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Abstract

Significant financial resources are needed for the maintenance and rehabilitation of water
supply networks (WSNs) to prevent pipe breaks. The causes and mechanisms for pipe
breaks vary between different WSNs. However, it is commonly acknowledged that the
operational management and water pressure influence significantly the frequency of pipe
breaks. Pipe breaks occur when the water pressure exceeds the tensile strength of a pipe,
or due to repetitive pressure cycles that result in fatigue-related failures. Considering these
pipe failure modes, a new metric known as cumulative pressure-induced stress has been
introduced. This metric takes into account both static and dynamic pressure components
that contribute to pipe breaks, including mean pressure and the magnitude and frequency of
pressure fluctuations, respectively. The impact of CPIS on pipe breaks has not been exten-
sively investigated. Consequently, this study investigates and evaluates the impact of this
metric when incorporated as an explanatory variable in Random Forest (RF) models that
analyse the key causes of pipe breaks in two WSNs. Different RF models were developed
both with and without incorporating pressure components. Subsequently, the performance
of these models and the significance of each input variable were assessed. The results of
this study suggest that CPIS is an important variable, especially in cases where pressure-
related factors play a significant role in pipe breaks. Consequently, incorporating CPIS has
shown a notable improvement in the accuracy of pipe break models.
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1 Introduction

Examining the causes of pipe breaks is a significant area of research in the field of water
supply network (WSN) analysis. This interest in understanding the causes of pipe breaks is
primarily driven by the significant financial and social costs associated with these breaks
(Folkman 2018). Water pipes are typically designed to withstand predetermined internal
and external loadings throughout their lifespan. However, various factors beyond con-
ventional design considerations can contribute to pipe breaks, and are the topic of ongo-
ing research. These factors may include operational conditions, environmental influ-
ences, and intrinsic properties of the pipes (Konstantinou and Stoianov 2020; Pouri and
Heidarimozaffar 2022).

In the water industry, it is widely recognized that operational conditions, particularly
water pressure, have an impact on pipe breaks. However, past research has not been conclu-
sive to assess the extent of their impact (Barton et al. 2019). This lack of understanding can
be attributed in part to the limited operational data recorded by water utilities (Barton et al.
2019, 2020). Additionally, to comprehensively understand the effects of water pressure and
its dynamic components, it is essential to capture operational data at a high temporal reso-
lution and with sufficient spatial coverage. This practice is not widely adopted among water
utilities, but it is gradually evolving due to the increasing availability of battery-powered,
high-resolution pressure monitoring devices. As a result, most prior studies have relied on
data from low-resolution hydraulic models, limited assessments of average water pres-
sure, or alternative indicators such as pipe pressure ratings for their analysis (Winkler et al.
2018; Fan et al. 2022; Moslehi and Jalili_Ghazizadeh 2020; Martinez Garcia et al. 2020).

A few studies have linked dynamic water pressure conditions (i.e. pressure transients)
with pressure-induced fatigue failures in water supply pipes (Jara-Arriagada and Stoianov
2023; Jiang et al. 2019; Xing and Sela 2019; Huang et al. 2020; Lee et al. 2023). Fatigue
refers to the degradation of a material’s structural resistance due to repetitive cyclic load-
ings. With regards to pipes, this degradation occurs as cracks propagate within the material
with each cycle of loading. The rate at which these cracks propagate is significantly influ-
enced by the magnitude of pressure fluctuations and mean pressure (Jara-Arriagada and
Stoianov 2023).

Acknowledging the fluctuating dynamics of water pressure within WSNs, Hoskins and
Stoianov (2017) introduced a novel metric termed cumulative pressure-induced stress
(CPIS). This metric incorporates components such as the frequency, magnitude and mean
pressure of water pressure fluctuations over time. The CPIS metric is designed to account
for the aggregate stress exerted by these pressure components, providing a way to assess
the potential for pipe fatigue and consequently, the likelihood of pipe breaks. It offers a
comprehensive view of the fatigue risks in WSNs using a singular metric (Hoskins and
Stoianov 2017). The metric has been introduced in statistical models by Rezaei (2017)
showing that there was a positive but weak correlation between pipe breaks and the CPIS.
A potential reason for these past research findings might be the use of models that did not
adequately address the complexity and non-linear nature of the problem, coupled with the
short duration of monitoring periods for pressure fluctuations. While there is an observable
association between CPIS and pipe breaks, further research is required to establish a more
conclusive and statistically significant relationship.

