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Abstract
Evaluating drought is paramount in water resources management and drought mitigation 
plans. Drought indices are essential tools in this evaluation, which mainly depends on the 
time period of the original datasets. Investigating the effects of time periods is critical for 
a comprehensive understanding and evaluation of drought. Also, It holds particular signifi-
cance for regions facing data availability challenges. The existing literature reveals a gap in 
drought assessment and comparison analysis using conventional methods based on drought 
indices only. This research proposes an innovative drought classification matrix to compare 
drought indices and spatial and temporal scenarios; the proposed matrix depends on any 
drought classification for comparison procedure. Furthermore, it aims to investigate the 
differences between several time period scenarios based on the proposed matrix and sev-
eral statistical metrics (R2, CC, RMSE, HH, and RB) and determine the acceptable/mini-
mum time period. The application of the proposed matrix and selection of an acceptable/
minimum time period is presented to three different climates: Durham station in the United 
Kingdom, Florya station in Türkiye, and Karapinar station in Türkiye. The results show 
that the time period scenarios are able to catch the reference time period (RTP) scenario 
reasonably, with strong correlation and negative relative bias. The 10-year time period is 
sufficient as an acceptable/minimum time period for short timescales, such as meteoro-
logical drought. Conversely, for longer timescales, such as hydrological drought, a 20-year 
time period is the acceptable/minimum time period. The proposed matrix demonstrates a 
robust and powerful framework for comparison, making it applicable to various drought 
assessment scenarios globally.
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1  Introduction

Natural disasters such as droughts are more frequent, with increasing records observed in 
recent years (Dabanli et al. 2021; Hussain et al. 2023; Tiwari et al. 2022). Climate change 
and drought are two of the main driving factors for worldwide natural disasters (Visser 
et al. 2014; IPCC 2021; Shadeed 2013). Drought is related to a considerable decrease in 
rainfall, a main input for the hydrological cycle, under a typical level (Şen 2020; Danan-
deh Mehr and Vaheddoost 2020). Rainfall is an essential metric in assessing the effect of 
climate change and drought (Kharyutkina et al. 2022; Şen et al. 2020). Drought impacts 
water availability due to reduced rainfall, affecting supply and demand. Additionally, 
drought affects various sectors, such as the economy, industry, and agriculture (Du et al. 
2022; Nouri 2023). Moreover, droughts are among the most severe natural disasters, caus-
ing widespread damage on both global and regional scales (Tsakiris et al. 2016; Khorrami 
et al. 2023).

Considering this, several drought indices have been developed and applied for drought 
evaluation and assessment. Examples include the Palmer Drought Severity Index (PDSI) 
(Palmer 1965), the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-
Serrano et al. 2010), the Reconnaissance Drought Index (RDI) (Tsakiris et al. 2007), and 
the most commonly used Standardized Precipitation Index (SPI) (McKee et  al. 1993). 
Whilst defining a global index for drought evaluation and assessment presents a challenge 
(Tsakiris and Vangelis 2004), the SPI is considered one of the most accepted and widely 
used methods within scientific communities worldwide (WMO 2012). Its wide acceptance 
is attributed to its advantage of sole dependency on rainfall data, making the implementa-
tion simpler compared to other indices. SPI has a particular strength and priority regard-
ing data availability and data-scarce countries. Furthermore, the standardization concept 
within these drought indices offers the advantage of transforming the drought index into a 
unitless measure, allowing for comparative analysis across diverse precipitation time series 
datasets (Abu Arra and Şişman 2023).

Standardized drought index methods, such as SPI, transform the fitted cumulative prob-
abilities of observed data into a drought index (McKee et  al. 1993). Subsequently, the 
period of original data directly affects the drought index values. One of the weaknesses 
of the standardized drought index methods is that the drought index values change as the 
period of original data changes (WMO 2008). The World Meteorological Organization 
recommends quality-assured minimum records spanning 30 years of monthly values for 
SPI calculation (WMO 2008). This minimum period is generalized for most drought index 
methods (WMO 2012). Various studies calculated the standardized drought indices using 
different time periods, ranging from 30 to 150 years, without investigating and checking 
the effect of the used time period on the drought index values (Mahmoudi et  al. 2019; 
Kesgin et al. 2024; Elhoussaoui et al. 2021). After a thorough evaluation of the literature, 
no research have been studied and considered the effects of the selected time period on the 
drought indices results, which is a significant gap that must be filled.

On the other hand, in various countries worldwide, there are limitations arising from 
various factors in maintaining continuous meteorological data records, especially in devel-
oping countries. Consequently, continuous meteorological records often fall short of the 
recommended period (30 years) (WMO 2008). This limitation in data availability poses a 
significant challenge in conducting comprehensive drought analyses. Furthermore, using 
satellite-derived and reanalysis data presents diverse concerns and challenges in conduct-
ing drought analyses. One of the main issues is the need for inclusive validation based 
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on in-situ meteorological data to ensure the accuracy and reliability of the data (Mishra 
and Singh 2010; Mishra and Singh 2011). In addition, some of these data sources, such as 
Integrated Multi-satellitE Retrievals for GPM (IMERG) (https://​power.​larc.​nasa. gov/data-
access-viewer/) (Huffman et al. 2015), commenced after June 2000, leading their available 
data to cover a time period of less than 30 years. This temporal limitation poses a chal-
lenge, especially when adhering to the recommended minimum duration for reliable mete-
orological data records recommended by (WMO 2008). The selected drought index with 
the minimum variables is preferred regarding the data availability challenges.

