainable develop-
ment goals, reviewing smart water management and AI applications in agriculture and 
sanitation services (Palomares et al. 2021). Additionally, some reviews have focused on 
the application of ANN in the drinking water sector (O’Reilly et al. 2018), Internet of 
Things in agriculture (Madushanki et  al. 2019), FL in hydrology and water resources 
(Kambalimath and Deka 2020) and agriculture (Jha et al. 2019), and Bayesian approach 
to water systems in buildings (Wong and Mui 2018).

Despite the coverage of AI applications in water consumption assessment in previous 
review articles, several unaddressed aspects necessitate further investigation. Therefore, 
the novelty of this study lies in the following:

• Presenting four focus points of AI’s role in water consumption assessment: innova-
tion, application sector, sustainability, and machine learning applications.

• Synthesizing and classifying existing models (e.g., standalone, combined/hybrid) 
along with their input and output variables and time horizons.

• Classifying learnable parameters (e.g., weights and biases) and performance indexes.
• Synthesizing the advantages, disadvantages, and challenges associated with AI models.
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• Translating synthesis to guide AI model selection based on efficiency, accuracy, inter-
pretability, adaptability, and data requirements.

• Identifying knowledge gaps and providing recommendations for future work.

The findings will benefit many stakeholders, including environmental agencies, 
researchers, practitioners, citizens and communities, municipal governments, utility com-
panies and water managers, and policymakers.

2  Methodology

2.1  Article Selection Process

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) pro-
tocol was used to consolidate the scientific knowledge presented in this study. Three major 
multidisciplinary research databases, Google Scholar (http:// schol ar. google. com/), EBSCO 
(https:// www. ebsco. com/),  and Springer (https:// link. sprin ger. com/) were used to identify 
relevant studies related to this topic. An initial search using the keywords "artificial intel-
ligence" and "water consumption" retrieved 363,000 documents on July 29, 2022. A more 
streamlined second search was conducted on August 12, 2022, using additional key terms, 
such as forecasting, prediction, estimation, assessment, machine learning, deep learning, 
and artificial neural networks. This reduced the number to 262 peer-reviewed articles and 
were downloaded for full-text review. A third search was conducted on January 10th, 2024, 
using the same terms to include a few studies (10) from 2023 to enhance the quality of the 
paper. Snowball sampling was conducted to gather additional studies (29) to identify meth-
ods for assigning weights and biases to AI models.

2.2  Quality Assessment and Study Selection Process

The downloaded articles were evaluated for the systematic review. After applying inclusion 
and exclusion criteria (assessing, judging, and identifying potential bias risks, and apprais-
ing internal or external validity; Supplementary Figure A), 72 papers were excluded from 
the final analysis. Ultimately, 190 papers were selected from the two first searches (July 
29 and August 12, 2024), 10 from the third search (January 10th, 2024), and 29 from the 
snowball sampling, resulting in 229 studies considered for this paper (Fig. 1).

2.3  Data Extraction and Analysis Methods

General characteristics, such as year of publication, keywords, authors and co-authors, and 
country of origin of the authors and co-authors of the study were extracted from 190 stud-
ies. AI model characteristics such as inputs and outputs, learnable parameter determination 
methods, performance indices, challenges, and advantages and disadvantages of some AI 
models were also collected. The information generated in this systematic review was ana-
lyzed and presented using multiple visualization methods. Line graphs (yearly distribution 
of publications), network maps (keywords, authors, and co-author collaboration), geographi-
cal maps (country of origin of authors and co-authors), pie charts (purpose of the studies), 
tables (AI models, input, output, sector of application), collapsible trees (learnable parameter 

http://scholar.google.com/
https://www.ebsco.com/
https://link.springer.com/


 A. Morain et al.

1 3

determination methods), tree maps (performance indexes), and other figures (AI implications 
and system model in WC assessment) were created. A network collaboration map was cre-
ated using VOSviewer (more details in the supplementary material). A geographical map was 
created using MapChart (https:// www. mapch art. net/ world. html). Tables were created using 
Microsoft Word, and custom figures were created using PowerPoint. Microsoft Excel was 
used to design the treemap, CollapsibleTree was created using R (Version 4.2.3.), and MAT-
LAB (Version R2023b) was used to generate the line graph and pie charts. The trend in the 
number of publications is considered one of the prominent measures to assess the significance 
and emergence of certain technologies within the subject domain.

3  Results

3.1  Descriptive Aspects of the Studies

Between 2016 and 2021, there was a significant increase in publications on AI-based WC 
research. More than half of the total studies (64%) were published in the last six years (an 
average of 18 publications per year), in contrast to 61 publications that were published 

Fig. 1  PRISMA flowchart for article inclusion/exclusion in this systematic review

https://www.mapchart.net/world.html
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during the first 17  years of the period (an average of 3.5/year). Interest in AI applica-
tions related to WC has increased over the past decade, as indicated below (dotted line in 
Fig. 2a).