Building upon the insights from the studies of Hoskins and Stoianov (2017) and
Rezaei (2017), the main contribution of this paper is the application of a machine learn-
ing framework designed to systematically analyze the link between CPIS and pipe breaks.
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Acknowledging the role of water pressure in these breaks, we hypothesize that the rel-
evance of CPIS increases as pressure-related factors, such as average and fluctuating water
pressures play a more significant role in causing pipe breaks, regardless of the specific
characteristics of pipes and networks. Under these circumstances, CPIS might effectively
replace other pressure indicators. This hypothesis is a central focus of our research. Addi-
tionally, the paper introduces further novelties and contributions. It applies bespoke Ran-
dom Forest models using two extensive datasets from different WSNs. This method offers
improved flexibility in capturing complex, non-linear processes, a step beyond traditional
methods for evaluating CPIS. Moreover, Random Forest modeling allows for the determina-
tion of crucial importance metrics, enhancing our ability to understand the relevance and
interactions of variables within these models.

The study utilized one dataset (NetA) specifically designed to evaluate the ability of
CPIS to capture information from other pressure-related metrics. Subsequently, a second,
larger dataset (NetB) was employed to assess the impact of CPIS on model performance.
These analyses provide valuable insights into the role of water pressure fluctuations in
pipe breaks and highlight the necessity for developing performance metrics to monitor and
evaluate water pressure dynamics. Fundamentally, this study adds to the understanding of
the relationship between CPIS and pipe breaks, thereby providing water management pro-
fessionals with critical information and knowledge to justify continuous monitoring and
assessment of water pressure fluctuations.

2 Cumulative Pressure-Induced Stress

The cumulative pressure-induced stress (CPIS) has been proposed as a comprehensive
metric for assessing the impact of both gradual and sudden pressure variations on pipe
deterioration (Hoskins and Stoianov 2017). The main drive for developing the CPIS metric
arises from the insufficient attention given to monitoring pressure transients, and particu-
larly transients with medium to small amplitude. Although high amplitude cyclic loadings
can result in quick crack growth and failure, low amplitude cyclic loadings may lead to
crack initiation and slow propagation over time. Therefore, both low and high amplitude
cycle loadings are important factors to consider when evaluating the fatigue behavior of
pipes in relation to pipe breaks.

Transient events of different amplitudes in water distribution networks are shown in
Fig. 1. The acquired data indicates that pressure fluctuations of large amplitude are rare
compared to the frequent occurrences of medium to small amplitude events in water dis-
tribution systems. The cumulative impact of these medium to small events may result in
the initiation and growth of cracks if sufficient cyclic loadings accumulate over time. As
outlined by Hoskins and Stoianov (2017), the CPIS can be defined as:

CPIS = f (mean pressure, amplitude of pressure cycles, cycle counts) (1)

Equation (1) defines the functional relationship between CPIS and three critical fac-
tors: mean pressure, amplitude of pressure cycles, and cycle counts. It offers a quantitative
method to assess and measure the cumulative stress on pipes resulting from the combined
impact of these factors. The functional form of the CPIS was further detailed by Rezaei
(2017), who presented CPIS as a metric composed of two variables as follows:
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Fig. 1 a Comparison between 5 min sampling rate and high-resolution pressure monitoring in a 24hr sam-
pling period. b Histogram of cycle counts with a cycle range threshold of 3 mH,0O

CPIS = f(P,100n> DP) )

where, P,,,,, is the diurnal mean pressure in the pipe and DP, dynamic pressure, is a pro-
posed metric that combines the amplitude of pressure cycles and cycle counts as follows:

M
DP =) (0;n,) 3)
i=1

where M is the number of different cyclic loading events, o; is the amplitude of pressure
variations 7, and n; is the number of pressure variations with amplitude i.

The specific functional form of the CPIS (Eq. 2) is assumed to be implicitly learned
when the variables comprising CPIS are decoupled and included individually within
a statistical or machine learning model. The development of the DP metric is in line
with the principle of linear damage accumulation, following Miner’s rule, which is the
industry standard for fatigue failure analysis of components under cyclic loadings.

High-resolution monitoring devices are essential for acquiring pressure data from
multiple pipes within a network to guarantee extensive spatial and temporal coverage.
Water pressure should be monitored at sampling rates over 100 samples per second to
aid in identifying the sources of pressure transients. However, monitoring at high fre-
quencies may also capture a substantial amount of noise signals, which can be removed
by applying a hysteresis filter. After this filtering, the rainflow cycle counting algo-
rithm is used to produce a structured array of the cycle amplitudes and event occur-
rence frequencies. Dynamic Pressure (DP) and mean pressure are then calculated at
specific locations.