The existing literature reveals a significant gap in drought assessment methodologies, 
where conventional evaluations often overlook critical factors. Specifically, researchers 
commonly neglect the importance of drought classification across distinct periods, utiliz-
ing various drought indices and accounting for diverse geographical locations (Ullah and 
Akbar 2021; Tigkas 2008). The conventional methods depend heavily on drought indi-
ces without acknowledging the significance of their classification or considering the time 
period. Additionally, the duration of the time period, often accepted as an initial condition, 
is inadequately discussed in terms of its effects and importance in shaping drought assess-
ments. To address this notable gap, our research endeavors to comprehensively understand 
and assess drought by incorporating a holistic framework that integrates drought indices, 
statistical metrics, and a newly proposed innovative drought classification matrix. By 
doing so, we aim to provide a more nuanced perspective, considering the temporal aspect 
and facilitating the identification of minimum/acceptable time periods for robust drought 
assessment. This approach fills a crucial void in the existing literature, contributing to 
advancing drought evaluation methodologies.

The main objectives of this research are to: 1) Develop an innovative drought classifica-
tion matrix to compare different drought indices, different time periods, and different spa-
tial stations in drought and climate change studies, 2) investigate the effect of time period 
on standardized drought indices using (SPI) based on drought index values, statistical met-
rics, and innovative drought classification matrix, 3) determine the acceptable/minimum 
time period (ATP) for drought evaluation in regions challenging data availability problems, 
and 4) determine the optimal time period (OTP) and calculate the accuracy of different 
time periods using statistical metrics and newly proposed innovative drought classification 
matrix. This research is pivotal because it explores the significance of the time period in 
drought evaluations and assessments. This research will provide a foundation for studying 
and evaluating drought in regions with data availability challenges. Also, it suggests and 
considers the importance of drought classification in water resources management, drought 
assessment, and comparison processes. By shedding light on this often underestimated 
aspect, this research contributes significantly to the drought assessment and enhances our 
understanding of the temporal analysis of drought.

2 � Materials and Methods

2.1 � Study Area and Data Collection

The application of the newly proposed matrix, statistical metrics, and time period analyses 
for determining the research objectives were chosen across diverse areas characterized by dis-
tinct and different climates. The selection of these stations was specifically tailored to imple-
ment the newly proposed matrix and find the acceptable and optimal time period, aiming to 

https://power.larc.nasa
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showcase its versatility and effectiveness in different climatic contexts. The first one is Karapi-
nar station in Konya city, located in central Türkiye, the largest city in land area. Konya city 
has a semi-arid climate. The average annual precipitation is 297.5 mm. Hydrological and envi-
ronmental issues arise because of low rainfall and high temperatures in the summer months, 
making it one of the most dry cities in Türkiye. The monthly precipitation (P) records are 
between 1964 and 2022 (58 years) as provided by the Turkish State Meteorological Service 
(MGM). Secondly, Durham city, which is located in the northeast of the UK. It has a hybrid 
temperate maritime climate with normal summers and cool winters from a global perspec-
tive. The average annual precipitation is 655.62 mm. The monthly precipitation (P) data are 
between 1872 and 2021 (150 years), as provided by the Durham University meteorological 
station. The climate data from the Durham station stands as the UK’s third lengthiest continu-
ous weather dataset.

The third application is Florya station in Istanbul city, Türkiye. The climate of Istanbul is 
mild; the summer is humid and hot with little rain, and the winter is rainy, wet, cold, and with 
some snow. The average annual precipitation is 641.3 mm. The monthly precipitation (P) data 
are between 1941 and 2020 (80 years), as provided by the Turkish State Meteorological Ser-
vice (MGM). Table 1 summarizes the station name, latitude, longitude, annual precipitation, 
standard deviation, time period, and the reference period for all used stations. All obtained 
rainfall data are processed and controlled for consistency and continuity.

2.2 � Standardized Precipitation Index (SPI)

Generally, the drought indices are the main variables in evaluating and assessing the drought. 
The SPI is depending on the probability of rainfall at any time scale, such as 1-month, 
3-month, 9-month, and 12-month. The first step in SPI calculation is selecting a suitable prob-
ability distribution function for the original data (precipitation). The Gamma PDF is the most 
proper PDF for SPI calculations in most studies (Wang et al. 2019). Choosing an appropri-
ate Probability Density Function (PDF) involves evaluating the goodness-of-fit tests for the 
original datasets (such as rainfall for SPI) using Chi-Square and Kolmogorov–Smirnov tests 
(Stephens 1970). The probabilities derived from the monthly rainfall data are probabilistically 
standardized into normal function with a mean of zero and a standard deviation of one. The 
Gamma distribution’s probability density function is defined as:

(1)g(x) =
1

𝛽𝛼T(𝛼)
X𝛼−1e

−x

𝛽 , for x > 0

Table 1   Climatic characteristics of the annual total precipitation of the used stations in this study

Station Latitude Longitude Annual 
Precipita-
tion
(mm)

Standard 
deviation 
(mm)

Time period Reference Time 
Period (RTP) (y)

Florya station 40.97 (N) 28.78 (E) 641.3 43.35 1941–2020 80
Durham station 54.77 (N) 1.59 (W) 655.62 34.85 1872–2021 150
Karapinar station 37.71 (N) 33.52 (E) 297.52 21.57 1964–2022 59
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where � and � are the shape and scale parameters, respectively, x is the precipitation. 
T(� ) is the Gamma function. The shape and scale parameters can be calculated using the 
approximation of Thom:

And

With

where X is the average precipitation; n is the number of data; X is the precipitation at a cur-
rent period. In the next step, the theoretically fitted precipitation data is probability stand-
ardized using Matlab as mentioned in (Şen and Şişman, 2023).

McKee et  al. 1993, classified the drought into seven classifications based on the 
standard deviation and probability function, as shown in Table 2. More details and lit-
erature regarding SPI can be found in (McKee et al. 1993).

2.3 � Time Period Scenarios

The time period directly affects the SPI calculations and the obtained results, and chang-
ing the time periods changes the results. This can be attributed to the fact that original 
data is fitted and transformed into a normal scale. This study divides the time period 
into several smaller intervals, each shorter than the overall long-term time period, which 
is referred to as the reference time period (RTP). The RTP is defined as the longest 
available time period for each station, is supposed to be the most accurate, and is uti-
lized as a benchmark for all calculations and comparisons. Table 3 summarizes the time 
period scenarios and the RTP for each station.

