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Abstract

Meteorological events have always been of great interest because they have influenced
everyday activities in critical areas, such as water resource management systems. Weather
forecasts are solved with numerical weather prediction models. However, it sometimes leads
to unsatisfactory performance due to the inappropriate setting of the initial state. Precipita-
tion forecasting is essential for water resource management in semi-arid climate and seasonal
rainfall areas such as the Ebro basin. This research aims to improve the estimation of the
uncertainty associated with real-time precipitation predictions presenting a machine learning-
based method to evaluate the uncertainty of a weather forecast obtained by the Weather
Research and Forecasting model. We use a model trained with ground-truth data from the
Confederacién Hidrografica del Ebro, and WRF forecast results to compute uncertainty.
Experimental results show that Decision Tree-based ensemble methods get the lowest gen-
eralization error. Prediction models studied have above 90% accuracy, and root mean square
error has similar results compared to those obtained with the ground truth data. Random
Forest presents a difference of -0.001 concerning the 0.535 obtained with the ground truth
data. Generally, using the ML-based model offers good results with robust performance over
more traditional forms for uncertainty calculation and an effective alternative for real-time
computation.
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Abbreviations

AB Adaptative Boosting
ARW Advanced Research WRF
AUC Area Under the Curve
B Bagging
BC Boundary Conditions
CHEbro Ebro Hydrographic Confederation
DT Decission Tree
GAN Generative Adversarial Network
HPC High Performace Computing
1C Initial Conditions
KPI Key Performance Indicator
LDA Linear Discriminant Analysis
LR Logistic regression
ML Machine Learning
MoEv Model Evaluator
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NMM Nonhydrostatic Mesoscale Model
NWP Numerical Weather Prediction
QDA Quadratic Disciminant Analysis
RES Spanish Supercomputing Network
RF Random Forest
RMSE Root of the Mean Square Error
ROC Receiver Operating Characteristic
SAIH Automatic Hydrological Information System
SCAYLE Supercomputacién Castilla y Ledn
SGD Stochastic Gradient Descent
WRF Weather Research and Forecasting

1 Introduction

Precipitation is one of the meteorological phenomena with the most significant impact on
weather-dependent human activities (Torres-Lopez et al. 2022), water resources (Anik et al.
2023) or agricultural water scarcity (Liu et al. 2023), among others. Weather forecasts, and
specifically precipitation forecasts, are inherently uncertain. This uncertainty comes from
the model physics and its initial and boundary conditions. So every weather forecast has
some degree of uncertainty (Lorenz 1963). For some applications, only forecasts with an
uncertainty estimate are valuable. Although it is computationally highly demanding, the best
method for estimating the reliability of individual forecasts is to perform a set of numerical
weather simulations (Scher and Messori 2018). Al, specifically Machine Learning (ML),
can be utilized to manage the uncertainty arising from input data. Notably, ML demands
significant computational power primarily during the training phase, offering a potential
alternative for calculating the uncertainty in weather forecasts.
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In this regard, diverse approaches have been implemented. For example, some works
in the literature apply ML techniques to different fields related to forecasting, focusing on
wind-related predictions. (Irrgang et al. 2020) tries to predict the uncertainty associated
using a supervised learning approach with a recurrent neural network trained and tested with
data from 2012 to 2017. In (Kosovic et al. 2020), they aim to measure the uncertainty of
wind forecasts obtained through NWP models. Finally, (Wang et al. 2019) aims to obtain
the uncertainty associated with the temperature, relative humidity and wind speed for each
weather station they get data from using a dataset with 3-year forecasts from 10 weather
stations in the Beijing region (China). Other works, such as (Hafeez et al. 2020; Bogner et al.
2019; Yang et al. 2020), focus on energy-related predictions.