Graph theory is employed to identify the shortest hydraulic paths that pressure
waves follow within a network. Then, an algorithm is applied to spatially extrapolate
CPIS from the pipes where measurements were taken to the rest of the pipes in the
network. This algorithm is based on pre-existing knowledge about potential sources
of pressure fluctuations. More information on this implementation can be found in
Hoskins and Stoianov (2017) and Rezaei (2017).
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3 Methodology

Machine learning models, specifically Random Forest models, are applied on two compre-
hensive datasets to evaluate the power of CPIS to infer pipe breaks. An overview of the
proposed methodology is presented in Fig. 2.

3.1 Data Curation and Exploratory Analysis

Two datasets, NetA and NetB, of historic pipe breaks and associated pipe properties have
been provided by two water utilities. The data collected include environmental, operational
and pipe intrinsic factors. Details of these factors are shown in Fig. 2. NetA is character-
ized by its detailed and good quality data, and the primary focus for its use was to com-
pare the explanatory power of CPIS against other pressure metrics. NetA was also used to
assess the impact of the cycle amplitude threshold (minimum cycle amplitude loading) in
the explanatory power of the CPIS. The insights gained from NetA were then utilized to
collect more targeted information from NetB. Furthermore, NetB is notably larger in scale
compared to NetA. This approach allows for a comprehensive analysis that benefits from
the strengths of both datasets.

High-resolution pressure time series were collected from high-frequency pressure moni-
toring devices over a period of 2-3 weeks for each network. The water pressure variables
used in the analysis were obtained from measurements recorded by InflowSense™ pressure
monitoring devices. These devices were strategically positioned at chosen locations within
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Fig.2 The approach followed in the two WDSs
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the networks to ensure adequate spatial coverage. The mean pressure data was utilized to
calibrate hydraulic models, enabling the estimation of mean pressure values in all pipes
throughout the networks. As for the dynamic pressure metric, an energy dissipation linear
model was utilized for its extrapolation throughout the networks (Hoskins and Stoianov
2017; Rezaei 2017). Efforts were made to ensure a homogenized distribution of pressure
monitoring devices throughout the networks. This distribution helps to provide a more rep-
resentative and balanced estimation of dynamic pressure across the networks.

3.2 Random Forest Regression & Variable Performance

The Random Forest (RF) algorithm (Liaw and Wiener 2002), adjusted for count data, was
chosen for this study based on the work done by Konstantinou and Stoianov (2020). In their
study, the dependent variable of the models was the number of breaks per pipe seg-
ment. The study suggested that the algorithm offered superior fitting capabilities com-
pared to other machine learning algorithms. In addition, the RF algorithm has been
used for a variety of water resources problems such as the prediction of coastal flooding
and rainfall prediction (Sadler et al. 2018; Faramarzzadeh et al. 2023).

A forest consists of multiple decision trees and each tree is built with a random subset
of covariates (Liu et al. 2010). The conventional regression tree tends to overfit the input
data set (Sadler et al. 2018), while RF overcomes this problem via its randomness fea-
ture. According to the algorithm developers (Breiman 2001; Breiman and Cutler 2004),
there is no need for cross-validation or a separate test set to get an unbiased estimate of the
test set error since it is estimated internally, during the run with the use of the out-of-bag
error (OOB). The OOB error is a unique feature of RF that uses the samples that were not
used in training a particular tree in the forest to measure the error (roughly one-third of the
cases) and has been shown to be impartial in numerous testing.

RF has two main hyper-parameters (see Fig. 2), the number of trees to grow in the forest
(range of trees), and the optimum number of predictor variables randomly sampled as can-
didates per regression tree ('mtry’). A sensitivity study was conducted to select the appro-
priate hyper-parameters. The models were first trained within a range of trees (10 to 1000)
with the default number of variables per tree (one-third of the variables, or max number of
variables). Then, the optimum number of predictor variables per regression tree was evalu-
ated using the "tuneRF’ function in the ‘randomForest’ R package (Liaw and Wiener 2002). The
function develops RF models using a range of 'mtry’ parameters, one at a time, and determines
the appropriate value by minimizing the the OBB error within the Random Forest. A 5-fold
cross validation was also conducted for hyper-parameter tuning to confirm the values of
mtry and ntree, yielding the same results.

The models were fitted using the entire dataset with the objective of conducting a cau-
sality analysis on the historical data. The goal was to identify cause-and-effect relationships
between the input variables, assess the strength of these relationships, and explore inter-
actions among different variables. The emphasis was on learning from the current dataset
rather than making predictions. The use of OOB, enables the model to be trained, fitted,
and validated simultaneously, while mitigating the risk of overfitting. This approach helps
ensuring the reliability and generalization of the model’s performance (Hastie et al. 2009).