(2)� =
1

4A
(1 +

√

1 +
4A

3
)

(3)� =
X

�

(4)A = ln

�

X

�

−

∑
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n

Table 2   Drought classifications 
based on SPI theory (McKee 
et al. 1993)

Drought index DI (SPI) Drought classification Probability (%)

2.00 ≤ DI Extreme wet (EW) 2.31%
1.50 ≤ DI < 2.00 Severe wet (SW) 4.42%
1.00 ≤ DI < 1.50 Moderate wet (MW) 9.22%
-1.00 ≤ DI < 1.00 Normal (N) 68.1%
-1.50 ≤ DI < 1.00 Moderate drought (MD) 9.22%
-2.50 ≤ DI < 1.50 Severe drought (MD) 4.42%
-2.00 ≤ DI Extreme drought (ED) 2.31%
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2.4 � Time Period Scenarios Comparison Scheme

The performance of each time period scenario was evaluated based on the continuous 
statistic metrics with the help of the newly proposed innovative drought classification 
matrix. These metrics utilized to determine the accuracy of each time period scenario 
are correlation coefficient (CC), root mean square error (RMSE), and relative bias (RB), 
as summarized with their formulas in Table 4. The CC value ranges between -1 and 1 
and is used to measure the strength and direction between two variables. A value near-
ing 1 signifies a robust positive relation, -1 indicates a strong negative relation, and 0 
implies no correlation. The average absolute error of any time period scenario to the 
RTP scenario is measured by RMSE; the lower value of RMSE indicates a better time 
period scenario performance. RMSE measures the average difference between the RTP 
model and any time period scenario. The time period scenario typical bias is calcu-
lated using RB, where 0 indicates no bias, whilst a positive value indicates an overesti-
mate of the time period scenario, and a negative value indicates an underestimate of the 
time period scenario. One of the limitations of RMSE is that the application of RMSE 
as the main function in inverse models may not find the global optimal metrics of the 
model, and to overcome this problem, the Hanna and Heinold metric (HH) is also used 
(Hanna and Heinold 1985; Mehdinejadiani et al. 2022). The coefficient of determination 
(R2) values close to 1 indicate a strong positive relation. Figure 1 shows the research 

Table 3   Time period scenarios Station Reference Time 
Period
(RTP) (years)

Time period scenarios
(years)

Karapınar station 59 59, 30, 20, 10
Durham station 150 150, 120, 90, 60, 30, 20, 10
Florya station 80 80, 60, 30, 20, 10

Table 4   Continuous statistical metrics for SPI values from different time period scenarios

R = SPI value for RTP, T = SPI value for any time period, n = number of months/samples, R = mean SPI 
value for RTP, T  = mean SPI value for any time period

Statistic metric Equation Value range Ideal value

Correlation Coefficient (CC)
CC =

∑n
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�

R
i
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methodology flow chart for comparison between the RTP and time period scenarios and 
selecting the acceptable/minimum and optimal time period scenario.

2.5 � Innovative Drought Classification Matrix

McKee et al. (1993) developed the classification shown in Table 2 to define and classify 
the drought resulting from the SPI values. Regarding the literature, it is the most com-
monly used drought classification. Drought classification makes the comparison processes, 
water resources management, and climate change mitigation and adaptation plan easier and 
more precise because of using one drought classification that is accepted worldwide. Also, 
because of using the standardization concept, wet and dry climates are represented in the 
same approach (symmetric); therefore, the wet climates can be evaluated and monitored 
using the standardized drought indices.

This research proposes a new innovative drought classification matrix (IDCM) to com-
pare and investigate the differences and similarities between the RTP and any time period 
scenario based on the drought classification and between different drought indices and sce-
narios. For example, IDCM can be used to find the differences and similarities between 
several drought indices, such as SPI and SPEI. As shown in Table 5, the first column is the 
drought classification for the RTP scenario. The first row is the drought classification for 

Fig. 1   Research flow chart for comparing and selecting the acceptable/minimum and optimal time period 
based on statistical metrics and IDCM

Table 5   Innovative drought classification matrix
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any time period scenario. The drought classifications are (from wet to drought) extreme 
wet (EW), severe wet (SW), moderate wet (MW), normal (N), moderate drought (MD), 
severe drought (SD), and extreme drought (ED). IDCM can be used based on any drought 
classification. The proposed IDCM depends on monthly SPI/DI values; each value for each 
month from both the RTP scenario and any time period scenario is compared based on 
drought classification. For example, if the SPI value for i month is -0.59 and the SPI value 
for the same i month for a specific time period scenario is -0.75, then the cell N–N will 
take 1. This process is conducted for all months. The numbers in the innovative matrix 
represent the whole time period. The grey-shaded cells represent the months falling within 
the same drought classification (same classification). Also, the last row and column are the 
summation of the months within a specific drought classification. The IDCM can include 
0 values, meaning no months are within this classification. For example, based on the RTP 
scenario, the drought classification is EW, and the drought classification based on any 
time period scenario is ED. In this situation, the zero value is expected. Finally, the DI can 
be any drought index. The blue-shaded cell is the most important result in the innovative 
drought classification matrix. It shows the number of months with its percentage for the 
same drought classifications. Values over the grey-shaded cells (diagonal) indicate that this 
time period scenario underestimates the drought index values based on the RTP. On the 
contrary, values below the grey-shaded cells (diagonal) indicate an overestimation of the 
RTP scenario. The drought classification is based on Table 2. The Newly proposed matrix 
has no limitations. It can be used for different drought indices, different time periods, and 
different locations.

3 � Results

3.1 � Statistical Metrics

The SPI has been calculated at 3 and 12-month timescales corresponding to short and 
long-period timescales for each station and time period scenario identified in Table 3. The 
SPI was calculated firstly for each station’s RTP, which is 80 years for Florya station, 150 
years for Durham station, and 58 years for Karapinar station. These RTPs are regarded as 
the most accurate and reliable data sets to investigate the differences and select the accept-
able/minimum and optimal time period scenario.