Precipitation forecasting is essential and some works propose ML techniques to obtain
precipitation predictions for specific locations, such as using convolutional neural networks
to predict rainfall in a flood-causing area of Iran (Afshari Nia et al. 2023), to use UltraBoost,
Stochastic Gradient Descending and Cost Sensitive Forest classifiers for flood prevention in
Romania (Costache et al. 2022) or to forecast irrigation water requirements by evaluating
ML models (Mokhtar et al. 2023). In (Parviz et al. 2023) introduced improved hybrid
models combined by SVR and GMDH, used for representing the nonlinear component of
the precipitation in two weather stations in humid and semi-arid climates in Iran.

Finally, a variety of ML methods have been successfully implemented to solve the problem
of weather predictions, both for classification and regression problems, demonstrating its
advantages in this area by reviewing state-of-the-art ML concepts, their applicability to
meteorological data, and their relevant statistical properties (Schultz et al. 2021). In (Castillo-
Boton et al. 2022), shallow ML classification and regression algorithms are used to forecast
the orographic fog in the A-8 motor road in Spain. Some authors consider whether itis possible
to completely replace current numerical weather models and data assimilation systems with
deep learning approaches (Schultz et al. 2021). Using methods based on deep learning with
artificial convolutional neural networks that are trained on past weather forecasts can be
another solution to indicate whether the predictability is different than usual (Scher and
Messori 2018).

This work focuses on precipitation, a meteorological risk for society since severe rainfall
causes flooding or ruins crops. Knowing precipitation at a specific location allows for pre-
venting its effects. Precipitation forecasting is crucial but challenging in numerical weather
models due to the involvement of multiple physical parameterizations, including longwave
and shortwave radiation, convection, microphysics in mixed phases, turbulence, and plane-
tary boundary layer processes (Tapiador et al. 2019). Therefore, getting an uncertainty index
for precipitation forecasts may help decision-makers decide preventive actions. However,
getting an uncertainty index in real-time is impossible since we require ground-truth data to
compute the error in a forecast. Consequently, we aim to get an uncertainty index for WRF
precipitation forecasts using an ML-based prediction model instead of ground-truth data to
compute the forecast error.

We present an 11-year dataset from 2008 to 2018 with WREF forecasts and ground-truth
precipitation data in the Ebro basin (Spain) available online under the name “Assessment
of uncertainty in weather forecasts”. We use it to train our ML model, which allows us to
calculate the real-time uncertainty index associated with precipitation forecasts to meet the
need for ground truth. We also compare the results obtained with ground truth data and our
model.

The rest of the document is organized as follows: Section 2 describes the experiments
carried out and the materials and methods used to evaluate our proposal. Then, results are
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shown in Section 3 and discussed in Section 4. Finally, Section 5 summarizes the conclusions
and future lines of research.

2 Materials and Methods

As mentioned above, we aim to get an ML-based uncertainty index for WRF precipitation
forecasts. The sections below depict the uncertainty index computation, the data gathering,
the classification models’ fitting to calculate the uncertainty in real time, and the evaluation
method.

2.1 Computation of Uncertainty

Calculating uncertainty in weather predictions is crucial as it provides a quantitative measure
of the reliability and accuracy of the forecasts, enabling decision-makers to assess potential
risks and plan more effectively in response to varying climatic events.

Evaluating the error in the precipitation forecasts from a prediction model is possible by
applying a cost function as the Root of the Mean Square Error (RMSE) (Wang et al. 2019).
RMSE, a commonly used metric in regression tasks, measures the error between two datasets:
the predicted values from a model and the actual ground-truth data. It is particularly effective
in penalizing larger errors. RMSE is calculated as shown in Eq. (1). m is the number of cells
in the grid where the study area discretizes, x; depicts the precipitation value predicted by
the WRF model for cell i, and y; depicts the actual precipitation value in cell i.