The count models’ performance was assessed using the R-squared and root mean
squared error (RMSE) metrics, derived from the comparison of predicted and actual break
values. These metrics are commonly employed to evaluate the accuracy of statistical
regression models, as shown in Fig. 2. Following the model development, the contribution
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of each feature to the model was calculated by determining its contribution in each tree of
the model. This calculation involved measuring the total decrease in node impurities result-
ing from splitting on the variable averaged over all trees (Gini index). The interactions
between covariates were also of interest especially for the pressure components and were
also evaluated. The interactions between two variables are defined via the prediction func-
tion decomposition and are measured by Friedman’s H-statistic (Molnar 2018).

4 Case Study - Description of the Networks

Two datasets, water supply network 1 (NetA) and water supply network 2 (NetB), were
prepared and utilized for the analysis. Both datasets have the total number of breaks experi-
enced by a pipe as the dependent variable. Apart from the water pressure variables, which
were derived from high-frequency pressure monitoring, all other variables were obtained
from the records maintained by the water utility. The investigations conducted on each
dataset are depicted in Fig. 2. NetA served as a ’training’ case study, where a thorough
analysis was conducted to offer insights and recommendations on defining the CPIS and its
relationship with variables representing pressure components. Different thresholds of event
amplitudes for the determination of DP have been also used to assess their effects on the
regression fit performance. Following the conclusions drawn from the analysis on NetA,
NetB was utilized as a ’validation’ case study.

4.1 NetA Description

The total length of pipes is about 113 Km. A total of 2501 entries was obtained with 100
entries representing pipe segments with breaks (4% of all observations - each record might
include more than one break). The information obtained regarding the breaks contains the
number of breaks for each segment. The pipe age falls in the range between 0 and 100
years. The pipe segments are divided such that most of the lengths are about 50 m (see
Fig. 3(a)). In this network, most of the material is metallic accounting for approximately
70% of the total pipes and the non-metallic material is mainly plastic. Both the mean pres-
sure and the pressure variations have very similar values in all pipe segments and are not
distributed evenly. The mean pressure is around 50 mH,O while the pressure range is
around 5 to 10 mH,0. The DP values are concentrated around 500 (Fig. 3).

4.2 NetB Description

The second network consists of a larger sample containing approximately 79750 observa-
tions with 977 pipe break records (each record might include more than one break). The
breaks represent only 1.2% of the total documented observations. The total pipe length
for this set is 2400 km. Most of the pipe segments have length of 0-50 m and the average
diameter is 80-120 mm (Fig. 3). Most of the pipe material in this area is asbestos cement,
however, the metallic and non-metallic pipes are almost equal. The histograms of the pres-
sure components show that the mean pressure follows again a normal distribution and the
CPIS has significantly larger values compared to NetA.
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5 Results and Discussion
5.1 NetA

In NetA, the significance of CPIS is assessed after determining the role of the pressure
components. Part of the analysis is the parameters’ importance and the interaction terms
strength which is calculated with the Friedman’s H-statistic (Molnar 2018) including the
pipe breaks based on the developed regression fit.

5.1.1 Investigation of Pressure Components Effects

First, the overall role of the pressure components is assessed by fitting RFs with and with-
out pressure components. Once the level of influence is determined, the PRRANGE and
DP effects are compared. These are ’similar’ metrics, however, DP carries more informa-
tion (the event cycles). Since the sample size is smaller in this network compared to NetB,
the number of breaks is also smaller. All the pipes experience O to 4 breaks with one pipe
segment only experiencing 11 breaks. The outlier of 11 breaks was not removed from the
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sample as the Random Forest approach appropriately deals with extreme values. Models
were developed for the following combinations of pressure components:

Model 1: without pressure components

Model 2: with PRMEAN

Model 3: with PRMEAN and PRRANGE
Model 4: with PRMEAN and DP (CPIS)
Model 5: with PRMEAN, PRRANGE, and DP

Models 1 and 2 are compared to demonstrate the impact of different pressure metrics in the
network. Models 3 and 4 are of particular interest as DP effectively replaces PRRANGE and
includes additional information such as event cycles associated with amplitudes. Model
5, on the other hand, is not a realistic scenario as DP includes the information present in
PRRANGE. However, it is included to determine if any information loss occurs when
replacing PRRANGE with DP.