The first part of the results was the statistical metrics for each station and time period 
scenario. Table 6 summarizes the CC, RMSE, HH, R2, and the percentage of the months 
falling within the same drought classification using the newly proposed IDCM for Florya 
station. All time period scenarios correlated strongly with the RTP scenario in estimating 
SPI values. Only the 10-year time period scenario gave a relatively low value regarding 
other periods (0.926). In terms of RMSE, the difference between RMSE and HH is negligi-
ble for all stations and time scales, so the RMSE is considered in the results and discussion 
sections. All time periods reported errors of 0.071 to 0.388 and of 0.054 to 0.247 for SPI 
3 and SPI 12 values, respectively. For a short timescale (3 months), the RMSE reported a 
considerable error of 0.388, implying more significant errors and less accurate forecasts. 
Regarding RB, all time period scenarios for both SPI 3 and 12 underestimated the SPI 
values with the same quantity, approximately -100%. Giving approximately the same RB 
indicated no difference between any time period scenario.
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Furthermore, the R2 values were more than 0.85, showing that the SPI values of the 
time period scenarios fitted the regression model (the goodness of fit) and were explained 
by the regression line. Figure 2 (a-h) showed the R2 values and the regression models for 
each time period scenario and RTP scenario. The red line represented the regression line. 
Finally, based on the IDCM, the percentage of the months within the same drought classifi-
cation was more than 82% for time periods above 20 years. However, the percentages were 
79.7% and 77.1% for SPI 3 and SPI 9, respectively.

Table 7 summarizes the main statistical metrics: CC, RMSE, R2, and the percentage of 
the months falling within the same drought classification using IDCM for Durham station. 
All time period scenarios (120 – 10 years) correlated very strongly with the RTP scenario 
in calculating SPI values. Same the Florya station, the minimum CC was at a 10-year time 
period scenario, giving a relatively low value compared with other time periods (0.96). 
Regarding RMSE, which calculates the errors between RTP and any time period, all peri-
ods addressed errors of 0.059 to 0.399 and 0.019 to 0.669 for SPI 3 and SPI 12 values, 
respectively. The RMSE addressed a noticeable error of 0.399 for short timescales and 
0.669 for long timescales at 10 years, indicating more significant errors and less accurate 
forecasts for this time period. In terms of RB, all time period scenarios except the 120-year 
time period for SPI 3 gave the same RB (-100%). The underestimation with approximately 
the same RB implied no considerable difference between any time period scenario. They 
all underestimated the SPI values with the same percentage compared to the RTP scenario.

Additionally, the R2 values were more than 0.926. The SPI values for the time period 
scenarios demonstrated a fitting alignment with the regression model, indicating a satisfac-
tory goodness of fit. These values were effectively elucidated by the regression line within 
the model. Figure  3 (a-f) and Fig.  4 (a-f) showed the R2 and the regression models for 
each time period scenario and RTP scenario. The red line represented the regression line. 
Based on these figures, it can be noted that Fig. 4. f had the minimum R2, and the distance 
between the points and regression line can be noticed. Lastly, depending on the newly 
proposed innovative drought classification matrix (Table 5), the percentage of the months 
within the same drought classification ranged between 70 to 94% and 54% to 97.8% for SPI 
3 and 12, respectively. The minimum percentage (54%) was at SPI 12, a 10-year period, 
addressing a significant difference based on the drought classification matrix. More details 
regarding this matrix were explained in the discussion section. Generally, values above 
70% can be considered acceptable for drought classification. However, the 54% value 

Table 6   Summary of the statistical metrics and innovative drought classification matrix for SPI 3 and 12 for 
all time period scenarios for Florya station

SPI 3 SPI 12

60 Years 30 Years 20 Years 10 Years 60 Years 30 Years 20 Years 10 Years

CC 0.998 0.988 0.988 0.926 0.999 0.999 0.998 0.991
RMSE 0.071 0.163 0.162 0.388 0.054 0.176 0.235 0.247
HH 0.072 0.162 0.161 0.414 0.054 0.163 0.213 0.249
RB -100.3% -100.1% -100.4% -92.2% -99.0% -100.2% -100.8% -99.9%
R2 0.996 0.976 0.977 0.857 0.999 0.998 0.997 0.983
Drought 

Classifica-
tion

94.3% 88.8% 91.6% 79.7% 96.2% 82.2% 82.1% 77.1%
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raises significant concerns about managing water resources, particularly in the context of 
long-term hydrological droughts.

For Karapinar station in Konya city, which is a semi-arid climate area, the results 
were very similar to the results of Durham station. Table 8 summarizes the main sta-
tistical metrics in order to investigate the difference between time period scenarios: 
CC, RMSE, R2, and the percentage of the months falling within the same drought 

Fig. 2   R2 between time period scenarios and RTP scenario for SPI 3 and 12 for Florya station



2821Innovative Drought Classification Matrix and Acceptable Time…

1 3

classification using IDCM for Karapinar station. The time period scenarios were 30, 
20, and 10 years. They all correlated very strongly with the RTP scenario (59 years) in 
SPI calculation. The minimum CC was at the minimum time period scenario, giving a 
comparatively low value (0.926).

The RMSE values for semi-arid regions were acceptable compared to the other 
areas. The RMSE ranged between 0.2 and 0.431. For SPI 3 and 12, the maximum error 
was at the same time period scenario. The 30-year time period scenario showed the 
greatest agreement with the RTP scenario for SPI 12. In comparison with Florya and 
Durham stations, the RB values were different, ranging from -99.8% to -137.5%. RB 
values were negative, indicating an underestimation from the 59-year (RTP) scenario. 
The 20-year time period scenario had the most unfavorable estimation, nearly under-
estimating by -137.5%. This underestimation differed by about 38% from other time 
period scenarios.

