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Abstract
The application of linear interpolation for handling missing hydrological data is unequiv-
ocal. On one hand, such an approach offers good reconstruction in the vicinity of last 
observation before a no-data gap and first measurement after the gap. On the other hand, 
it omits irregular variability of hydrological data. Such an irregularity can be described 
by time series models, such as for instance the autoregressive integrated moving aver-
age (ARIMA) model. Herein, we propose a method which combines linear interpolation 
with autoregressive integrated model (ARI, i.e. ARIMA without a moving average part), 
named LinAR (available at GitHub), as a tool for inputing hydrological data. Linear inter-
polation is combined with the ARI model through linear scaling the ARI-based prediction 
issued for the no-data gap. Such an approach contributes to the current state of art in gap-
filling methods since it removes artificial jumps between last stochastic prediction and 
first known observation after the gap, also introducing some irregular variability in the 
first part of the no-data gap. The LinAR method is applied and evaluated on hourly water 
level data collected between 2016 and 2021 (52,608 hourly steps) from 28 gauges strategi-
cally located within the Odra/Oder River basin in southwestern and western Poland. The 
data was sourced from Institute of Meteorology and Water Management (Poland). Evalu-
ating the performance with over 100 million assessments in the validation experiment,  
the study demonstrates that the LinAR approach outperforms the purely linear method, 
especially for short no-data gaps (up to 12 hourly steps) and for rivers of considerable size.  
Based on rigorous statistical analysis of root mean square error (RMSE) – expressed (1) 
absolutely, (2) as percentages and (3) using RMSE error bars – the percentage improve-
ment, understood as percentage difference between RMSE of linear and LinAR interpola-
tions, was found to reach up to 10%.
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1 Introduction

Although the level of completeness of hydrological time series is meant to be increasing 
(Dixon 2010), handling missing data in hydrology still remains to be a challenge. Gaps in 
water-related datasets not only constrain the analysis and interpretation of historical river-
flow variation but may also have a deleterious influence on hydrological models and the 
associated predictions (Harvey et al. 2012). Indeed, Gill et al. (2007) claimed that ignoring 
missing values before modelling is more detrimental for data-based models, such as those 
based on learning algorithms, than for physically-based approaches (Zhang and Post 2018).

In early 2010’s, Harvey et al. (2012) argued that “there are currently no widely-accepted 
standard techniques for data infilling, either in the UK or internationally”. More recently, 
Gao et al. (2018) provided a similar assessment of the state-of-art in the field of handling 
missing data in hydrology and wrote that “Imputation in hydrology has very often been 
done in an ad hoc manner, lacking a clear theoretical basis”. Though there are attempts 
to develop robust gap-filling approaches (e.g. Dembélé et  al. 2019; Hamzah et  al. 2021; 
Khampuengson and Wang 2023), commonly, various statistical methods are adopted to 
reconstruct missing parts of a hydrograph (e.g. McCuen 2003). In hydrological sciences, 
however, hydrograph data reveal certain specifics – a high flow is characterized by a rising 
limb, a crest, and a slowly-declining recession limb (e.g. Reddy 2005). Therefore, adopt-
ing a given statistical method should not be carried out ad hoc, but it needs to account for 
shape of a hydrograph and/or its specific variability.

Though gap filling using hydrological models was found to have a negligible impact 
on the determination of trend in riverflow (Zhang and Post 2018), such an approach  
may provide valuable information when water level predictions are issued. Indeed, to 
build a lumped model based on time series methods, such as for instance vector autore-
gression (Niedzielski 2007; Niedzielski and Miziński 2017), continuous time series is 
required. As mentioned above, hydrological data reveal the specific shape, and there-
fore flexible non-linear approaches, such as autoregressive integrated moving average 
(ARIMA) or autoregressive conditional heteroscedastic (ARCH) ones (Gao et al. 2018), 
are needed. It has been found that the application of ARIMA models in the process 
of filling gaps in streamflow time series is justified, with limitation on the number of 
missing data (Lopes Martins et  al. 2023). Furthermore, the ARIMA approach is not 
computationally-demanding (Ren et al. 2022), which makes it applicable in hydrologi-
cal applications that require rapid data processing.