A total of 720 authors produced the articles used in this study. The authors and co-authors 
are geographically affiliated with 22 Asian countries, seven American countries, one country 
in Oceania, and six African countries. China (16.8%), Spain (8.9%), India (8.4%), Iran (7.8%), 
the United Kingdom, and Brazil (5.7%) were the top six countries with the highest numbers 
of authors (Fig. 2b). The publication rates were highest in Asian countries. Moreover, a co-
authorship analysis showed that the author Hussein Al-Bugharbe had the highest number of 
documents and total link strength (documents:4; total link strength:17), followed by Manuel 
Herrera (Number of documents:4; total link strength:12). These two authors were productive 
researchers who actively collaborated on research publications.

Furthermore, a cluster analysis revealed four significant collaborations between the 
authors. Hussein Al-Bugharbee’s cluster researched AI applications for predicting urban 
WC, while Manuel Herrera’s cluster focused on using hybrid AI models to forecast 
short-term urban water demand. Other clusters, such as Plinio Centoamore’s, aimed to 
explore the benefits of implementing AI in industrial WC, while Michael Blumenstein’s 
cluster examined residential WC (Supplementary Figure B). These findings suggest that 
only a few scholars have established a pattern of close collaboration and contact with 

(a) (c)

(b)

Fig. 2  a Spatial distribution according to the country affiliation of authors and co-authors; b Annual distri-
bution of the studies; c Purpose of the studies
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AI applications in WC assessment studies. Therefore, AI experts should cooperate more 
effectively in studies related to WC assessment. Additionally, most studies on AI appli-
cations have focused on evaluating urban WC. Thus, more studies are needed to use AI 
techniques to assess agricultural and industrial WC in addition to urban WC. 

The selected studies for this paper have compared different AI models, predicted WC, 
reviewed the literature, estimated current WC, and managed and monitored water sup-
ply systems (Fig.  2c). Review papers constituted 9% of the 190 publications included 
in this study. The reviews were on industries, agriculture, water planning, and govern-
ance. They highlight various aspects of AI Model applications for predictive analytics, 
smart metering, leak detection, and AI-driven decision support systems. This paper also 
conducted a keyword analysis to highlight the core concepts emerging from this study. 
The analysis has underscored the prevalence of keywords like "water demand," "water 
consumption," "forecasting," and "prediction," thereby highlighting the significance of 
distinguishing between the concepts of "water demand" and "water consumption," as 
well as "forecasting" and "prediction." This distinction is crucial, as these terms are 
frequently used interchangeably by different authors. The analysis also revealed the use 
of various AI models, with ANNs emerging as the prevalent model for estimating water 
consumption. More details are provided in the supplementary material.

3.2  Water Consumption: Artificial Intelligence Implications

Figure 3 illustrates the relevance of AI in WC assessment from four perspectives: inno-
vation, application, sustainability, and machine learning.

3.2.1  Innovation

The recent rise in AI has led to numerous innovations in science and society. Notable 
examples include implementing smart cities, where technologically modern urban areas 
use electronic methods and sensors to collect, analyze, and integrate critical informa-
tion related to water systems (Preciado et al. 2019; Kamyab et al. 2023). Smart water 
networks, incorporating smart water meters  (Candelieri et  al. 2015) and sensors, are 
developed to continuously monitor and diagnose problems, prioritize and manage main-
tenance issues, and optimize water distribution networks using real-time data (Barroso 
et  al. 2022; Stańczyk et  al. 2023). Additionally, AI-driven innovations have extended 
to smart irrigation systems in agriculture and urban landscape management (Bhoi et al. 
2021). This utilizes self-adaptive systems that optimize control decisions by consider-
ing natural terrain characteristics (Borodychev and Lytov 2021) and crop water require-
ments to tailor automatic watering schedules (González Perea et  al. 2019). Further-
more, AI has also catalyzed advancements in computer software (e.g., MATLAB, R, 
and Python) by creating a need for proper programming tools to train, validate, and 
test AI models (Awad and Zaid-Alkelani 2019; Antzoulatos et al. 2020). These software 
tools have strong visualization and plotting capabilities and provide access to numerous 
libraries and packages for classical and modern AI models (Trajer et al. 2021).
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3.2.2  Applications