% i(xi —yi)?

i=1

RMSE = (1

We require ground-truth data collected through the appropriate instrumentation to calcu-
late precipitation error. Unfortunately, this fact makes it impossible to calculate the error in
real-time, which prevents it from being used as an uncertainty value. Our research intends
to replace the y; values, corresponding to the actual precipitation value mentioned above,
for those provided by a prediction model developed using supervised ML techniques from
real-world data. So, our uncertainty index (/) will be computed as shown in Eq. (2), where
pi depicts the predicted value in cell i of our ML-based model.

1 m
= (i — pi)? ©)
m

i=1

Therefore, one of our objectives is to get an ML-based model. Fitting a supervised ML-
based model requires gathering a dataset. Furthermore, this dataset must contain features
—aka predictors— and target variables —aka labels. Predictors come from postprocessing the
weather forecasts generated by the WRF model. Labels —“rain” or “no rain” in our research—
come from ground-truth data in the study area.

2.2 Study Area

The Ebro Valley, in the Northeast of Spain (see Fig. 1), is one of the regions in Europe
with the highest number of summer convective storms that cause intense and heavy rain
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Fig. 1 Hydrographic Demarcation of the Ebro River Basin

and hail precipitation (Garcia-Ortega et al. 2014). With an 80,000 km? area, it is the largest
hydrographic basin in Spain. Besides, it presents a significant heterogeneity in its geology,
topography and climate. The average annual rainfall varies from 2100 mm in the Pyrenees
to 350 mm in the arid areas. The height varies from sea level on the Mediterranean coast
to 3372 m at the Pyrenees. The topography varies from one basin to another (Samper et al.
2007).

The Automatic Hydrological Information System (SAIH) in the Ebro basin has a network
of 367 meteorological stations collecting ground-truth data such as temperature (C) and
rainfall (mm), among others. SATH Ebro depends on the Ebro Hydrographic Confederation
(CHEDbro), which is the organism in charge of managing, regularising, and maintaining the
waters and irrigations of the Ebro basin.

2.3 Data Gathering

To construct our ML-based model, it’s essential to compile a labeled dataset derived from
the post-processing of WRF model weather forecasts. The dataset builds from the postpro-
cessing of the weather forecasts generated by the WRF model. The WRF forecasts and their
postprocessing have been carried out in the Caléndula, the supercomputer of Supercomputing
Center Castile and Leén (SCAYLE), Ledn (Spain) and one of the 17 supercomputers that
conform to the Spanish Supercomputing Network (RES). The dataset ! is available online.

2.3.1 Predictors

In the ML context, predictors are the input data mapped to a label through an empirical
relationship. In our research, predictors correspond to meteorological variables computed
by the WRF-ARW model (Skamarock et al. 2005). It carries out the complete workflow
to assimilate observations into the model and runs in High-performance computing (HPC)
environments.

The WRF model requires input data to set initial and boundary conditions (IC and BC). We
gather input data from the National Centers for Environmental Prediction (NCEP) operational
Global Forecast System (GFS) (National Centers for Environmental Prediction, National
Weather Service, NOAA, U.S. Department of Commerce 2000). The NCEP operational

1 https://doi.org/10.5281/zenodo.6421268
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Fig.2 Forecast domains

GFS analysis and forecast grids are on a 0.25 by 0.25 global latitude-longitude grid. Grids
include analysis and forecast time steps at a three-hour interval from 0 to 240 and a 12-hour
interval from 240 to 384.

After getting input data for IC and BC, we run the WRF model to get 24-hour forecasts from
January 2008 to December 2018 with two nested domains of 9 x 9 and 3 x 3 km resolution,
as shown in Fig. 2. There are different physics schemes available in the WRF model. Physics
parameterization schemes describe sub-grid processes in numerical simulation models, such
as the in-cloud microphysical processes responsible for precipitation (Tapiador et al. 2019).
According to previous results in the study area (Merino et al. 2022), the Goddard Cumulus
Ensemble one-moment bulk microphysics scheme (Tao et al. 1989, 2009) was selected.
For cumulus, the Grell-Devenyi ensemble cumulus scheme (Grell and Dévényi 2002) for the
outer domain. Convection in the inner domain was explicitly resolved. Other schemes selected
were the Dudhia scheme (Dudhia 1989) for shortwave radiation, the Rapid Radiative Transfer
Model (Mlawer et al. 1997) for longwave radiation, and the Noah Land Surface Model (Chen
and Dudhia 2001).