The ARIMA models, however, when used to simulate or predict variation of hydro-
logical data within a no-data gap, may occasionally reveal instability driven by integrating 
a spike-rich reconstructed part produced by combining predictions with forthcoming data 
(Fig. 1). Instability of ARIMA models and the deterioration of their performance has been 
reported by Li et al. (2023) who claim that there is scarcity of research in this topic. Also, 
the instability in question has been reported in the hydrological context by Gui et al. (2021) 
who argue that the ARIMA approach belongs to a set of a few mathematical models which 
reveal unsatisfactory skills in simulating streamflow. Herein, we propose a new method  
and its Python implementation to address the problem of instability of ARIMA models 
used for data gap infilling in hydrology. The structure of the paper is the following: first we 
describe our gap-filling methodology, named hereinafter as LinAR (Section 2), second we 
present datasets used for validation (Section 3), third we show the results on the accuracy 
of our interpolation method (Section 4), fourth we discuss our findings with similar studies 
(Section 5), and finally we conclude the article (Section 6).
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2  Rationale and Methods

The primary objective of this study is to introduce the LinAR approach, which combines 
the ARI-based imputation with linear interpolation. By doing so, the proposed method 
aims to address the issue of unrealistic jumps in the hydrological time series resulting 
from the use of the ARIMA model and imitate short-term hydrological variability in the 
available data.

As explained in Fig. 1 and its caption, the use of the ARIMA model for interpolating 
missing hydrological data may lead to unrealistic jumps between last reconstructed values 
in a no-data gap and first real record. Such jumps do not occur if simple linear interpo-
lation is employed, as in the papers by Niedzielski and Miziński (2017) and Kulanuwat 
et al. (2021). However, such a simplistic approach introduces artificial trend-like intervals, 
particularly when gaps are long, potentially causing constraints in data-based lumped mod-
elling (i.e. fitting time series models to partially linear data is not recommended). In addi-
tion, Musial et al. (2011) argue that linear interpolation has a limited potential in offering 
reliable estimates as it reveals tendency to underestimate real observations, since the impu-
tation is limited by bounds associated with true data before/after the no-data gap. Lepot 
et al. (2017) add that overestimation is also possible while applying linear interpolation.

On the contrary, Gnauck (2004) claims that the linear approach performs better 
than the nonlinear interpolation methods in filling gaps in water quality time series. 
The latter finding justifies our approach, in which simple linear interpolation is used 

Fig. 1  Example of unrealistic instability of water level reconstructions (triangles) based on the ARIMA 
model fitted to data (black circles) or data+predictions (black circles + black triangles): a predictions 
imputed in the 15-step no-data gap (triangles with white filling) along with single real data occurring after 
the gap (circle with white filling), b data+predictions+data (black symbols) from (a) are modelled and used 
to produce forecasts for filling the 20-step no-data gap (triangles with white filling) along with next sin-
gle real data occurring after the gap (circle with white filling), c data+predictions+data+predictions+data 
(black symbols) from (b) are modelled and utilized to produce forecasts for filling the 10-step no-data gap 
(triangles with white filling) along with next single real data occurring after the gap (circle with white fill-
ing), d data+predictions+data+predictions+data+prediction+data (black symbols) from (c) are modelled 
and used to produce forecasts for filling the 25-step no-data gap (triangles with white filling) along with 
next single real data occurring after the gap (circle with white filling)
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to reconstruct a general tendency and the integrated autoregressive (ARI, i.e. ARIMA 
without a moving average part) model (also linear in its stochastic structure) is used to 
reproduce some portion of irregular variability between bounds, as postulated by Musial 
et al. (2011). Hence, herein we propose the combination of the ARI-based imputation 
with linear interpolation, both avoiding the aforementioned jumps and imitating (in 
short term) hydrological variability of the available data. The Python implementation of 
LinAR is freely available in our GitHub repository (https:// github. com/ Micha lHali cki4/ 
LinAR- inter polat ion).

The LinAR approach begins with the computation of autoregressive-based predic-
tions with a lead time equal to the number of missing data points within a given no-
data gap. Next, we employ linear interpolation between the last available measurement 
before the gap and the first measurement after the gap. Additionally, linear interpolation 
is applied between the last available measurement before the gap and the last autore-
gressive prediction. The scaling factor is then determined using the differences between 
the linearly interpolated values and the corresponding ARI-based predictions within the 
entire no-data gap (Fig. 2).

The ARI model corresponds to autoregressive (AR) model, after m-time differencing 
input time series xt in order to produce residuals yt . Firstly, each xt is differenced to pro-
duce residuals ∇xt = xt − xt−1 . To check stationarity, we propose to use two tests jointly, 
i.e. the augmented Dickey-Fuller (ADF) test for stationarity is applied to dataset and the 
F-test for the equality of two variances is applied to two equal-size parts of dataset (first 
and second half of dataset when sample size is even, and first and second half of dataset 
without middle value when sample size is odd). Such a two-test approach passes data 
with relatively constant variance, even if the ADF test fails to detect non-stationarity. 
If ∇xt is stationary, no further differencing is needed, and therefore ∇xt is assumed to 
be residuals yt prepared for further processing. If ∇xt is non-stationary, ∇xt is again dif-
ferenced to produce ∇2xt = ∇(∇xt) = ∇(xt − xt−1) = xt − 2xt−1 + xt−2 . If ∇2xt passes the 
two-test stationarity verification it becomes the residual time series yt . In our work, we 
assume the significance level of 0.05.