The models were assessed based on the R-squared and RMSE values from the plots
of predicted breaks versus actual breaks. In the model without pressure components the
R-squared value was 0.56 (RMSE of 0.2805) and became 0.62 when PRMEAN was
included (RMSE of 0.2708). Therefore, the loading components of this network are impor-
tant as the model becomes significantly more accurate once the first pressure component
of mean pressure is added. This is the first operational factor that is included in the regres-
sion analysis beyond the environmental and network characteristics factors. The combina-
tion of PRMEAN and PRRANGE increases even more the accuracy of the fitted models
to reach an R-squared value of 0.76. Equivalently, the root mean squared error decreases
from 0.2708 to 0.2092 once PRRANGE is added in the model as a covariate (22.7% per-
cent decrease in error). However, PRMEAN and DP (CPIS) provide by far the best fits
(R-squared of 0.81 and RMSE of 0.2002); 30.5% increase in accuracy compared to Model
2 and 6.6% increase in accuracy compared to Model 4 (comparison in terms of R-squared
values). The R-squared and RMSE values of all three components (model 5) are the same
as in the former case (0.8113 and 0.2011, respectively) and demonstrates that there is no
loss of information when removing PRRANGE. In fact, DP is a stronger pressure compo-
nent as model 5 performs slightly worse compared to model 4.

Figure 4a shows a map illustrating the range of DP values within the network. The
breaks have been marked also for different cases. The blue dots represent the breaks cap-
tured by model 2 (without the addition of DP), the blue and red dots are the pipe breaks
captured by model 4 (with the addition of DP) and the yellow dots are the breaks that
model 4 failed to capture. The addition of the DP as a covariate increases dramatically the
performance of the model. Figure 4b shows the confusion matrix of model 2 in which DP
was not used whilst, Fig. 4c presents these findings for model 4 in which DP was added.
The pipes that have experienced one or more breaks have been clustered together. It is clear
from the two matrices that the addition of DP helps in improving the estimations related to
the pipes that have experienced a break. The false negatives decrease from 88 to 26 and the
true positives increase from 9 to 71 signifying a massive improvement in the model perfor-
mance once DP is added in the model.

The parameter significance is also examined for each model (Fig. 5(a)). Generally, the
length is the most important parameter followed by age and pressure components. The pipe
length is not a factor itself that causes a break, but it is used as a variable in statistical
models. As shown in the histogram of the pipe length in Fig. 3, very few pipe segments are
large, and these experience a high break rate. It was proved by Konstantinou and Stoianov
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(2020) that the variable’s importance relative order did not change when adding or remov-
ing the length as a variable and the results were consistent between the two cases. In other
words, length does not affect the functional relationships and importance of factors affect-
ing pipe breaks.

When the PRMEAN variable was added to the model (model 2), it emerged as the
third most important covariate, following length and age. Notably, the importance of the
length variable decreased significantly with the inclusion of PRMEAN. This suggests
that PRMEAN contributes significantly to the model’s predictive power and may have
a stronger association with the dependent variable compared to the length variable. The
inclusion of the PRMEAN variable likely captured relevant operational aspects that influ-
ence the occurrence of pipe breaks. Once the first pressure component was added, which
is an operational factor, the significance of length decreases. When PRRANGE was
added (model 3), the significance of length decreased even more, and the significance
of PRRANGE was similar to PRMEAN. PRMEAN decreased as it contains part of the
information of the former variable. When DP was added (model 4), it became the second
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most significant predictor with length’s importance reducing substantially while PRMEAN
remained at approximately the same levels. This was expected as amongst the three operat-
ing factors (PRMEAN, PRRANGE and DP), the DP contains more detailed information.
In model 5, where both DP and PRRANGE were included, the importance of PRMEAN,
PRRANGE and DP is affected the most while the rest of the variables exhibited marginal
changes. This proves that there is an overlap between the information each of these covari-
ates carries.

Finally, the strength of the interactions was also assessed for two variables (PRRANGE
for model 3 and DP for model 4) with respect to the rest used in the model Fig. 5(b-c). The
strongest interaction appeared to be between the pressure components in both cases prov-
ing that they have multiple and different effects on the models. DP accounts for the number
and magnitude of pressure fluctuations experienced by a pipe which produce crack propa-
gation. The mean pressure influences the rate at which crack propagation occurs. Fatigue-
related failures are linked to the age, length and material type which explains the rest of
the interactions. The rest of the interactions were combinations of pressure components
and pipe characteristics. For model 3, the PRRANGE interacts to a lesser extent with DIA,
AGE, LEN and MAT. On the other hand, for model 4, DP shows a high interaction with
AGE and LEN. This explains why LEN’s importance reduces from 0.75 to 0.45 (a 40%
reduction) when DP is added to the model as shown in Fig. 5(a).