The WRF outputs are in NetCDF format —intended to store multi-dimensional scientific
data. Output files gather the values of up to 100 meteorological variables. We get the tem-
perature and mixing ratio variables at different pressure levels (500 hPa, 700 hPa, and 850
hPa). The whole list is shown in Table 1. They will be our predictors. Besides, temperature
and mixing ratio variables are not accumulative, so we get them with a 3-hour interval from
0 to 21 h. Since we consider seven variables at three pressure levels eight times daily, we get
168 values for each grid point in the study area depicted by its latitude, longitude, and height
above the sea. We store our predictors in a separate NetCDF file for postprocessing once the
labels are included within the dataset.

Table 1 Predictors

Predictor Description

T Temperature at 500 hPa, 700 hPa, and 850 hPa

QVAPOR Column water vapour content at 500 hPa, 700 hPa, and 850 hPa
QCLOUD Column liquid water content at 500 hPa, 700 hPa, and 850 hPa
QRAIN Column rain at 500 hPa, 700 hPa, and 850 hPa

QICE Column ice water vapour content at 500 hPa, 700 hPa, and 850 hPa
QSNOW Column snow at 500 hPa, 700 hPa, and 850 hPa

QGRAUP Column graupel at 500 hPa, 700 hPa, and 850 hPa
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2.3.2 Labels

Once we gather our predictors, we must add the label —“rain” or “no rain”- to every sample
in our dataset. We get such a label from the ground-truth data provided by the SAIH Ebro.
The “rain” or “no rain” labels in our study are determined based on data collected by the
rain gauges of the SAIH Ebro network, ensuring that our classifications accurately reflect the
actual precipitation events recorded in the region. As mentioned, the SATH Ebro manages
a network of 367 meteorological stations that collect temperature (°C) and rainfall (mm)
values. Specifically, we gather rainfall values from 2008 to 2018 with their corresponding
latitude and longitude coordinates. We apply the “rain” label when accumulated precipitation
exceeds 0 mm and “no rain” otherwise.

2.3.3 Post-Processing

Finally, some data curation is necessary to get the dataset. First, to set the suitable class for each
sample, data must interpolate to the defined inner domain shown in Fig. 2. Therefore, we use
the interpolation method described in (Merino et al. 2021). This approach involves rigorous
quality control functions to identify and remove suspect data, interpolation techniques to
align data within the defined study domain, and reconstruction methods for gap filling. This
ensures that the dataset is not only comprehensive but also maintains high accuracy and
reliability for subsequent analysis.

Next, after interpolating, the original dataset was filtered using quality control functions
for identifying and removing suspect data. Lastly, reconstruction techniques for filling gaps
(Serrano-Notivoli et al. 2017) prevent the lack of such data from affecting the experiments.
For example, Fig. 3a shows the precipitation results on November 26th, 2008, from ground
truth data from SAIH Ebro. Figure 3b shows the precipitation forecast by WREF for the same
date.

2.4 Model Fitting

We aim to build a prediction model whose inputs are meteorological variables obtained from
WREF forecasts and whose output p; is a precipitation presence indicator for a specific grid
point i in the study area.

. y - -
Y L i -
4 iy
i 42°N
4‘W 3w 2°W 1w O“’
0 1 2 3 4 5 6 7 8
(a) Ground Truth data from SAIH Ebro (b) WRF forecast

Fig.3 Precipitation estimate on November 26th, 2008

@ Springer



2462 C. Calvo-Olivera et al.

We use Model Evaluator (MoEv), a wrapper for the Scikit-Learn library (Pedregosa et al.
2011) to get our prediction models. MoEv has been successfully used in different research
areas such as jamming attacks detection on real-time location systems (Guerrero-Higueras
et al. 2018), or malicious-network-traffic detection (Campazas-Vega et al. 2020), among
others.