AI applications were used for a variety of functions. (1) Monitoring household real-time 
WC through smart meters, detecting plumbing system anomalies, increasing water acces-
sibility, and identifying consumer needs (Alcocer-Yamanaka et  al. 2012). Forecasting 
urban residential WC, determining key water end-use categories, and monitoring drinking 
water distribution systems with greater efficiency and accuracy (Bennett et al. 2013; Al-
Zahrani and Abo-Monasar 2015). (2) For improving agricultural WC forecasts and irriga-
tion scheduling (Ehret et  al. 2011; Borodychev and Lytov 2021). Smart irrigation sys-
tems are equipped with wireless monitoring sensors for automated crop irrigation, which 
can lead to improved water efficiency and increased crop yield (Bhoi et al. 2021). (3) For 
detecting waste and overuse in industrial water monitoring systems, reducing water costs 
and improving operational decisions (Murali et al. 2021). AI has also facilitated data col-
lection in wastewater management, improved dam operation safety, and flood risk mitiga-
tion in cities (Gomes et al. 2020). Additionally, AI can assist construction cost manage-
ment by accurately forecasting WC (Peng et al. 2020; Murali et al. 2021). (4) for assessing 
ecological WC (Guo and Yu 2021). Implementing AI in dam management has offered 
significant environmental benefits by augmenting water availability and ensuring efficient 
water distribution to populations (Gomes et al. 2020).

Fig. 3  Implications of AI in water consumption assessment
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3.2.3  Sustainability

Increased WC can lead to the depletion and scarcity of water resources. Introducing AI into 
water management systems in areas with limited water resources and regions affected by cli-
mate change is a promising approach to ensure the sustainability of water resources (Bülbül 
and Öztürk 2022). Smart technologies such as smart meters, automatic sprinklers, and rain 
sensors can support water conservation. AI can detect dam leaks, improve water distribution 
efficiency, and prevent water wastage (Gomes et  al. 2020; Glynis et  al. 2023). Developing 
successful water management plans and policies requires effective water governance through 
cross-scale and cross-level interactions (Palomares et al. 2021). AI can provide accurate data, 
solve complex problems, and manage large amounts of data (Uhlenbrook et al. 2022). These 
accurate estimates and predictions are crucial for sustainable water governance.

3.2.4  Machine Learning

The use of ML has increased in various fields in the era of big data technology (Sun et al. 
2021). In addition to enhancing the estimation techniques, it provides insights into how multi-
ple models work together by understanding their functionalities and the impact of modifying 
their parameters (Ambrosio et al. 2019). ML models can be categorized into supervised learn-
ing, which utilizes labeled data to learn the data structure, and unsupervised learning, which 
operates on unlabeled data to autonomously to learn the data structure (Ghalehkhondabi et al. 
 2017; González Perea et al. 2019). Supervised approaches are generally more accurate (Gourmelon  
et al. 2021). However, combining unsupervised ML clustering models with supervised ML 
forecasting models improved performance significantly (Bata et  al. 2020), reduced training 
data requirements, and lowered certain model implementation barriers (Bethke et al. 2021). 
The following section discusses these models in detail.

3.3  AI Models Used for WC Forecasting

AI models can forecast WC based on past and present observations (Anele et  al. 2017). 
Additionally, the AI models forecast WC based on the time horizon categorized as short- 
(one hour to one week), medium- (one week to one year), or long-term (one year and more) 
(Babel and Shinde 2011; Alhendi et al. 2022). They are classified as standalone and com-
bined models. More details are provided in Supplementary Tables 1 and 2 regarding the 
models, application sectors, input and output variables, and time horizon.

3.3.1  Standalone AI Models

• Artificial Neural Networks
  ANNs are ML algorithms created to replicate the structure and functionality of 

the human brain. These models consist of interconnected artificial neurons (nodes) 
arranged in layers, with each layer element fully connected to the next (Niknam et al. 
2022). Each node in the input layer receives a distinct input variable, and the nodes in 
the hidden layers transform these inputs using a series of nonlinear functions before 
producing an output in the final layer (Nunes Carvalho et al. 2021). A typical example 
of an ANN is represented by simplified Eq. 1 (Nunes Carvalho et al. 2021) where  Yk 
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is the output, f outer is the output layer transfer function, f inner is the input layer transfer 
function, and W is the weight and bias.