The zero-mean autoregressive AR stochastic process Yt , where yt represents its tra-
jectory, is mathematically described by the equation:
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Fig. 2  Graphical explanation of the LinAR gap imputation approach that combines ARI-prediction (gray 
circles) and linear interpolation (crosses)
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where ai denotes the autoregressive coefficients, p represents the order of autoregression, 
and Zt signifies white noise. To produce a forecast of xt , the prognosis of yt is attached to 
residuals, and such an extended residual signal is integrated m times.

Second, linear interpolation between the last available measurement before n-step no- 
data gap and the first measurement after this gap is applied. Each k-th imputed value within  
the gap is calculated using the following expression:

where xaftergap , xbeforegap are bounds, and 1 ≤ k ≤ n.
Third, linear interpolation between the last available measurement before n-step no-data 

gap and the last ARI-based prediction into step n is utilized. Each k-th value within the gap 
is computed along the lines of Eq. 2 as:

where plastingap is the last forecasted (into n-th step) value, and 1 ≤ k ≤ n − 1.
Fourth, both linear expressions x̃ and p̃ are used to produce a scaling factor, the objec-

tive of which is to correct the imputation based on ARI model. Namely, the difference:

is added to every ARI-based prediction for k steps ahead, selected from a prognosis with 
maximum lead time of n steps and issued for the entire no-data gap (gray circles in Fig. 2 
are moved up and become black squares).

3  Data

The imputation approach described in this paper is tested on 28 hourly water level time series,  
collected within the Odra/Oder River basin (SW Poland) at hydrological gauges of the 
Institute for Meteorology and Water Management – State Research Institute (IMGW-PIB). 
Spatial distribution of these gauges is presented in Fig. 3. The data span the time interval 
from 01/01/2016 to 31/12/2021.

The Odra/Oder River has its headwaters in Czechia. It flows northward to Poland, 
where it drains a considerable area of Polish territory, being the second largest river in the 
country. The Odra/Oder River in its middle reach becomes a transboundary river between 
Poland and Germany. Gauges maintained by IMGW-PIB are vertically referenced to 
Kronsztadt’86 vertical datum. Hence, water levels processed in this paper are values in cen-
timetres above local zeros, the absolute heights of which are expressed in Kronsztadt’86.

Every water level time series studied in this paper contains no-data gaps (from 2 
in Bardo to 318 in Ścinawa). The gaps reveal different lengths, ranging from 1 in many 

(1)Yt =

p
∑

i=1

aiYt−i + Zt,

(2)x̃(k) = k
(xaftergap − xbeforegap)

n + 1
+ xbeforegap,

(3)p̃(k) = k
(plastingap − xbeforegap)

n
+ xbeforegap,

(4)𝛼(k) = x̃(k) − p̃(k)
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gauges to 2928 in Nowa Sól. Table 1 juxtaposes main characteristics of missing data in the 
above-mentioned time series.

Since reference data are needed for validation, the above-mentioned true gaps are 
not used to evaluate the performance of the LinAR method. To assess our approach, 
artificial gaps are produced so that the removed measurements are used as ground 
truth to compare with the interpolated values. Namely, at each hourly step selected 
from the studied time interval 2016–2021, we (1) artificially delete one measurement, 
compute interpolation and carry out the comparison, (2) artificially remove two meas-
urements, compute interpolation of two missing data and conduct the comparison, (3) 
we continue the process above-described in (1) and (2) until our artificially-produced 
no-data gap has length of 72 steps. Literally, for each gauge we consider approx. 
3,744,000 interpolations based on LinAR (52,000 hourly steps × 72). The same proce-
dure is repeated for purely linear interpolation. To have long enough time series to fit 
an ARI model (we assume 5 days) and to ensure enough data for validation (72 h), we 

Fig. 3  Location of hydrological gauges selected for the study
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produce buffers (from 72 h before the true no-data gap to 5 days after the gap) within 
which we do not interpolate. Figure 4 presents how gauge data and their interpolated 
equivalents correspond and how they are juxtaposed in each iteration to calculate root 
mean square error (RMSE).