5.1.2 The Effects of the DP Predictors Calculated at Different Thresholds

The DP metric was calculated in three different ways for NetA. The first calculation was for
cycles of amplitude at least 5 mH,O (DP) which was shown before, the second for cycles
of amplitude of at least 3 mH,O (DP_3), and the third for cycles of amplitude of at least 10
mH,O (DP_10). The calculated metrics show that as the threshold decreases, more infor-
mation is retained in the DP metric. More of the short events amplitude events which are
more frequent are captured. The threshold of 10 m excludes a vast amount of information.

The parameter importance analysis showed that as the DP becomes more detailed, its
significance increases (approximately 16% for DP_10 and 18% for DP_5 and DP_3). How-
ever, the accuracy of the models remains approximately at the same levels for 3 mH,O and
5 mH,O indicating that lower thresholds below 5mH,O do not add significant additional
information. For 10 mH,O, the accuracy of the model starts to decrease because it captures
only the high amplitude events which are related to a lesser extent to the fatigue-related
failures as these are usually high frequency events with low amplitudes. Therefore, it is
not suggested to deviate much from the lower range. Between the three values, a threshold
value of 5 mH,O is reasonable to be chosen.

5.2 Development of Models for NetB

The information obtained from the analysis of NetA is used to validate the hypothesis
that CPIS is an important covariate in another WSN with completely different character-
istics. The focus in NetB is shifting to identifying the performance of models developed
in explaining pipe breaks with and without the CPIS metric (with and without the addi-
tion of DP and mean pressure). This is also the ultimate recommendation of this study, the
assessment of whether an operator needs to shift their attention to the dynamic components
of the network and make plans on how to proceed with regulating the mean pressure and
dynamic pressure.
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The NetB dataset is much larger in comparison to NetA and is used in order to exam-
ine the sample size effects and the role of CPIS in a completely different network with
very different environmental and network characteristics. Regression models were fitted
with and without DP to assess the role of DP on this network, while the variable LEN
has been also examined (models were developed with and without LEN) since it was
shown previously to be an important parameter. Models were developed for the follow-
ing cases:

Model 1: without DP

Model 2: with DP

Model 3: without LEN and DP
Model 4: without LEN, with DP

The performance of the model increased quite substantially once the DP variable was
added as the R-squared value increased from 0.68 to 0.70 (3% increase) and RMSE
decrease from 0.2144 to 0.2088 (2.6% decrease in error). The model developed with-
out the addition DP shows that the most important covariate was LEN followed by
PRMEAN. The results are almost identical with the case of NetA, which builds confi-
dence about the results. When DP was added it becomes the third most important covar-
iate with an importance percentage close to that of PRMEAN which was the second
most important covariate. LEN’s and PRMEAN’s importance decreased (Fig. 6a).

Very similar outcomes were derived when developing models 3 and 4 (without adding
LEN as a covariate). When LEN was not included as a variable DP, PRMEAN and AGE
became the three most important covariates. All input covariates’ importance increased
proportionally without their relative ranking changing when LEN was removed from the
input variables. The interaction strength of DP with respect to the other variables (Fig. 6b)
demonstrates strong interactions between DP and age, DP and PRMEAN, and DP and FP.
This comes in contrast to the results of NetA, however, this system is exposed to more
aggressive environments with higher fracture potential (FP) when the levels of pipe age
and internal pressure components are higher. This finding is in agreement with the fact that
DP values in NetB were considerably higher compared to NetA. Figure 6b also shows the
complexity level of this system which is much higher compared to NetA.
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Fig.6 a Variable importance for NetB, b Interaction strength between DP and the rest of the variables
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5.3 Assessment of the Impact of the Cumulative Pressure-Induced Stress
as a Metric in Pipe Break Models

In both networks, there was no single dominant factor that was solely responsible for pipe
breaks. However, among the three groups of factors (operational, environmental, and net-
work characteristics) contributing to pipe breaks, the loading components group emerged
as the most important. The size of the dataset did not have any impact on the model out-
comes. In fact, the importance of the CPIS in both NetA and NetB remained relatively
similar despite differences in sample size and network characteristics. This suggests that
the predictive power of the model for CPIS is robust and consistent across datasets with
varying sizes and network characteristics.