  They can learn complex patterns and relationships in data, making them highly ben-
eficial for tasks that may be challenging when using non-AI models (Babel and Shinde 
2011). Various ANNs, such as GRNN (General Regression Neural Network) (Al-Zahrani 
and Abo-Monasar 2015), CCNN (Cascade Correlation Neural Network) (Firat et al. 2010), 
FFNN (Feed Forward Neural Network) (Firat et al. 2009), and BPNN (Back-propagation 
Neural Network) (Liu et al. 2019b) have been used as standalone models to predict domes-
tic WC. The FFCNN (Feed Forward Computational Neural Networks) provided precise 
irrigation predictions when input data from the preceding two days were used (Pulido-
Calvo et al. 2007). Other ANNs, such as MLP (Multilayer Perceptron), were used to pre-
dict urban WC based on meteorological data (Babel and Shinde 2011; Setiyowati et al. 
2019). Similarly, LSTM (Long Short-Term Memory) forecasted domestic WC using simi-
lar data (Gautam et al. 2020; Kim et al. 2022). The BPNN and MLP are the most com-
monly used neural networks (NN) (Tian and Xue 2017; Liu et al. 2019b). NNs generally 
comprise multiple layers of interconnected nodes.

• Support Vector Machines (SVM) and Relevance Vector Machines (RVM)
  The SVM is based on the concept that nonlinear trends in the input space can be 

mapped to linear trends in a higher-dimensional feature space, and it recognizes subtle 
patterns in complex datasets using a learning algorithm (Ghalehkhondabi et al. 2017). 
SVM transforms the space where two classes are only separable by a nonlinear line 
into a new space where it is now possible to separate the classes using a linear line, 
also known as a hyperplane, for higher-dimensional problems (Antunes et  al. 2018). 
Using meteorological data, Gautam et al. (2020) employed an SVM to forecast domes-
tic WC. Bhoi et al. (2021) used an SVM to suggest irrigation to farmers to reduce water 
waste based on data such as air temperature, soil temperature, humidity, and soil mois-
ture. Wang and Liu (2016) proposed the application of an RVM) as a sparse probabil-
ity model based on an SVM. They claimed fewer relevant vectors were used for RVM 
training than SVM. For regression problems, support vector regression (SVR) can be 
used (Antunes et al. 2018). SVR employs the same principles as SVM for classifica-
tion; instead of finding the best hyperplane to separate the data, SVR aims to determine 
the best data regression hyperplane (Ambrosio et al. 2019). Because the general equa-
tion for SVM is not explicitly provided in the selected articles in this study, a general 
equation for SVR (Setiyowati et al. 2019) is provided in Eq. 2 where Y is the output, 
K(xi,xj) is the kernel function, x is the testing input data, α*i is the Lagrange multi-
plier, and λ is a scalar variable.

• Other AI-based models

– Regression
  Regression models were used to estimate the impact of the changes in a group of 

independent variables on the dependent variable, making them particularly useful 
for predicting future demand. However, limiting the timeframe for such predictions 
is essential in maintaining their validity (Niknam et  al. 2022). Although regres-

(1)Yk = fouter

[∑M

i=j
Wkjfinner

[∑d

i=j
WjiXi +Wj0

]
+Wk0

]

(2)Y =
∑n

i=1
(�∗

i)K(xi, xj) + �
2
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sion models are typically associated with statistical models, multiple AI options are 
available for regression analyses. One particularly successful model is the random 
forest (RF) approach, which involves growing simple trees that produce numerical 
response values (Niknam et al. 2022). The predictor set was randomly selected from 
the same distribution for all the trees (Ambrosio et al. 2019). Multiple RF has been 
used to forecast urban WC using vegetation indices, evapotranspiration, land cover, 
and satellite-derived irrigation maps (Hof and Wolf 2014; Wei et al. 2022). Other 
models, such as regression and decision trees, are supervised algorithms that use 
a tree structure to build prediction models for classification or regression purposes 
(Villarin and Rodriguez-Galiano 2019; Jurišević et al. 2021). The general equation 
for RF is provided in Eq.  3 (Nunes Carvalho et  al. 2021), where  xi is the vector 
of the independent variables,  Tb(xi) is a single regression tree grown using boot-
strapped samples and a subset of variables. N is the number of regression trees Chen 
et al. (2017).

– k-means, SOM, DWT, and CWT 
  In addition to the aforementioned AI models, other models for assessing WC 

have been identified. These models include k-means, self-organizing maps (SOM), 
and WA. They are valuable tools in data analysis and preprocessing for AI tasks. 
k-means and SOM are unsupervised learning algorithms that cluster data points 
based on similarities. Bethke et  al. (2021) used k-means to categorize residential 
water events based on appliance end-use information. Similarly, Leitão et al. (2019) 
used the same model to detect urban WC patterns, whereas Ioannou et al. (2021) 
preferred using SOM based on household needs and behaviors. Another approach 
for analyzing WC data is to use WA, specifically continuous and discrete wavelet 
transforms. Zubaidi et al. (2020a) used WA to forecast urban water demand. These 
transforms help identify patterns in time-series data, making them valuable tools for 
analyzing WC over time. The typical equations for discrete and continuous wavelet 
transforms (DWT and CWT) are provided in Eq. 4 (Zubaidi et al. 2020a) and Eq. 5 
(Altunkaynak and Nigussie 2017), where Ψ (n) is the mother wavelet, while m and k 
are the scaling and shifting indices.