Table 1  Juxtaposition of gauges located along the Odra/Oder River from which data are processed in this 
paper. Characteristics of no-data gaps are also provided

Gauge ID Gauge name River River width 
[m]

Number of 
gaps

Missing data 
[%]

Length of gaps [h]

min max mean

1 Słubice Odra 185 22 0.5 1 69 10.9
2 Biała Góra Odra 200 56 1.8 1 111 17
3 Cigacice Odra 180 8 0.2 1 27 11.1
4 Nowa Sól Odra 100 13 8.7 1 2928 353.8
5 Głogów Odra 85 13 0.6 1 81 26.1
6 Ścinawa Odra 70 319 4 1 23 6.5
7 Jelenia Góra Bóbr 22 35 1.3 1 84 19.6
8 Dobroszów Bóbr 35 12 0.3 1 89 15

Wielki
9 Osetno Barycz 18 26 1 1 152 20.2
10 Jugowice Bystrzyca 9 3 0 1 3 2.3
11 Jarnołtów Bystrzyca 12 6 0.1 1 29 13
12 Dunino Kaczawa 9 13 0.3 1 26 12.8
13 Mirsk Kwisa 13 18 0.5 1 40 15.8
14 Białobrzezie Ślȩza 3 11 1.5 1 636 70.7
15 Bardo Nysa 31 2 0 2 11 6.5

Śla̧skie Kłodzka
16 Skorogoszcz Nysa 38 9 11.3 1 5880 657.7

Kłodzka
17 Przewóz Nysa 23 98 1.8 1 26 9.5

Łużycka
18 Chałupki Odra 49 60 1.4 1 23 11.9
19 Racibórz Odra 36 8 0.3 1 39 18.4

Miedonia
20 Oława Odra 85 51 0.9 1 28 8.8
21 Brzeg Odra 70 8 0.2 1 48 15.9

Dolny
22 Kostrzyn Odra 220 3 0.1 1 65 22.3

nad Odra̧
23 Połȩcko Odra 155 291 11.6 1 23 20.9
24 Nietków Odra 140 5 0.1 1 53 12
25 Zborowice Oława 7 5 0.1 1 19 9.2
26 Cieszyn Olza 33 23 0.9 1 23 21
27 Karłowice Stobrawa 6 10 0.2 1 26 9.6

(Wapienniki)
28 Zbytowa Widawa 6 12 0.3 1 26 12.4
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Fig. 4  Example sketch explaining the validation approach: a true water level data measured at a gauge; b 
interpolated water level when artificial no-data gaps are of length 1 (window width W 1 ) and interpolation  
step is of length 1 (lead time L 1 ), in this example RMSE(1, 1) =

1

7

∑7

i=1
(redti−1 − blackti−1 )

2 ; c interpolated  
water level when artificial no-data gaps are of length 2 (window width W 2 ) and interpolation steps are of  
length 1 and 2 (lead time L 1 and L 2 ), in this example RMSE(2, 1) =

1

6

∑6

i=1
(pinkti−1 − blackti−1 )

2 and 
RMSE(2, 2) =

1

6

∑6

i=1
(blueti − blackti )

2 ; d interpolated water level when artificial no-data gaps are of length  
3 (window width W 3 ) and interpolation steps are of length 1, 2 and 3 (lead time L 1 , L 2 and L 3 ), in this 
example RMSE(3, 1) =

1

5

∑5

i=1
(yellowti−1

− blackti−1 )
2 , RMSE(3, 2) =

1

5

∑5

i=1
(orangeti − blackti )

2 and 
RMSE(3, 3) =

1

5

∑5

i=1
(greenti+1 − blackti+1 )

2
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4  Results

Although we study 28 hydrological time series, our scrutiny begins with four specific cases 
(Fig. 5) that allow the reader to follow complete findings juxtaposed in Table 2 and Appendix. 
Black contour separates interpolations for which the LinAR method performs better than the 
purely linear approach.

Table 2  Accuracy of LinAR and purely linear (LIN) interpolation

a Range of differences (LIN − LinAR interpolation RMSE) for each window (W) and lead time (L) combinations
b Percentage of validation datasets (window (W) and lead time (L) combinations) for which LinAR 
RMSE ≤ LIN RMSE
c Number of W starting from W = 1 where all LinAR RMSE ≤ LIN RMSE
d Average accuracy improvement in datasets determined in previous column

RMSE LinAR RMSE LIN RMSE  DIFFa Improved 
values [%]b

Improved 
 windowsc

Average 
improv. 
[%]dGauge min | max min | max min | max

[m] [m] [m]