Based on the analysis, when loading factors such as mean pressure, maximum pressure,
and pressure variations are found to be influential, the CPIS also becomes important. Cor-
relation tests indicate that DP is not highly correlated with the other variables, suggesting
that it captures effects that are not accounted for by any other covariates. As a result, DP
effectively replaces all other pressure components except mean pressure. Consequently, the
CPIS, defined by PRMEAN and DP, serves as a comprehensive metric for capturing these
effects.

The relationship between pipe breaks and the various input variables is complex and
highly non-linear. Consequently, the proposed framework, which utilizes machine learn-
ing techniques to capture these relationships, provides a fast and efficient method to
guide industry operators in making informed decisions regarding their pressure manage-
ment strategies. The framework’s output is a recommendation regarding the criticality of
PRMEAN and DP variables. This recommendation can help industry operators prior-
itize and focus their efforts on managing and controlling these variables effectively. By
understanding the criticality of these variables, operators can implement tailored pressure
management schemes to reduce the likelihood of pipe breaks and optimize the overall per-
formance and resilience of the WSNGs.

Random Forests are a powerful tool for pattern recognition, though, the algorithm’s pre-
dictions are limited to the range of the input dataset. This limitation can pose challenges
when encountering scenarios where a static pressure component in the future exceeds the
historical mean pressure values. Fortunately, this issue is not a significant concern for CPIS
since it is primarily related to fatigue-related failures driven by dynamic pressures. In such
cases, the number of cycles experienced by a pipe increases with both the age of the pipe
and the dynamic pressure. Therefore, the CPIS metric, which considers both the mean
pressure and the dynamic pressure, can provide meaningful insights and predictions for
fatigue-related failures, even in scenarios where future static pressure components exceed
historical mean pressure values.

Despite its limitations, this research highlights the importance of pressure management
control in WSNG. It represents a crucial step towards conducting field trials or experiments.
It is recommended to closely monitor a cluster of pipes within a population that exhibits
characteristics representative of the entire network. By continuously and rigorously moni-
toring pressures at high frequency rates, various features such as real-time fault or anomaly
detection can be detected. Early warnings can also be provided during the initial stages of
an event. In the wear-out phase of the material, the frequency and amplitude of the events
become prominent factors contributing to the degradation process. By understanding and
monitoring these factors, proactive maintenance and management strategies can be imple-
mented to mitigate pipe breaks and extend the lifespan of the network.
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6 Conclusion

This study investigated how various hydraulic loading components affect pipe breaks,
specifically concentrating on dynamic components as measured by the cumulative pres-
sure-induced stress metric (CPIS). Random Forest regressors were used to determine
the significance of CPIS as a covariate for modelling pipe breaks in two water supply
networks. The results showed enhanced performance across all models when dynamic
pressure (DP) was incorporated, indicated by a reduction in RMSE. DP more efficiently
represents the dynamic effects compared to the pressure range variable (PRRANGE),
which merely suggests the possible spectrum of pressures. Furthermore, DP not only
supplants PRRANGE as a covariate but also contributes extra information to the mod-
els. Therefore, the CPIS metric (PRMEAN and DP) was found to be a significant factor
responsible for pipe breaks.

While the importance of adaptive pressure management is widely recognized in
the water industry, the relationship between input variables and pipe breaks is nota-
bly non-linear, adding complexity to any proposed solution. Consequently, our frame-
work provides an effective method for aiding industry professionals in making informed
decisions about pressure management tactics. The outcomes of the framework include
guidance on the relevance of PRMEAN and DP variables. This study demonstrates the
significance of ongoing monitoring and systematic gathering of high-resolution pres-
sure data as integral elements of a comprehensive asset management strategy for water
supply networks. Future research should focus on extended monitoring campaigns,
combined with proactive operational measures to reduce pressure variations. It should
also incorporate a thorough examination of the condition of pipes based on information
gathered during pipe break repairs. Additionally, future studies ought to conduct sur-
veys with water management experts, utilizing questionnaires or focus groups, to evalu-
ate their acceptance of this metric and gather their feedback on the concept.

Author Contributions Charalampos Konstantinou: Conceptualization, Methodology, Investigation, Formal
analysis, Writing - Original Draft. Carlos Jara-Arriagada: Investigation, Formal analysis, Writing - Original
Draft. Ivan Stoianov: Conceptualization, Formal analysis, Writing - Review & Editing, Funding acquisition,
Supervision.

Funding This work was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) EP/P004229/1 (Dynamically Adaptive and Resilient Water Supply Networks for a Sustainable
Future) and; the National Agency for Research and Development (ANID)/ Scholarship Program/ DOCT-
ORADO BECAS CHILE/2020-72210314.