3.3.2  Combined AI Models

This study also reviewed hybrid models, which can be combinations of two or more AI models 
or non-AI and AI models, aiming to address the limitations of individual models and improve 
their accuracy and efficiency (Altunkaynak and Nigussie 2018; González Perea et al. 2018). 
Cutore et al. (2008) developed the SCEM-UA ANN (Shuffled Complex Evolution Metropo-
lis Algorithm), Farah et  al. (2019) used the FFBP-ANN (Feed-Forward Back-Propagation), 

(3)Y(xi)= f k
rf

(
xi
)
=

1

N

∑N

b=1
Tb
(
xi

)

(4)DWT =
1√
2m

�
k
x[k]Ψ[2−mn − k]

(5)CWT =
1√
�m�

Ψ∫
+∞
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and Zubaidi et  al. (2020a, b) developed the SMA-ANN (Slime Mould Algorithm), BSA-
ANN (Backtracking Search Algorithm), and CSA-ANN (Crow Search Algorithm) models to 
forecast residential and commercial WC. Altunkaynak and Nigussie (2017, 2018) developed 
four hybrid models, DWT-MLP, MSA-MLP (Multiplicative Season Algorithm), FOD-MLP 
(First Order Differencing), and LD-MLP (Linear Detrending), to predict monthly urban WC. 
In addition, Said et al. (2021) found that combining deep-learning neural networks (DLNN) 
with MLP, CNN (Convolutional Neural Networks), or LSTM models resulted in more accu-
rate WC predictions than using these models alone. A collaborative model combines the RCG 
(Residual Correction-based Gray) and LSTM models to generate accurate real-time predic-
tions of WC (Li et al. 2021). Other AI models, such as clustering algorithms, decision trees, 
when combined with ANNs and SVM, have been shown to improve water demand forecast-
ing accuracy (Adamowski and Karapataki 2010; González Perea et al. 2018). With AI tech-
nologies continuing to evolve, hybrid models are likely to become increasingly important in 
solving complex problems and making accurate predictions (Wang et al. 2023). These models 
can address the limitations of individual models, take advantage of the strengths of different 
approaches, and provide a better understanding of the relationships between variables. Refer to 
Appendix A for further details regarding the abbreviations.

Fuzzy models with AI models are also popular models to analyze WC and hydrological 
systems (Ghalehkhondabi et al. 2017). These systems deal with uncertain or imprecise data 
and are based on fuzzy logic principles that allow the assignment of partial truths or degrees 
of membership to data points rather than the binary truth values of traditional logic (Yurdusev  
and Firat 2009). Originally developed to explain human thinking and decision-making  
processes, fuzzy systems have been adapted to AI to model various engineering systems, 
including water resources (Yurdusev and Firat 2009). Zubaidi et  al. (2020a) used ANFIS  
to predict urban WC. ANFIS is a combination of NN and fuzzy inference systems (Vijayalaksmi  
and Babu 2015). Oliveira et  al. (2009) used fuzzy logic to model the water demand  
in building supply systems. Fuzzy cognitive maps were used to create a concrete water usage 
process from a wastewater management perspective and to predict WC (Markovič 2018; 
Sánchez-Barroso et al. 2023). Xu and Qin (2015) proposed a novel superiority-inferiority-
based sequential fuzzy programming model to support water supply–demand analysis under 
uncertainty. Altunkaynak et al. (2005) used the Fuzzy Takagi–Sugeno model to forecast WC 
based on past monthly data, whereas Surendra and Deka (2012) used daily data for the same 
purpose. Surendra et  al. (2022) used the Mamdani fuzzy inference system (MFIS) to esti-
mate WC using rainfall, maximum temperature, minimum temperature, and relative humidity 
data. The Fuzzy Takagi–Sugeno model is among the most widely used fuzzy models. Further 
details are provided by Altunkaynak et al. (2005).