22 0.0047 | 0.0481 0.0047 | 0.0419 −0.0065 | 0.0003 6.62 3 0.7
2 0.0045 | 0.1018 0.0045 | 0.0873 −0.0155 | 0.0004 6.01 16 1.4
1 0.0047 | 0.0818 0.0047 | 0.0711 −0.0115 | 0.0001 3.46 1 0.0
3 0.0038 | 0.1325 0.0038 | 0.113 −0.0203 | 0.0004 4.26 12 2.2
23 0.0047 | 6.8727 0.0047 | 0.1097 −6.8127 | 0.0018 10.35 13 3.4
24 0.0046 | 0.1308 0.0046 | 0.1116 −0.0203 | 0.0003 1.71 3 0.8
4 0.004 | 0.1706 0.004 | 0.1435 −0.0292 | 0.0006 4.30 13 3.1
5 0.005 | 0.1958 0.005 | 0.1684 −0.029 | 0.0009 7.80 19 2.9
20 0.0161 | 0.2344 0.0161 | 0.2055 −0.0303 | 0.0005 1.83 2 0.5
6 0.0062 | 0.291 0.0062 | 0.2529 −0.0524 | 0.016 28.81 19 8.7
21 0.0337 | 8.8563 0.0337 | 0.3606 −8.7206 | 0.0125 12.98 9 3.5
18 0.0071 | 0.1864 0.0071 | 0.1674 −0.0197 | 0.0002 2.47 3 0.5
16 0.0079 | 0.1507 0.0079 | 0.1352 −0.0163 | 0.0027 12.63 5 3.1
19 0.0047 | 0.6815 0.0047 | 0.2775 −0.5627 | 0.0 0.53 3 0.2
8 0.015 | 0.4071 0.015 | 0.0975 −0.3436 | 0.0019 19.33 4 1.9
26 0.0111 | 0.7104 0.0111 | 0.1235 −0.6611 | 0.0003 1.14 2 0.5
15 0.0078 | 0.1908 0.0078 | 0.0925 −0.0993 | 0.0 0.15 1 0.0
17 0.0187 | 0.138 0.0187 | 0.1215 −0.0584 | 0.0009 3.54 2 0.3
7 0.0063 | 0.1035 0.0063 | 0.0846 −0.0658 | 0.0 0.11 1 0.0
9 0.0031 | 0.0588 0.0031 | 0.0502 −0.009 | 0.0 0.08 1 0.0
13 0.0079 | 0.1074 0.0079 | 0.0963 −0.0113 | 0.0009 5.56 7 2.2
11 0.0047 | 1.9508 0.0047 | 0.0775 −1.9233 | 0.0001 0.80 3 0.4
10 0.0042 | 0.1522 0.0042 | 0.0518 −0.1258 | 0.0 0.04 1 0.0
12 0.0026 | 0.1906 0.0026 | 0.0739 −0.1638 | 0.0 0.19 1 0.0
25 0.004 | 0.4863 0.004 | 0.1013 −0.4444 | 0.0 0.19 2 0.0
27 0.0035 | 1.0388 0.0035 | 0.0438 −1.0236 | 0.0 0.27 1 0.0
28 0.0044 | 0.1016 0.0044 | 0.0861 −0.0393 | 0.0001 1.86 4 0.4
14 0.0042 | 0.0939 0.0042 | 0.0903 −0.0046 | 0.0 0.15 1 0.0
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The most expected result has a graphical representation as in Fig. 5a for gauge 2 (Biała 
Góra, Odra, river width at gauge of 200 m, gauge within lowland). On average, in a no-
data gaps of widths up to 16 (W = 1, 2,… , 16 ), all LinAR interpolations with lengths up 
to 15 (L = 1, 2,… , 15 ) are characterised by a smaller RMSE than RMSE for the linear 
method. However, the improvement is up to 3% of RMSE. For longer no-data gaps the lin-
ear approach is superior over the LinAR one.

A different picture is shown in Fig. 5b that corresponds to gauge 6 (Ścinawa, Odra, river 
width at gauge of 70 m, gauge within lowland). The improvement (LinAR in respect to 
purely linear) is noticed for all no-data gaps (W = 1, 2,… , 72 ), however, only for first steps 
within these gaps (L = 1, 2,… , 7 ). In this case, the improvement can exceed 15%.

An unequivocal case is presented in Fig. 5c where improvement is noticed predomi-
nantly for very small number of steps (L), independently on widths of no-data gaps (W). 
Again, for some combinations of L and W the improvement exceeds 15%.

If our tests incorrectly pass non-stationary cases, artificial periodicities occur as pre-
sented in Fig.  5d. Such highly departing values are unique, but considerable in their 
absolute values, therefore they meaningfully increase the overall RMSE. Fortunately, 
such situations are mainly reported for long no-data gaps.

It is apparent from Fig.  5 that the LinAR approach can be recommended for short 
no-data gaps. It is in agreement with properties of autoregressive predictions which are 

Fig. 5  Examples of percentage differences between linear and LinAR interpolation errors (RMSE) as a 
function of width of no-data gap (W) and interpolation length (L): Odra river at Biała Góra (a), Odra river 
at Ścinawa (b), Nysa Kłodzka at Skorogoszcz (c), Stobrawa at Karłowice (d). Positive values indicate better 
performance of the LinAR approach, while negative numbers correspond to an opposite case
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irregular for several steps into the future and for longer lead times converge to a theo-
retical mean of the autoregressive process (zero for the zero-mean model).