‘We randomly split the dataset into 67% for the training set and 33% for the test set to get
a training set for fitting the prediction models and a test set to ensure their generalization.

Then, we apply 10-fold cross-validation to fit prediction models. Since we need to pre-
dict a class —“rain” or “no rain”, classification algorithms are more suitable than regression
or clustering algorithms. However, since data matters more than algorithms for complex
problems (Halevy et al. 2009) we aim to evaluate classification, clustering, and regression
algorithms to select the most accurate for this problem.

Specifically, we compute: Adaptative Boosting (AB) (Freund and Schapire 1997), Deci-
sion Tree (DT) (Safavian and Landgrebe 1991), DT-based Bagging (DT-B) (Breiman 1996),
Linear Discriminant Analysis (LDA) (Balakrishnama and Ganapathiraju 1998), Logistic
Regression (LR) (Zhu et al. 1997), Quadratic Discriminant Analysis (QDA) (Hastie et al.
2009), Random Forest (RF) (Breiman 2001) and Stochastic Gradient Descent (SGD) (Bottou
2012). We selected these specific models based on their proven effectiveness in handling com-
plex, non-linear relationships inherent in meteorological data. Models like Random Forests
and Decision Trees are robust to outliers and capable of capturing intricate patterns in data.
Despite its simplicity, Logistic Regression provides a strong baseline for performance com-
parison. The diversity of these models, ranging from ensemble methods to linear classifiers,
allows for a comprehensive evaluation of different algorithmic approaches in accurately pre-
dicting precipitation events, ensuring the selection of the most effective model for our specific
dataset and study objectives.

2.5 Evaluation

To evaluate our proposal, first, we need to assess the performance of our prediction models
to get the most accurate. Therefore, we calculate well-known Key Performance Indicators
(KPIs). First, models’ performance is measured by considering their accuracy score as shown
in Eq. 3), where Tp is the true-positive rate, Ty is the true-negative rate, Fp is the false-
positive rate, and F is the false-negative rate.
Accuracy = Tp + v 3)
Tp+Fp+Ty+ Fy
Besides, we consider the following KPIs obtained through the confusion matrix: Precision
(P),Recall (R), and Fy-score (F7). P, R, and F; (Sokolova and Lapalme 2009) are computed
as shown in Egs. (4), (5), and (6). The P score shows the ratio between the number of correct
predictions (both negative and positive) and the total number of predictions. The R score
shows the rate of positive cases correctly identified by the algorithm. The F; score relates to
both P and R since it is their harmonic mean (Hossin and Sulaiman 2015).

— )

- Tp+Fp
T

R— ‘P 5)
Tp+ Fy
P xR

Fi=2 (6)
P+R
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The chosen KPIs — Accuracy, P, R, F| — are particularly relevant for our study as they
provide a holistic assessment of the model’s performance. Accuracy measures overall cor-
rectness, while precision and recall evaluate the model’s ability to correctly predict rain
events and avoid false alarms. We require a high R score, but only if the P score is also high
enough to ensure that there are not too many false negatives. Thus, the Fy-score is crucial as
it balances precision and recall, especially important in imbalanced datasets.

Moreover, to evaluate the tradeoff between the Tp and Fp rates, we compute Receiver
Operating Characteristic (ROC) curve. Besides, We have calculated the Area Under the Curve
(AUC). AUC assesses the model’s ability to distinguish between the two classes (“rain” and
“no rain®), ensuring that our model reliably predicts precipitation events, which is critical
for effective weather forecasting.

Finally, we can compute U/ according to Section 2.1 once we have selected the most
accurate prediction model. Then, we carry out a statistical comparison between U/ and the
actual RMSE for each WRF forecast from January 2008 to December 2018. Such analysis
allows for measuring the performance of U/.