3.4  AI Model Performance

3.4.1  Learnable Parameters: Weight and Bias

Weights and biases play a crucial role in the training process of AI models by governing how 
the model processes the input data, assigns significance to different features, and produces 
output predictions. The accuracy of the outputs is highly dependent on these (dos Santos and 
Pereira Filho 2014). In NNs, weights represent the strength of the connections between differ-
ent nodes, which determine how much influence the output of one neuron has on the input of 
another (Maltais and Gosselin 2021). Bias allows the model to adjust the output values of the 
node, regardless of the input (Adamowski and Karapataki 2010). Various methods exist for 
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assigning weights and biases to AI models (Supplementary Figure Da). They can be broadly 
classified into initialization and optimization methods. Initialization methods help set the ini-
tial values of the weights and biases within a model, whereas optimization methods are tasked 
with adjusting the initial weight and bias values (Balduzzi et al. 2017; Narkhede et al. 2022). 
Optimization methods are primarily data-driven and rely heavily on available data to update 
the learnable parameters during training (Maltais and Gosselin 2021). Initialization methods 
can be classified as random initialization or data-driven initialization (Narkhede et al. 2022). 
There are also other initialization methods, such as equal, inverse weighting (Abdollahi and 
Ebrahimi 2020), and zero initialization methods (Narkhede et al. 2022). Random initializa-
tion methods, in which numerical values are selected from random distributions, remain the 
most popular due to simplicity and ease of implementation (Narkhede et al. 2022). Although 
some of these methods may not be effective for complex problems or deep networks (Balduzzi 
et al. 2017). Variance-scaling-based (a type of random initialisation method) and data-driven 
initialization can lead to better performance and faster convergence, particularly for complex 
problems or deep networks, because it helps prevent vanishing or exploding gradients (Ioffe 
and Szegedy 2015; Narkhede et al. 2022). Data-driven methods require domain expertise to 
select the correct initialization and optimization method.

3.4.2  Performance Indexes

Performance indexes are statistical methods used to analyze the residual errors between measured 
and predicted values and point out their differences (Banihabib and Mousavi-Mirkalaei 2019). 
They provide a way to measure algorithms’ accuracy, efficiency, and effectiveness (Alhendi et al. 
2022). The most common indexes used include the root mean square error (RSME, Eq. 6, (Huang 
et al. 2021)), mean absolute percentage error (MAPE, Eq. 7, (Zubaidi et al. 2020b; Sardinha-
Lourenço et  al. 2018)), and the coefficient of determination  (R2, Eq.  8, (Adamowski and  
Karapataki 2010)). The RMSE is used for tasks that minimize the difference between the predicted  
and actual values (Altunkaynak et al. 2005; Al-Zahrani and Abo-Monasar 2015). The MAPE is 
also used to measure the accuracy of forecasting models by measuring the difference between the 
observed and predicted values and providing a percentage error between the actual and forecasted 
values (Adamowski 2008; Firat et al. 2010). The smaller the error value, the better the model’s 
performance (Jain et al. 2001). In contrast,  R2 measures how well the model fits the data to estab-
lish a connection between the input and output variables (Adamowski 2008). The higher the value 
of  R2, the more accurate the model (Leon et al. 2020). Selecting an appropriate performance index 
for a model relies on data characteristics and model objectives. n is the number of observations, Y 
is the data set mean, Ŷi is the forecasted water demand, and  Yi is the actual water demand. Sup-
plementary Figure Db and Table 4 provide more performance indexes and their equations. 
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3.5  Advantages, Disadvantages, and Challenges Associated with AI Models

AI models have demonstrated effectiveness in estimating and forecasting WC (Jurišević et al. 
2021; Kim et al. 2022). They can analyze large datasets to make accurate and reliable pre-
dictions. They identify hidden patterns and trends in WC data. AI models can be contin-
uously updated with new data, allowing them to adapt and improve over time. They work 
with complex systems and incomplete data sets and offer high flexibility and convenience 
(Vozhehova et al. 2019; Peng et al. 2020). Hybrid models (SCEM-UA and ANN) can help 
determine model prediction uncertainties (Cutore et al. 2008) and can perform (BSA-ANN) 
even when missing factors exist (Zubaidi et al. 2020c). A combination of CSA and ANN can 
accurately forecast WC based on several statistical and graphical tests (Zubaidi et al. 2020a). 
Fuzzy models require minimal processing time and produce consistent predictions even with 
slight input-value changes (Altunkaynak et al. 2005). Some models (ANNs, DLNN, UWM-
Id) require large amounts of data for training and validation and have a risk of not being able 
to generalize findings beyond the observed data (Gao et al. 2020; Said et al. 2021). While 
hybrid models improve predictions, some (BSA-ANN, FFBP-ANN) have relatively slow 
overall running times (Farah et al. 2019; Zubaidi et al. 2020c). BPNN can accurately predict 
WC but with poor generalization (Liu et al. 2019a, b). Due to slow convergence, MFIS has 
a limited performance with many inputs and outputs (Surendra et al. 2022). RF can become 
slow and ineffective with too many trees (Hof and Wolf 2014) and determining input weights 
for SOMs is challenging (Ioannou et al. 2021).