It is apparent from Table 2 that the application of the LinAR approach leads to better 
results in first dozen of steps (for details, see “improved windows" column). Also, the 
scatter plots of “improved windows" and “improved values" against river width show 
that our approach is suitable for rivers of considerable size rather than for small chan-
nels (Fig. 6). It is likely that the dependence of the LinAR performance on river width 
is driven by less abrupt streamflow variability in wider channels. For instance, Hwang 
et al. (2020) claim that “[...] the river width affects flow rate significantly.”. Autoregres-
sive processes are linear and stationary time series models, and thus they have only lim-
ited potential in describing non-stationary and non-linear data (Karthikeyan and Nagesh 
Kumar 2013).

When averaging RMSE differences – such as those presented in Fig. 5, but for each gauge 
– over interpolation length (L), mean RMSE differences can be expressed as a function of 

Fig. 6  Scatter plot of interpolation improvement statistics, i.e. improved windows (a) and improved values 
(b), against river width. For explanation of improvement statistics see Table 2

Fig. 7  Comparison of performance of LinAR approach in respect to purely linear interpolation method. 
Gauges in y-axis are sorted by river width and placed in the descending order from the top of figure
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width of no-data gap (Fig. 7). When gauges are ordered according to local river width, it is 
apparent that the LinAR approach can be recommended for sites where river is wide, and the 
performance is limited to a dozen of steps.

In order to estimate the recommended width of no-data gap ( Ŵ ) for which the LinAR 
method is superior over the purely linear approach, we make use of convex combination of 
improved windows in the following way:

where g is the index of a given gauge (Table 1), Wg is the value known in Table 2 as the 
improved windows, and ig is the ratio of percentage average improvement to sum of per-
centage average improvement values (Table 2). When Wg and ig values from Table 2 are 
imputed into Eq. 5, the estimate Ŵ is of 12. It means that – based on the aforementioned 
assumptions – our approach is recommended for gaps of lengths up to 12 steps.

When we consider no-data gaps of length up to 12, we may clearly notice that percent-
age of improved values is meaningful (reaching even 85%), as juxtaposed in Table 3. This 
statistics is particularly high for gauges where river width is considerable. In addition, per-
centage difference in RMSE can attain as much as 10% on average (gauge 6). In contrast, 
there is no improvement or there exists deterioration of water level interpolation accuracy 
for narrow river sections (up to −2.5%).

Although the statistics that describe the percentage improvement of interpolation accu-
racy are promising, the differences in RMSE, which is a measure of water level inter-
polation error in metres, are very low (Tables 2 and 3). It means that the significance of 
improvement may be questioned. According to Kalarus et al. (2010), to say if a given mean 
prediction error is smaller than the other it is necessary to use error bars of mean predic-
tion error. Therefore, to evaluate the significance of the improvement (LinAR in respect to 
purely linear interpolation), RMSE error bars are used following the paper by Niedzielski 
and Kosek (2008).

Figure 8 presents situations (combinations of W and L) in which LinAR is significantly 
different from linear interpolation (for selected cases already shown in Fig. 5). One of the 
features of the LinAR approach is that it is identical to linear interpolation at the last inter-
polation point (see Fig. 2), therefore if W = L the RMSE error bar is always greater than 
RMSE difference (which in this case is equal to 0). It is apparent from Fig. 8 that for most 
(W,L) pairs the difference is statistically significant. Also, when we consider all scrutinized 
gauges and take an average over L (Fig. 9) the above-mentioned significance occurs more 
frequently than insignificance, predominantly for wide river sections under study.

5  Discussion

Our LinAR approach was found to provide unequivocal results, i.e. it works better for short 
gaps (up to 12 steps) and for rivers of considerable size, however it fails to improve purely 
linear interpolation in opposite cases. Such an unequivocal picture can also be found in 
a few papers that compare linear interpolation with various ARIMA-based interpolation 
approaches. In this context, our study presents a partly contradictory view on the opin-
ion of Gnauck (2004) who argues that the linear interpolation is usually better than the 

(5)Ŵ =

28
∑

g=1

Wgig,
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non-linear one in environmental studies. Based on our experiments, similar conclusion can 
be drawn, however, only for long gaps and small streams. In addition, Ponkina et al. (2021) 
claim that the ARMA model, compared to simple linear interpolation of soil temperature 
and soil moisture data, was significantly better.