For Karapinar station, the R2 values were acceptable and more than 0.85. The SPI 
values for all time period scenarios exhibited a suitable alignment with the regres-
sion model, signifying an adequate goodness of fit. Figure 5 (a-f) showed the R2 and 
the regression models for each time period scenario and RTP scenario. The red line 
represented the regression line. The minimum R2 was for a short time scale and at 
the minimum time period scenario. (Fig.  5. f). Using the newly proposed innovative 
drought classification matrix (Table 5), the percentage of the months within the same 
drought classification was over approximately 70%, except for the long timescale at the 
10-year time period (49.54%). The 10-year time period scenario was the changing year 
for long timescale analyses. In the worst case, the 10-year time period scenarios can be 
accepted as the acceptable/minimum time period scenario. More details regarding the 
drought classification matrix and acceptable scenarios were explained in the discussion 
section.

Table 7   Summary of the statistical metrics and innovative drought classification matrix for SPI 3 and 12 for 
all time period scenarios for Durham station

SPI 3

120 years 90 years 60 years 30 years 20 years 10 years

CC 0.998 0.995 0.992 0.989 0.982 0.977
RMSE 0.059 0.106 0.142 0.209 0.251 0.399
HH 0.059 0.105 0.141 0.208 0.253 0.405
RB -80.9% -98.6% -99.9% -100.2% -100.3% -100.1%
R2 0.997 0.991 0.983 0.977 0.964 0.954
Drought Classification 94.22% 89.51% 86.91% 80.72% 78.57% 70.34%

SPI 12
120 years 90 years 60 years 30 years 20 years 10 years

CC 1.000 0.999 0.998 0.988 0.991 0.963
RMSE 0.019 0.079 0.123 0.341 0.376 0.669
HH 0.020 0.079 0.122 0.348 0.381 0.661
RB -99.0% -100.0% -100.2% -100.1% -100.1% -100.0%
R2 0.999 0.998 0.995 0.975 0.981 0.927
Drought Classification 97.83% 92.98% 89.84% 74.21% 68.56% 54.13%
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3.2 � Innovative Drought Classification Matrix

3.2.1 � Innovative Drought Classification Matrix for Florya Station

The newly proposed IDCM aimed to understand and investigate comprehensively the dif-
ferences and similarities between any two sets based on the drought classification. This 
research used the matrix to compare the RTP scenario with other time period scenarios. 
For Florya station, the 60-year time period scenario for both short and long timescales 
gave very similar results compared to the RTP scenario. 94%0.3% and 96.2% of the months 
were within the same drought classification, and the remaining months were within one 
different drought classification (Fig. 6. a and c). Also, the drought classification for these 
scenarios was underestimated according to RTP. For example, 11 months were moderate 
wet (MW) based on RTP and were normal (N) based on a 60-year time period scenario for 
SPI 12 (Fig. 6. c). The summation of drought months was more than drought months for 

Fig. 3   Coefficient of determination (R2) between time period scenarios and RTP scenario for SPI 3 for Dur-
ham station
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Fig. 4   Coefficient of determination (R2) between time period scenarios and RTP scenario for SPI 12 for 
Durham station

Table 8   Summary of the statistical metrics and innovative drought classification matrix for SPI 3 and 12 for 
all time period scenarios for Karapinar station

SPI 3 SPI 12

30 years 20 years 10 years 30 years 20 years 10 years

CC 0.982 0.971 0.923 0.999 0.996 0.996
RMSE 0.203 0.264 0.431 0.096 0.237 0.415
HH 0.199 0.256 0.420 0.092 0.214 0.370
RB -114.81% -108.31% -100.3% -104.8% -137.5% -99.8%
R2 0.965 0.944 0.859 0.997 0.992 0.991
Drought Clas-

sification
84.36% 78.99% 71.19% 91.40% 66.81% 49.54%
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RTP. Generally, the summation of each drought classification was approximately the same 
for the 60-year time period scenarios for both SPI3 and SPI12. However, the results of the 
10-year time period scenario were inconsistent with RTP; the percentage was acceptable 
(about 77%). No months were addressed as extremely wet (EW) for SPI12 at the 10-year 
time period (Fig. 6. d). The maximum number of months was within the normal (N) clas-
sification due to its wide range (from -1 to 1).

3.2.2 � Innovative Drought Classification Matrix for Durham Station

This research and the new matrix were applied to Durham station as one of the most con-
tinuously recorded data and with a rainy climate. The newly proposed innovative drought 
classification matrix was used to determine the number of months within each drought 
classification. The 120-year time period scenario was very similar to the RTP scenario, 
with a more than 90% percentage (Figure 7. a and c). For SPI 3, the 120-year time period 

Fig. 5   Coefficient of determination (R2) between time period scenarios and RTP scenario for SPI 3 and SPI 
12 for Karapinar station
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Fig. 6   Innovative drought classification matrix for Florya station for 60 and 10-year time period scenarios 
at SPI3 and SPI12
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Fig. 7   Innovative drought classification matrix for Durham station for 60 and 10-year time period scenarios 
at SPI3 and SPI12
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expected the drought classification like the RTP with a rate of 94%, and the remaining 
months were within only one drought classification, indicating a very strong relation 
between these scenarios (Figure 7. a). Nevertheless, the 10-year time period reported only 
70% of the months within the same drought classification, and the remaining months were 
underestimated regarding RTP. For SPI 12 (long timescales), the results for the 120-year 
time period were better. The percentage of the months within the same drought classifica-
tion was about 98% (more than the percentage for SPI 3) (Figure 7. c). Also, the remain-
ing months were within one different drought classification in the underestimation region 
based on the innovative drought classification matrix (Table 5).

For SPI 12, the 10-year time period scenario gave inconsistent results compared to other 
scenarios. For example, the percentage of the same months was 54% (Figure 7. d). It can be 
noted that approximately 50% of the months are within the same drought classification, and 
the remaining 50% were underestimated regarding RTP. There were no values under the 
diagonal grey-shaded cells (overestimation region). Also, the number of dry months was 4 
and 22, based on the RTP scenario and 10-year time period scenario, respectively.