3 Results

Data gathering proposed in Section 2.3 allows for getting a 39 GB dataset of weather forecasts
obtained by the WRF model from January 2008 to December 2018 in the study area. This
dataset allows for fitting the prediction model we require to compute our uncertainty index
U (see Section 2.1). The dataset contains 19,885,973 samples corresponding to a grid point
— depicted by its latitude, longitude, and height — on a specific date. Each sample has the
168 features shown in Section 2.3.1 and the labels shown in Section 2.3.2. The dataset is
available online.

Figure 4 displays the confusion matrices for the proposed prediction models, which are
essential for computing the accuracy, precision, recall, and F;-score values listed in Table 2.
Besides, Fig. 5 shows the evaluated models’ ROC curve and the AUC.

After computing the proposed KPIs, we can select the best prediction model to calculate
our uncertainty index /. Next, to evaluate ¢/, we compare it with the RMSE on every weather
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Fig.4 Confusion matrices of AB-, DT-, DT-B-, LDA-, LR-, QDA-, RF-, SGD-based prediction models
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forecast from January 2008 to December 2018. Figure 6 presents the descriptive statistics
obtained by computing the RMSE and ¢/ using different prediction models.

4 Discussion

The primary goal of this study was to establish the reliability of weather forecasts without the
need for real-time data. This was achieved by focusing on three main aspects: first, developing
an ML-based model as an alternative to ground truth data; then, creating a comprehensive
and large dataset for training the model; and finally, comparing the results from our model
with those obtained using ground truth data to assess our model’s reliability.

To address the challenge of evaluating the uncertainty of weather forecasts obtained by the
WRF model without real-time ground truth data, we sought to find an ML-based prediction
model as a substitute. The reliability of this model was paramount, hence the computation of
P, R, Fi, ROC curves, and AUC to evaluate and select the most effective model. Previous
studies have employed methods such as convolutional neural networks (Afshari Nia et al.

-rreacl‘:lel ? R?,C:rlllcrla?l]’ ggrcels(l;f; )(P)’ Classifier Accuracy Class P R Fi

scores AB 0.740 No rain 0.765 0.889 0.823
Rain 0.647 0.427 0.514

Average 0.727 0.740 0.723

DT 0.960 No rain 0.970 0.971 0.970
Rain 0.939 0.938 0.938

Average 0.960 0.960 0.960

DT-B 0.976 No rain 0.978 0.987 0.982
Rain 0.972 0.953 0.962

Average 0.976 0.976 0.976

LDA 0.813 No rain 0.825 0.918 0.869
Rain 0.774 0.592 0.671

Average 0.809 0.813 0.805

LR 0.728 No rain 0.748 0.903 0.818
Rain 0.639 0.362 0.462

Average 0.713 0.728 0.703

QDA 0.778 No rain 0.776 0.945 0.852
Rain 0.789 0.424 0.552

Average 0.780 0.778 0.756

RF 0.979 No rain 0.983 0.986 0.985
Rain 0.971 0.964 0.968

Average 0.979 0.979 0.979

SGD 0.703 No rain 0.702 0.977 0.817
Rain 0.727 0.128 0.218

Average 0.710 0.703 0.624

@ Springer



2466 C. Calvo-Olivera et al.

2023), UltraBoost and Cost-Sensitive Forest classifiers (Costache et al. 2022), and tree-based
algorithms (Yang et al. 2020), often applied in different work areas or with configurations
unsuitable for WRF predictions.

In terms of data gathering, unlike other works (Wang et al. 2019; Ahmad et al. 2016) that
made use of datasets not specific to our selected area or were limited in size, our approach
involved creating a tailored dataset with predictors specifically chosen for our study area,
as detailed in Table 1. Each sample in this dataset was labelled as “rain” or “no rain” using
ground-truth data from SAIH Ebro, as explained in Section 2.1.