Several challenges exist in applying AI for WC assessment. One major challenge is finding 
a high-performing AI model that is easy to interpret and requires minimal data (Adamowski 
2008). Reproducibility is another challenge due to insufficient details researchers provide 
regarding the variables and model training (Cutore et al. 2008). The type of input variables and 
poor-quality data can adversely affect AI model performance. These challenges further exac-
erbate the issue of standardization because of the lack of a normalized performance evaluation 
and variable selection method (Nunes Carvalho et al. 2021). Data may not be readily available 
even when the correct input variables are identified. In addition, data uncertainty can be a real 
challenge, and its unaccountability can sometimes lead to inaccurate estimates and forecasts 
(Adamowski et al. 2012). Data privacy is also a significant concern, as high-resolution WC data 
from smart meters may reveal personal information about consumers (Fu et al. 2022; Richards 
et al. 2023).

3.6  Knowledge Gaps

A detailed analysis of the articles resulted in the identification of the following knowledge gaps.

• Most AI application studies have focused on assessing urban WC. More focus is needed 
on agricultural and industrial WC and water use to support the environment.

(8)R2 = 1 −

1
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• AI models used to assess WC are typically evaluated using scattered or discontinuous data 
due to limitations in data availability. Complete and continuous datasets should be used to 
assess AI models for more accurate performance evaluation (Gourmelon et al. 2021).

• Water leaks significantly affect WC estimates and predictions. A rapid and reliable AI 
model for detecting water leaks can help develop effective mitigation strategies and 
adaptation plans (Benítez et al. 2019).

• k-means clustering is the most commonly used clustering method associated with AI-
based analysis. However, k-means is more efficient with smaller datasets and requires 
more time to classify large datasets. Therefore, other clustering models, such as Clus-
tering Large Applications based on RANdom Search (CLARANS), Balanced Iterative 
Reducing and Clustering using Hierarchies (BIRCH), and Clustering Using Represent-
atives (CURE), should be investigated (Rahim et al. 2020).

• Reproducing AI model applications can often be challenging due to the lack of reported 
details regarding their testing, training, and variables. Standards must be established 
to select the appropriate data types, variables, and performance evaluation methods to 
enhance the reproducibility and transparency of the process (Casali et al. 2022).

4  Discussions

4.1  AI for WC Assessment: Panoramic View and Model Selection

Over the past decade, growing interest in AI has revolutionized WC prediction, modeling, 
and decision-making methodologies. Numerous studies have been conducted on the appli-
cation of AI to WC assessments. However, most of these studies have focused on evaluat-
ing urban WC, neglecting agricultural and industrial WC, even though agriculture accounts 
for a significant portion of the total WC (Wei et al. 2022). The lack of collaboration among 
researchers may limit the potential of experts from diverse backgrounds to collaborate 
more effectively on various aspects of WC. Improved collaboration could also enhance 
public understanding of the importance of AI and its role in daily life and the environment, 
particularly concerning the four perspectives of innovation (smart cities, irrigation, meters, 
and software), application (agriculture, domestic, industry, and environment), sustainabil-
ity (water conservation and policy/governance), and ML approaches and models, as illus-
trated in Fig. 3.

AI can simulate current and future WC through standalone and combined (hybrid) AI mod-
els. Ensuring the use of high-performance models is of utmost importance, for accurate and 
reliable estimates and predictions. The interpretation of reasonable accuracy in the AI models 
depends on the performance index utilized. For instance, a higher  R2 value indicates supe-
rior model performance (Banihabib and Mousavi-Mirkalaei 2019), whereas a lower error (e.g., 
MAPE, MSE) is preferred for an ideal model (Farah et al. 2019; Gao et al. 2020). It is essential 
to compare the results of studies using different performance indexes, and other considera-
tions might be necessary. For instance, MSA efficiently forecasts WC for specific urban areas 
(Altunkaynak and Nigussie 2017). To generalize the results, further studies should be con-
ducted to determine model performance across different geographical and climatic regions, as 
local factors may affect predictions (Tang et al. 2012). AI models can also forecast WC consid-
ering climate change (Ehteram et al. 2021). Other considerations include studying the relation-
ship between WC and the season (Gelažanskas and Gamage 2015; Gautam et al. 2020). The 
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following question remains: What are the critical aspects to be considered when selecting an 
AI model?