3.2.3 � Innovative Drought Classification Matrix for Karapinar Station

Karapinar station as a semi-arid climate was applied in this research. The number of 
months and summation within each drought classification have been determined based on 
the newly proposed innovative drought classification matrix. The 30-year time period sce-
nario was similar to the RTP scenario (59 years), with 84,35% and 91.4% for SPI 3 and SPI 
12, respectively (Fig. 8. a and c). For SPI 3, the 60-year time period forecasted the drought 
classification the same as the RTP with an acceptable rate, and the remaining months were 
overestimated compared to other time period scenarios for Karapinar station. The summa-
tion of dry months were 68 and 61 for the RTP scenario and 30-year time period scenario, 
respectively. For the 10-year time period scenario at SPI 3, the total dry months were equal 
(24 months) (Fig. 8. b).

The 10-year time period at SPI 12 reported only 49.54% of the months within the same 
drought classification, and the remaining months were underestimated regarding RTP 
(Fig. 8. d). For example, 26 months were moderately wet based on the RTP scenario and 
normal (N) based on the 10-year time period scenario. Also, 4 months were extremely 
dry (ED) depending on the RTP scenario, while the same months were severely dry (SD) 
depending on the 10-year scenario for SPI 12. More details are shown in Fig. 8. a-d.

4 � Discussion

Time period scenarios were able to reasonably catch the RTP scenario over different sta-
tions and climates, with strong CC and R2. Generally, all time period scenarios showed the 
same negative RB across each station, indicating that short time periods can be utilized 
for regions facing data availability challenges. At the same time, the differences and simi-
larities between these time period scenarios and RTP scenarios were investigated based on 
statistical metrics and the newly proposed IDCM. This matrix has the advantage of being 
used in different applications in drought and climate change studies. For example, to find 
the differences between any two drought indices, two spatially different stations, and two 
different temporally scenarios.
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Fig. 8   Innovative drought classification matrix for Karapinar station for 60 and 10-year time period sce-
narios at SPI3 and SPI12
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Based on (WMO 2008), it was recommended that 30 years is the ideal time period, 
and the drought evaluation and assessment could not occur for a time period less than 30 
years. Also, IPCC (2018, 2021, 2023) reported that data availability is one of the most 
challenging problems for conducting drought and climate change studies in developing 
countries. Based on the results of this research, the acceptable/minimum time period for 
monthly records in some cases can be 10 years instead of 30 years. As one of the most 
significant contributions of this research, the acceptable time period ranged between 10–20 
years, allowing the countries that started measuring weather data from (2002–2012) to 
conduct drought evaluation and assessment. Based on both statistical metrics and IDCM, 
the 10-year time period can be used with an 80–90% confidence level for short timescales. 
However, for long timescales, the 20-year time period is better, with a 75–85% confidence 
level. The IDCM addressed that time period scenarios often underestimated the SPI values, 
which agreed with the negative RB results.

Drought evaluation and assessment depend on several steps, from selecting the time 
period and data set, selecting and fitting a cumulative distribution function (CDF), and 
transforming the fitted CDF into a normal CDF. In general, using the longest available time 
period is recommended and gives the most accurate results. The importance of the time 
period and data set came from the time period affecting all following analyses and evalua-
tion processes. Despite its importance, the existing literature within our current knowledge 
does not adequately cover the effect of time periods on drought evaluation and assessment, 
leading to a noticeable gap in the available knowledge base. Consequently, the absence 
of relevant studies addressing this subject minimizes our ability to grasp the full frame-
work of its impact. For that reason, investigating the difference between several time period 
scenarios and RTP scenarios allows us to fill the gap and conduct drought evaluation and 
assessment in countries facing data availability challenges. Using 10 years of qualified and 
continuous data for drought evaluation and assessment is better than doing nothing in these 
countries (Karbasi et al. 2023; Vaheddoost et al. 2023).

The acceptable/minimum and optimal time period scenario differs from region to region 
and is based on climate. Nevertheless, this research used different stations and climates to 
generalize the results, and it can be accepted that the 10-year time period is the acceptable/
minimum time period for short timescales. And the 20-year time period is the acceptable/
minimum time period for long timescales. For example, continuous data of 20 years is vital 
for hydrological droughts and studies. For example, a longer time period is preferable to 
study the deficits in water availability in rivers, lakes, and groundwater. Also, a longer time 
scale, such as a 12-month time scale, is also vital for hydrological drought evaluations. 
But, for meteorological and agricultural drought evaluation and assessment, 10 years is 
sufficient. Regarding the optimal time period, 30–60 years are optimal. These time peri-
ods give very similar results compared to the RTP scenario. Abu Arra and Şişman (2023) 
and Şen (2021) mentioned that drought evaluation and assessment are vital for drought 
mitigation and adaptation plans and for achieving sustainable development goals (SDGs). 
Based on the main outcomes of this research, the drought evaluation and assessment can 
be conducted with high reliability in countries facing data availability problems, allowing 
researchers to comprehensively understand the importance and differences of various time 
period scenarios for different climates.

The newly proposed matrix serves as an integral component within the comprehensive 
framework and processes employed for drought assessment and evaluation. IDCM facili-
tates the evaluation and comparison of various scenarios, different locations, and differ-
ent drought indices using drought classification. In traditional approaches, drought assess-
ment relies on the drought index and characteristics. However, the IDCM goes beyond 
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this conventional methodology by systematically comparing different scenarios based on 
drought classification. Unlike classical approaches, where the assessment is predominantly 
focused on individual drought indices and their characteristics, the IDCM provides a struc-
tured means to discern and quantify differences between two distinct drought indices. This 
enhancement in the evaluation process contributes to a better understanding of drought 
dynamics, allowing for informed decision-making and resource allocation in the face of 
evolving climatic conditions.