Data Availability The authors do not have permission to share data.

Declarations

Ethical Approval Not applicable.
Consent to Participate Not applicable.
Consent to Publish Not applicable.

Competing Interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

@ Springer



618 C. Konstantinou et al.

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barton NA, Farewell TS, Hallett SH (2020) Using generalized additive models to investigate the envi-
ronmental effects on pipe failure in clean water networks. NPJ Clean Water 3(1):20-22. https://doi.
org/10.1038/541545-020-0077-3

Barton NA, Farewell TS, Hallett SH, Acland TF (2019) Improving pipe failure predictions: Factors
effecting pipe failure in drinking water networks. Water Res 164:114926. https://doi.org/10.1016/j.
watres.2019.114926

Breiman L (2001) Random forests. Mach Learn 45:5-32. https://doi.org/10.1023/A:1010933404324

Breiman L, Cutler A (2004) The OOB error estimate

Fan X, Wang X, Zhang X, Yu PAXB (2022) Machine learning based water pipe failure prediction:
The effects of engineering, geology, climate and socio-economic factors. Reliab Eng Syst Safety
219:108185. https://doi.org/10.1016/j.ress.2021.108185

Faramarzzadeh M, Ehsani MR, Akbari M, Rahimi R, Moghaddam M, Behrangi A, Klove B, Haghighi
AT, Oussalah M (2023) Application of machine learning and remote sensing for gap-filling daily
precipitation data of a sparsely gauged basin in East Africa. Environ Process 10. https://doi.org/10.
1007/s40710-023-00625-y

Folkman S (2018) Water main break rates in the USA and Canada: a comprehensive study. Technical
Report, Utah State University. https://digitalcommons.usu.edu/mae_facpub/174

Hastie T, Tibshirani R, Friedman J (2009) Elements of statistical learning, 2nd ed. https://doi.org/10.
1007/978-0-387-84858-7

Hoskins A, Stoianov I (2017) Monitoring fluid dynamics. https://patents.google.com/patent/WO201
7060737A1/en

Huang Y, Zheng F, Duan HF, Zhang Q (2020) Multi-objective optimal design of water distribution net-
works accounting for transient impacts. Water Resour Manage 34:1517-1534. https://doi.org/10.
1007/s11269-020-02517-4

Jara-Arriagada C, Stoianov I (2023) Pressure-induced fatigue failures in cast iron water supply pipes. Eng
Fail Anal 107731. https://doi.org/10.1016/j.engfailanal.2023.107731, https://www.sciencedirect.
com/science/article/pii/S1350630723006854

Jiang R, Rathnayaka S, Shannon B, Zhao XL, Ji J, Kodikara J (2019) Analysis of failure initiation in cor-
roded cast iron pipes under cyclic loading due to formation of through-wall cracks. Eng Fail Anal
103:238-248. https://doi.org/10.1016/j.engfailanal.2019.04.031

Konstantinou C, Stoianov I (2020) A comparative study of statistical and machine learning methods to
infer causes of pipe breaks in water supply networks. Urban Water J 17(6):534-548. https://doi.org/
10.1080/1573062X.2020.1800758

Lee JS, Zeng W, Lambert M, Hilditch T, Gong J (2023) Fatigue analysis of metallic-plastic-metallic
pipeline systems: a numerical study. Results Eng 17:100986. https://doi.org/10.1016/j.rineng.2023.
100986

Liaw A, Wiener M (2002) Classification and Regression by randomForest. Newsletter R Project News
2(3):18-22

Liu Z, Sadiq R, Najjaran H (2010) Exploring the relationship between soil properties and deterioration
of metallic pipes using predictive data mining methods. J] Comput Civ Eng 24(3):289-301. https://
doi.org/10.1061/(ASCE)CP.1943-5487.0000032

Martinez Garcia D, Lee J, Keck J, Kooy J, Yang P, Wilfley B (2020) Pressure-based analysis of water
main failures in California. J] Water Resour Plan Manag 146(9):05020016. https://doi.org/10.1061/
(ASCE)WR.1943-5452.0001255

Molnar C (2018) IML: an R package for interpretable machine learning. J Open Source Softw
32(26):786. https://doi.org/10.21105/j0ss.00786

Moslehi I, Jalili_Ghazizadeh M, (2020) Pressure-pipe breaks relationship in water distribution net-
works: a statistical analysis. Water Resour Manage 34(9):2851-2868. https://doi.org/10.1007/
$11269-020-02587-4

@ Springer


http://creativecommons.o