Our estimate (maximum length of gaps = 12) is in agreement with findings presented 
by Lopes Martins et  al. (2023) who argued that the ARIMA method can be utilized for 
filling riverflow data gaps with lengths up to 15 steps. Such a number is explained by high 
autocorrelation, typical for ARIMA models, which is responsible for predictability (Tigabu 
et  al. 2018). It should be noted that although the agreement between lengths of no-data 

Table 3  Accuracy of LinAR and purely linear (LIN) interpolation for windows ≤ 12

a Range of differences (LIN − LinAR interpolation RMSE) for each window (W) and lead time (L) combinations
b Percentage of validation datasets (window (W) and lead time (L) combinations) for which LinAR 
RMSE ≤ LIN RMSE
c Percentage difference between RMSE of LIN and LinAR interpolations

RMSE LinAR RMSE LIN RMSE  DIFFa Improved 
values [%]b

Average RMSE 
difference [%]c

Gauge min | max min | max min | max

[cm] [cm] [cm]

22 0.47 | 0.78 0.47 | 0.78 −0.0 | 0.03 60.26 1.34
2 0.45 | 1.65 0.45 | 1.68 0.0 | 0.04 84.62 1.82
1 0.47 | 1.26 0.47 | 1.27 −0.0 | 0.01 75.64 0.39
3 0.38 | 1.35 0.38 | 1.35 0.0 | 0.04 84.62 2.47
23 0.47 | 3.31 0.47 | 3.38 0.0 | 0.16 84.62 3.79
24 0.46 | 1.33 0.46 | 1.3 −0.03 | 0.03 38.46 0.48
4 0.4 | 2.0 0.4 | 2.01 0.0 | 0.06 84.62 3.53
5 0.5 | 2.99 0.5 | 3.07 0.0 | 0.09 84.62 3.92
20 1.61 | 7.43 1.61 | 7.31 −0.12 | 0.05 14.10 −0.79
6 0.62 | 8.97 0.62 | 9.99 0.0 | 1.27 84.62 10.20
21 3.37 | 23.19 3.37 | 23.16 −0.07 | 1.19 71.79 3.47
18 0.71 | 4.19 0.71 | 4.18 −0.02 | 0.02 24.36 0.02
16 0.79 | 5.28 0.79 | 5.25 −0.06 | 0.24 44.87 2.07
19 0.47 | 4.84 0.47 | 4.75 −0.1 | 0.0 8.97 −0.85
8 1.5 | 5.38 1.5 | 5.32 −0.12 | 0.18 35.90 0.62
26 1.11 | 3.9 1.11 | 3.73 −0.18 | 0.03 14.10 −2.40
15 0.78 | 2.77 0.78 | 2.7 −0.08 | 0.0 0.00 −1.81
17 1.87 | 3.52 1.87 | 3.5 −0.04 | 0.08 20.51 −0.09
7 0.63 | 2.35 0.63 | 2.3 −0.06 | 0.0 0.00 −1.59
9 0.31 | 1.25 0.31 | 1.24 −0.01 | 0.0 0.00 −0.85
13 0.79 | 3.24 0.79 | 3.17 −0.07 | 0.09 53.85 1.21
11 0.47 | 2.35 0.47 | 2.29 −0.08 | 0.01 15.38 −1.47
10 0.42 | 2.28 0.42 | 2.24 −0.05 | 0.0 0.00 −1.16
12 0.26 | 1.18 0.26 | 1.16 −0.04 | 0.0 0.00 −2.42
25 0.4 | 2.2 0.4 | 2.14 −0.07 | 0.0 1.28 −1.78
27 0.35 | 1.15 0.35 | 1.1 −0.05 | 0.0 0.00 −1.76
28 0.44 | 2.79 0.44 | 2.75 −0.04 | 0.01 28.21 −0.22
14 0.42 | 2.73 0.42 | 2.7 −0.05 | 0.0 1.28 −1.11
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gaps is considerable (12 vs. 15 steps), the sampling intervals were different, i.e. daily data 
(Lopes Martins et al. 2023) and hourly data (this study). In case of the ARIMA applica-
tion, autocorrelation at a given lag (number of steps) does not directly depend on how long 
the step size is. For aggregated time series (e.g. daily averages), we can expect smaller 
hydrograph variability, better predictability and therefore good LinAR performance. Also, 
the superior ARIMA performance for gaps up to 12 steps has been shown in a problem of 
filling gaps in soil temperature and soil moisture data (Ponkina et al. 2021). Indeed, when 
gaps are classified into intervals (1–12, 13–24, 25–50 h), the best results correspond to the 
first class. More general observation has been made by Ren et al. (2022) who claim that the 
relative error of ARIMA interpolation increases along with length of no-data gap.