5 � Conclusion

Assessing and evaluating drought is paramount in managing water resources and tackling 
the impacts of drought and climate change. Drought indices, such as SPI, are pivotal tools 
in this evaluation, relying on the time period and datasets used. Understanding the sig-
nificance and implications of this time period is critical for a comprehensive understand-
ing and evaluation of drought occurrences. This comprehension aids decision-makers in 
developing effective strategies and policies. It holds particular importance for regions fac-
ing challenges in data availability, offering them a means to conduct drought evaluations 
based on the acceptable/minimum time period. Investigating the relevance and effects of 
these time periods based on statistical metrics and the newly proposed drought classifica-
tion allows for a better understanding of drought dynamics, fostering resilience and prepar-
edness in water scarcity and climate change. To implement the IDCM and find its effective-
ness, as well as determine the acceptable/minimum and optimal time period for drought 
studies, three different climatic regions were selected: Karapinar station, Florya station in 
Türkiye, and Durham station in the United Kingdom. The key findings of the research are 
as follows:

1-	 The time period scenarios aligned considerably with the RTP scenario across various 
stations and climates, exhibiting strong CC and a high R2.

2-	 The newly proposed IDCM allows for a comprehensive comparison between any two 
scenarios, presenting versatility in its applicability within drought and climate change 
studies. It allows for various applications, such as comparing different temporal and 
spatial scenarios and different drought indices.

3-	 The IDCM revealed that the SPI values were frequently underestimated in time period 
scenarios, aligning with the observed negative RB outcomes.

4-	 Based on the outcomes from diverse stations and climates in this research, it is evident 
that a 10-year time period is sufficient as an acceptable/minimum for short timescales. 
Conversely, for longer timescales, a 20-year time period is deemed acceptable/minimum 
time period.

5-	 Considering the main findings of this research, including acceptable/minimum time 
period, countries encountering challenges with data availability can rely on shorter time 
periods for drought assessment.

Acknowledgements  The authors would like to thank the Republic of Türkiye and the Turkish State of 
Meteorological Service for their support and for providing the dataset. The authors would like to acknowl-
edge that this paper is submitted in partial fulfilment of the requirements for PhD degree at Yildiz Technical 
University. This research did not receive any specific grant from funding agencies in the public, commercial, 
or not-for-profit sectors.



2831Innovative Drought Classification Matrix and Acceptable Time…

1 3

Author Contributions  Ahmad Abu Arra: Conceptualization; Formal analysis; Investigation; Methodology; 
Resources; Software; Visualization; Roles/Writing—original draft; Eyüp Şişman: Conceptualization; Data 
curation; Methodology; Project administration; Supervision; Validation; Writing—review & editing.

Funding  Open access funding provided by the Scientific and Technological Research Council of Türkiye 
(TÜBİTAK). The authors declare that no funds, grants, or other support were received during the prepara-
tion of this manuscript.

Data Availability  All data that support this study’s findings are available from the corresponding author 
upon reasonable request. The precipitation data are available at. https://​durha​mweat​her.​websp​ace.​durham.​
ac.​uk/ (accessed on 25 May 2023).

Declarations 

Ethical Approval  Compliance with Ethical Standards.

Consent for Publication  Not applicable.

Consent to Participate  Not applicable.

Competing Interest  The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abu Arra A, Şişman E (2023) Characteristics of hydrological and meteorological drought based on 
intensity-duration-frequency (IDF) curves. Water 15(17):3142

Dabanli I, Şişman E, Güçlü YS, Birpınar ME, Şen Z (2021) Climate change impacts on sea surface tem-
perature (SST) trend around Turkey seashores. Acta Geophys 69:295–305

Danandeh Mehr A, Vaheddoost B (2020) Identification of the trends associated with the SPI and SPEI 
indices across Ankara. Turkey Theor Appl Climatol 139(3–4):1531–1542

Du C, Chen J, Nie T, Dai C (2022) Spatial–temporal changes in meteorological and agricultural droughts 
in Northeast China: Change patterns, response relationships and causes. Nat Hazards 110(1):1–19

Elhoussaoui A, Zaagane M, Benaabidate L (2021) Comparison of various drought indices for assessing 
drought status of the Northern Mekerra watershed, Northwest of Algeria. Arab J Geosci 14:915. 
https://​doi.​org/​10.​1007/​s12517-​021-​07269-y

Hanna S, Heinold D (1985) Development and application of a simple method for evaluating air quality. 
In: API Pub. No. 4409, Washington, DC, USA ‏

Huffman GJ, Bolvin DT, Nelkin EJ, and Tan J (2015) Integrated multi-satellite retrievals for GPM 
(IMERG) technical documentation. Nasa/Gsfc Code, 612(47), p 2019.  ftp://​arthu​rhou.​pps.​eosdis.​
nasa.​gov/​gpmda​ta/. Accessed 25 Dec 2023

Hussain MA, Shuai Z, Moawwez MA, Umar T, Iqbal MR, Kamran M, Muneer M (2023) A Review of 
Spatial Variations of Multiple Natural Hazards and Risk Management Strategies in Pakistan. Water 
15(3):407

IPCC (2018) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 
1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the con-
text of strengthening the global response to the threat of climate change. Masson-Delmotte VP, 

https://durhamweather.webspace.durham.ac.uk/
https://durhamweather.webspace.durham.ac.uk/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12517-021-07269-y
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/


2832	 A. Abu Arra, E. Şişman 

1 3

Zhai H-O, Pörtner D, Roberts J, Skea PR, Shukla A, Pirani W, MoufoumaOkia C, Péan R, Pidcock 
S, Connors JBR, Matthews Y, Chen X, Zhou, MI, Gomis E, Lonnoy T, Maycock M, Tignor T, 
Waterfield (eds) In: Press, p 616. www.​ipcc.​ch/​sr15. Accessed 25 Dec 2023

IPCC., 2021. Climate change: the physical science basis. Contribution of working group I to the sixth 
assessment report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., P. 
Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. 
Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, 
and B. Zhou (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, 
USA, p 2391. https://​doi.​org/​10.​1017/​97810​09157​896