The confusion matrices for each model studied, represented in Fig. 4, show that the number
of true positives is above 4 million for most models. Notably, the three classifiers with the
highest accuracy, RF, DT-B, and DT, exhibit a similar rate of true negatives and low rates of
failure (between 18% and less than 10%). This direct relationship between our study’s best
and worst classifiers is evident in their performance in terms of false positives and negatives.

Table 2 presents the accuracy scores and the P, R, and F scores for all tested classification
models. While classifiers like LDA, LR, or SGD obtain satisfactory R scores, their P scores
barely exceed 0.70. In contrast, models such as DT or DT-B show strong performance in
both KPIs. The RF classifier emerges as the most effective, with the highest P, R, and F;
scores, making it the best classifier according to our results.

The evaluated models’ ROC curves and AUC, as shown in Fig. 5, further confirm the
superior performance of the RF and B classifiers. Both DT and LDA models exhibit an AUC
of 0.88, demonstrating their effectiveness in class prediction. The ROC curve plots the true
positive rate (TPR) against the false positive rate (FPR), with TPR on the y-axis and FPR on
the x-axis, providing a clear visual representation of model performance.

Finally, Fig. 6 displays a box-plot representation of the RMSE (Eq. 1) calculated for the
ground truth and the ¢/ uncertainty index computed for the four best prediction models used.
These models, with an accuracy higher than 80%, particularly DT, B, and RF, present plots
and data akin to ground truth. LDA follows as the fourth model with the best accuracy rate.
The results confirm that the models with the highest accuracy rates exhibit a ¢/ index similar
to the RMSE of our ground truth, verifying the effectiveness of our approach.
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5 Conclusions

This study underscores the vital role of accurate weather forecasting in sectors like agriculture
and water resource management. To enhance forecast precision, we utilized classification
models and compiled an extensive dataset of precipitation data. The dataset, exceeding 40GB
in CSV format and divided into two 20GB subsets, is publicly available under the Creative
Commons Attribution 4.0 International license, providing a valuable resource for the scientific
community.

Our methodology involved constructing a dataset from historical forecasts and ground
truth data from the SAIH Ebro pluviometer network. This comprehensive dataset, encom-
passing precipitation data over 4,017 days and 9,594 points from domain 2 (refer to Fig. 2),
was meticulously curated to remove missing values, resulting in 19,885,973 viable samples.
We developed an RMSE-based index utilizing an ML-based prediction model instead of
traditional ground-truth data to quantify forecast uncertainty. Various classification models
were constructed using MoEyv, a versatile wrapper for the Scikit-Learn library.

The experimentation demonstrated the efficacy of supervised learning algorithms in pre-
dicting the uncertainty of weather forecasts, fulfilling the primary goal of this research.
Among the tested models, the RF classifier emerged as the most proficient in detecting pre-
cipitation, as evidenced by multiple KPIs. Renowned for its high generalization capability,
RF’s ensemble approach, integrating numerous decision trees with probability thresholds,
proved suited for handling extensive data and many variables. Moreover, decision tree-based
algorithms, namely DT and DT-B, exhibited superior performance compared to other eval-
uated models.

A notable breakthrough of this research is the assembly of a comprehensive dataset for the
Ebro River basin region, spanning 11 years of WRF model forecasts. This dataset effectively
supports the construction of models to estimate the uncertainty associated with a prediction.
Additionally, we introduced a method to assess forecast uncertainty by calculating an uncer-
tainty index U. Our findings reveal that ¢/ closely aligns with values derived from ground
truth, bolstering confidence in the forecast’s reliability.

Looking beyond precipitation, future research might explore ML-based models’ appli-
cability to other meteorological variables, such as wind, hail, or snow, which significantly
influence water resource variability and quality. Furthermore, contrasting our proposed mod-
els’ performance and computational efficiency against neural network-based models could
offer valuable insights into enhancing the reliability and speed of meteorological predictions.
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