According to Ren et al. (2022), ARIMA models do not perform well when reconstruct-
ing abruptly changing water-related time series. This is in agreement with a general theory 
of ARIMA-based forecasting (Cholette 1982). Our scrutiny shows that the 12-step LinAR 

Fig. 8  Significance of accuracy difference as a function of width of no-data gap (W) and interpolation 
length (L) at the selected gauges: Odra river at Biała Góra (a), Odra river at Ścinawa (b), Nysa Kłodzka 
at Skorogoszcz (c), Stobrawa at Karłowice (d). The significance determination was based on RMSE error 
bars, computed following Niedzielski and Kosek (2008)
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interpolation works on rivers of considerable size and is not recommended for small (and 
often mountainous) rivers. The riverflow fluctuations are usually higher and more abrupt 
on the latter streams, as confirmed for the study area by Sen and Niedzielski (2010), which 
forms a constraint in ARIMA-based modelling.

Discussion should also be developed on cases when our LinAR approach occasionally 
fails for long no-data gaps (see Fig. 5d). Ren et al. (2022) argue that the ARIMA approach 
used for no-data gap filling in hydrology produces outliers of large positive/negative errors 
for gap of lengths 48 and 72 hourly steps. Herein, our maximum interpolation window is of  
72 steps (hours) and, as presented in Fig. 5d and explained in Section 4, for long no-data 
gaps the LinAR interpolation departs from reference data. Such an effect is interpreted in 
the light of occasional non-stationarity (if statistical tests incorrectly pass such signals to 
LinAR interpolation).

Recently, Khampuengson and Wang (2023) presented a new method for gap infilling in 
hydrologic time series and compared it with five other interpolation techniques. The linear 
approach was found to perform best at gauges where riverflow did not reveal strong peri-
odic patterns. Our time series are free of harmonic changes, and with LinAR we are able to 
perform even better.

Some national providers of hydrological data may publish raw measurements, and in 
such cases the LinAR approach may serve as one of potential methods for gap infilling. 
Although it is more complex than pure linear interpolation, it is computationally effi-
cient and can be performed on a standard PC. For example, on a laptop with an Intel Core 
i7-7700HQ processor (2.80 GHz) and 16 GB RAM, a six-year hourly time series with 10% 
missing data (56,209 data points and 5621 gaps) is interpolated in about 13.7 s (average of 
100 simulations).

6  Conclusions

We developed the LinAR approach (combination of linear interpolation and integrated 
autoregressive model) for interpolating riverflow data, checking its performance for no-
data gaps ranging from 1 to 72 hourly steps. We analysed 28 water level gauges at which 
hourly water level data were collected between 2016 and 2021 (over 52,000 hourly steps for  

Fig. 9  Significance of accuracy differences as a function of W, averaged over L. Gauges in y-axis are sorted 
by river width and placed in the descending order from the top of figure
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each gauge). In the iterative manner, we artificially removed known measurement data to 
enable a reliable validation of the LinAR method. This resulted in determining RMSE val-
ues of interpolation for each length of no-data gap ( 1, 2,… , 72 ), also considering LinAR-
based predictions of various lengths (from 1 to gap size). All in all, we scrutinized over 
100 million assessments ( ≈ 28 × 52000 × 72).

Taking into account our findings and discussing them with recent papers on the 
ARIMA-based interpolation in hydrology, the LinAR approach may be considered use-
ful when filling short (up to 12 hourly steps) no-data gaps in water level time series col-
lected at rivers of considerable size. Although the superior performance of the LinAR 
method over purely linear interpolation has been expressed as percentage improvement 
(up to 10%), differences between absolute errors were very small. However, using sta-
tistical inference approaches (e.g. Niedzielski and Kosek 2008; Kalarus et al. 2010; Ren 
et  al. 2022), they were found to be significantly more accurate than the purely linear 
interpolation method.

Although the LinAR method reveals a considerable potential in gap infilling in 
hydrological time series, it also has some limitations. First, though the LinAR imple-
mentation includes statistical tests for stationarity, they may occasionally fail, passing 
non-stationary signal to further analysis. This can lead to unrealistic interpolated val-
ues, especially for long no-data gaps. Thus, we recommend to use LinAR for filling 
short gaps. Second, if a hydrograph is highly irregular the LinAR approach may lead to 
unsatisfactory interpolation, because the autoregressive model reveals mediocre skills 
when modelling highly variable stochastic signals (usually for small rivers). Third, the 
absolute RMSE improvement (LinAR vs. linear interpolation) is small (but statistically 
significant), which may be evaluated by practitioners to have negligible effect on refin-
ing the entire process of gap imputation.

The main takeaway from the study is that the proposed LinAR approach can improve 
the linear interpolation of missing data in hydrology. Although LinAR uses a stochastic 
model, it is computationally efficient, and therefore can be utilized in practical or opera-
tional no-data gap infilling. The limitations of the approach can be mitigated by carry-
ing further studies in: (1) better detection of non-stationarities, (2) employing various 
stochastic methods (other than ARI) in combination with linear interpolation.
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