Choosing the appropriate model is critical for effectively accomplishing a task. No 
one-size-fits-all AI model exists for WC assessment. It is crucial to establish the context 
of this work, whether it involves estimating or forecasting WC. In addition, defining the 
scope can help identify the most suitable AI model for each scenario while considering 
the available technologies to support AI applications. The reliability of any study depends 
significantly on the data used. Certain AI models may require specific technical input data, 
such as historical WC (Wu et  al. 2020), meteorological (e.g., precipitation, temperature)  
(Tao et  al. 2023), demographic (e.g., population, household size) (Roushangar and  
Alizadeh 2018), socio-economic (e.g., education, water price) (Azadeh et al. 2012; Bashar 
et al. 2023), remote sensing (e.g., dam reservoir images, spatial data) (Gonzalez Perea et al. 
2021; Sorkhabi et al. 2022), and agricultural (e.g., crop fraction, irrigated area) (Ehret et al. 
2011). Therefore, the proper variables must be selected based on the scenario and the scope 
of the research.

Selecting an appropriate AI model depends not only on the chosen variables and data 
availability but also on the model type and performance level. Figure 4 summarizes the 
main groups of AI models used for this purpose regarding their efficiency, accuracy, inter-
pretability, adaptability, and data requirements (Niknam et al. 2022). Each of these factors 
can affect the performance of an AI model and should be carefully evaluated to select the 
most suitable model for a particular task. Efficiency is crucial for real-time applications 
because it relates to the model’s ability to process data quickly. Accuracy determines how 
closely the model’s predictions match the actual data. Interpretability is important because 
it enables users to understand how a model makes predictions. Adaptability refers to the 

Fig. 4  AI system model in water management
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ability of the model to adjust to new data and changing circumstances. Data requirements 
are related to the amount and type of data required to train the model. Models that require 
large amounts of data may be challenging to train and not suited for all applications. Simi-
larly, models that require highly specialized data may not be practical in all cases.

Because the models are presented in broad categories, some may not be adequately rep-
resented. For instance, RF, classified as a regression model, often provides "high" accurate 
predictions, while regression, in general, provides "medium" accurate predictions (Niknam 
et  al. 2022). An ideal model is efficient, accurate, interpretable, adaptable, and requires 
minimal data. Unfortunately, no such model has been developed yet. Therefore, the best 
approach is to select a model that closely fits the specific situation. Based on the current 
literature, the authors suggest hybrid models could be a relatively good alternative for 
estimating and forecasting WC because they exhibit moderate efficiency, high accuracy, 
medium interpretability, high adaptability, and high data requirements.

4.2  Assumptions, Limitations, and the Next Step

This study was conducted using the PRISMA framework, which was chosen due to its 
transparent procedures. Peer-reviewed papers were searched on July 29, 2022, August 
12, 2022, and January 10th, 2024, using specific search words presented in Section 2.1. 
Some studies may have been missed, as the search terms were not explicitly mentioned in 
their titles and abstracts. Different search timelines may have yielded different sets of stud-
ies. Therefore, the results do not reflect all available information about AI applications in 
WC assessments. However, the selected documents contain the information necessary to 
draw valid and reliable conclusions. Other considerations must be considered in the co-
authorship and keyword analyses. For this study, authors who collaborated on two or more 
documents and keywords with a frequency of five or more in the titles and abstracts of the 
articles were included. The results would have differed if different selection conditions had 
been used. Nonetheless, these findings are highly relevant for future scientific research on 
estimating and forecasting WC. The next step in this research involves assessing the WC in 
Florida under scenarios of land-use/land cover change using hybrid AI models. The results 
will be informative for water governance, policy, and decision-making perspectives.

5  Conclusion

This review highlights the valuable role of AI in assessing WC, specifically its involve-
ment from the perspectives of innovation, application, sustainability, and ML applica-
tions. Despite the growing interest in AI over the past decade, the findings of this study 
suggest that only a few authors have established a pattern of close collaboration and con-
tact regarding AI applications in WC assessment studies. It was also found that nonlinear 
models applied to assess WC, optimization of water resource allocation, and management 
of water shortages have provided numerous advantages over linear models. Advantages 
include time-saving, accurate estimates and forecasts, convenience and flexibility, and 
handling complex systems and vast amounts of data. Despite numerous advantages of AI 
applications in WC assessments, challenges associated with reproducibility, method stand-
ardization, data availability, data uncertainty, and data privacy were highlighted. A sig-
nificant challenge is selecting the appropriate model with high performance for estimating 
and forecasting WC. Although various models have been used in the literature, it remains 
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unclear which model performs better, and the selection process must consider several cri-
teria related to performance, data availability, and problem complexity. No one-size-fits-all 
AI model exists; this study suggests applying hybrid AI models, as they offer flexibility 
regarding efficiency, accuracy, interpretability, adaptability, and data requirements. Hybrid 
models can address the limitations of individual models, take advantage of the strengths 
of different approaches, and provide a better understanding of the relationships between 
variables. This synthesis has resulted in innovative resources to support the estimation and 
forecasting of WC and future studies to address challenges, respond to needs, and fill the 
gaps highlighted in this study.
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