IPCC (2023) Summary for policymakers. In: Climate change 2023: synthesis report. Contribution of 
working groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Cli-
mate Change, Core Writing Team, H. Lee and J. Romero (eds). IPCC, Geneva, Switzerland, 1–34. 
https://​doi.​org/​10.​59327/​IPCC/​AR6-​97892​91691​647.​001

Karbasi M, Jamei M, Malik A, Kisi O, Yaseen ZM (2023) Multi-steps drought forecasting in arid and 
humid climate environments: Development of integrative machine learning model. Agric Water 
Manag 281:108210

Kesgin E, Yaldız SG, Güçlü YS (2024) Spatiotemporal variabilityand trends of droughts in the Mediter-
raneancoastal region of Türkiye. Int J Climatol 1–22. https://​doi.​org/​10.​1002/​joc.​837022

Kharyutkina E, Loginov S, Martynova Y, Sudakov I (2022) Time Series Analysis of Atmospheric Pre-
cipitation Characteristics in Western Siberia for 1979–2018 across Different Datasets. Atmosphere 
13:189. https://​doi.​org/​10.​3390/​atmos​13020​189

Khorrami B, Pirasteh S, Ali S, Sahin OG, Vaheddoost B (2023) Statistical downscaling of GRACE 
TWSA estimates to a 1-km spatial resolution for a local-scale surveillance of flooding potential. J 
Hydrol 624:129929

Mahmoudi P, Rigi A, Kamak MM (2019) A comparative study of precipitation-based drought indi-
ces with the aim of selecting the best index for drought monitoring in Iran. Theor Appl Climatol 
137(3–4):3123–3138. https://​doi.​org/​10.​1007/​s00704-​019-​02778-​1310z

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time 
scales. In: Proceedings of the 8th conference on applied climatology, Anaheim, vol 17, pp 179–183

Mehdinejadiani B, Fathi P, Khodaverdiloo H (2022) An inverse model-based Bees algorithm for estimat-
ing ratio of hydraulic conductivity to drainable porosity. J Hydrol 608:127673

Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216
Mishra AK, Singh VP (2011) Drought modeling–A review. J Hydrol 403(1–2):157–175
Nouri M (2023) Drought assessment using gridded data sources in data-poor areas with different aridity 

conditions. Water Resour Manage 37(11):4327–4343
Palmer WC (1965) Meteorological drought. US. Weather Bureau Res. Paper 45:1–58
Şen Z (2020) Water structures and climate change impact: a review. Water Resour Manage 

34(13):4197–4216
Şen Z (2021) Reservoirs for water supply under climate change impact—a review. Water Resour Manage 

35:3827–3843
Şen Z, Şişman E, Dabanli I (2020) Wet and dry spell feature charts for practical uses. Nat Hazards 

104:1975–1986
Şen Z, Şişman E (2023) Probabilistic standardization index adjustment for standardized precipitation 

index (SPI). Theor Appli Climatol, 1–10. Chicago
Shadeed S (2013) Spatio-temporal drought analysis in arid and semi-arid regions: A case study from 

Palestine. Arab J Sci Eng 38:2303–2313
Stephens MA (1970) Use of the Kolmogorov-Smirnov, Cramer-Von Mises and related statistics without 

extensive tables. J R Stat Soc Ser B Stat Methodol 32(1):115–122
Tigkas D (2008) Drought characterisation and monitoring in regions of Greece. Eur Water 23(24):29–39
Tiwari AK, Kumar A, Singh AK, Singh TN, Suozzi E, Matta G, Russo SL (eds) (2022) Water Scarcity. 

Elsevier, Contamination and Management
Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Man-

age 18:1–12
Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the Reconnaissance 

Drought Index (RDI). Water Resour Manage 21:821–833
Tsakiris G, Kordalis N, Tigkas D, Tsakiris V, Vangelis H (2016) Analysing drought severity and areal 

extent by 2D Archimedean copulas. Water Resour Manage 30:5723–5735
Ullah H, Akbar M (2021) Drought risk analysis for water assessment at gauged and ungauged sites in the 

low rainfall regions of Pakistan. Environ Process 8(1):139–162

https://www.ipcc.ch/sr15
https://doi.org/10.1017/9781009157896
https://doi.org/10.59327/IPCC/AR6-9789291691647.001
https://doi.org/10.1002/joc.837022
https://doi.org/10.3390/atmos13020189
https://doi.org/10.1007/s00704-019-02778-1310z


2833Innovative Drought Classification Matrix and Acceptable Time…

1 3

Vaheddoost B, Mohammadi B, Safari MJS (2023) The Association between Meteorological Drought and 
the State of the Groundwater Level in Bursa. Turkey Sustain 15(21):15675

Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to 
global warming: The standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. 
https://​doi.​org/​10.​1175/​2009j​cli29​09.1

Visser H, Petersen AC, Ligtvoet W (2014) On the relation between weather-related disaster impacts, 
vulnerability and climate change. Clim Change 125:461–477

Wang H, Chen Y, Pan Y, Chen Z, Ren Z (2019) Assessment of candidate distributions for SPI/SPEI and 
sensitivity of drought to climatic variables in China. Int J Climatol 39:4392–4412

WMO (2008) Hydrology—from measurement to hydrological information. Guide to Hydrological Prac-
tices 1:296

WMO, World Meteorological Organization (2012) Standardized precipitation index user guide. M Svoboda, 
M Hayes and D Wood

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1175/2009jcli2909.1

	Innovative Drought Classification Matrix and Acceptable Time Period for Temporal Drought Evaluation
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Study Area and Data Collection
	2.2 Standardized Precipitation Index (SPI)
	2.3 Time Period Scenarios
	2.4 Time Period Scenarios Comparison Scheme
	2.5 Innovative Drought Classification Matrix

	3 Results
	3.1 Statistical Metrics
	3.2 Innovative Drought Classification Matrix
	3.2.1 Innovative Drought Classification Matrix for Florya Station
	3.2.2 Innovative Drought Classification Matrix for Durham Station
	3.2.3 Innovative Drought Classification Matrix for Karapinar Station


	4 Discussion
	5 Conclusion
	Acknowledgements 
	References


