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Abstract
Climate change is impacting people’s lives, with management of water resources and food 
security being major concerns for the future of many countries. In this paper, future water 
availability, crop water needs, yields, market costs and returns of current crops in a case 
study area in Australia are evaluated under future climatic conditions. The predictive meth-
ods on which the work is based have the advantage of being robust—they are able to simul-
taneously consider many climate change models—giving greater confidence in determining  
what the future will hold in this regard. The results indicate business as usual, in terms of 
the quantity and types of crops that can be grown presently, will not be sustainable in the 
medium and long term future. Instead, modelling indicates that changes in production and 
land use to maximise revenue per megalitre of water will be needed to adapt to future con-
ditions and deliver climate-smart agriculture.
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1  Introduction

The changing climate will impact on quality of life into the medium and long term 
future (Albert et al. 2021). In the Australian context, many climate models are predicting 
a hotter and drier climate that will affect the nation’s ability to grow food crops to feed the 
population to a level that is enjoyed currently (Grose et al. 2020). Using the authors’ newly 
developed robust framework  (Randall et  al. 2022), that is able to consider the effects of 
multiple climate change models simultaneously, this paper describes an approach to adap-
tive water management by tailoring cropping intensity to optimise risk and return suitable 
for the local environment  (Whish et  al. 2019), providing suggested changes in agricul-
ture production that are likely to maintain ecosystem function  (Khan et  al. 2006), mini-
mise farm risk and maximise agricultural resilience through efficient use of limited water 
resources (Hochman et al. 2013).

The Australian Government Department of Agriculture, Water and the Environment 
has estimated that cropping farms have already experienced an average fall in profits of 
35% in the past 20 years, largely attributable to effects of drought and climate variabil-
ity (ABARES 2019). This means that farmers have higher debt loads, while consumers 
bear higher prices and item shortages. Science has techniques and tools that can help to 
reduce these declines. There is an emerging view that there is a crucial need to plan water 
resource management in the context of competing economic, societal and environmental 
values and demands (Tidwell and Van Den Brink 2008; Gorelick and Zheng 2015). The 
discipline of decision science, particularly optimisation and operations research, offers 
essential tools for such planning. These give decision and policy makers the opportunity 
to reduce uncertainty and help to make better decisions that ideally create the best pos-
sible outcome on defined criteria. Farmers, regional planners (such as local councils), 
state and federal government need these optimisation-aided approaches for crop plan-
ning under climate change to ensure appropriate cropping over the coming decades and 
to understand how climate change can affect the types of crops that can be sustainably 
grown into the far future.

The most vital resource in all of this is water, a fundamental necessity for all other 
endeavours. Australia is a semi-arid/arid continent in which water is an extremely precious 
and limited resource (Peel et al. 2007), and its availability patterns are being affected by 
climate change (Freund et al. 2017). It must be shared for uses including, but not limited 
to, direct human needs (e.g., drinking water), industrial use, agricultural purposes, and 
environmental management  (Prosser 2011). In recent years, water for the latter has been 
decreasing which has disrupted normal river function, particularly in the Murray-Darling 
system  (Speer et  al. 2021). The appropriate balance of water usage across human water 
consumption and the environment is necessary. This is difficult as climate modelling pre-
dicts temperature rises and decreased rainfall. Sensible adaptive management of existing 
water resources will be required to ensure long-term cropping sustainability.

Xevi and Khan (2005) presented both a model of water management for a selection 
of crops for a semi-arid agricultural area, and a goal programming approach to solving 
this system under different climatic conditions. Their model sought to maximise or mini-
mise expressed objectives by modifying the cropping selection and area for the selected 
crops, subject to scarce, average and abundant water availability scenarios. These did not 
account for, or predict, variable conditions. Their three stated objectives were to maximise 
net revenue, minimise the variable costs associated with growing the crops and minimise 
groundwater pumping. One of the limitations of the model is that the relationship between 
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water requirements and the groundwater pumping needed is not defined and a limitation of 
the goal programming approach is that the three objectives are aggregated into a weighted 
sum. Thus, it is difficult using this approach to adequately examine trade-off solutions 
which offer a variety of choices for a human decision maker.

Lewis and Randall (2017) addressed these concerns and focussed on the water manage-
ment issues faced by farmers and regional planners in the Murrumbidgee Irrigation Area 
(MIA). They redefined the problem as a multi-objective one and applied a well-known 
optimisation framework to generate Pareto-efficient solutions. This work optimised two 
key output variables: maximising the net revenue generated by the chosen combination of 
crops while minimising the corresponding environmental flow deficit for a particular year. 
Subsequent work has progressively added to the agricultural and environmental realism 
of the body of work. As examples, sensible river extraction limits varying across seasons, 
adding important commercial crops, and giving human decision makers a range of appro-
priate trade-offs from which to select.

Most land use research uses simulations for trade-off decisions; an example is Connor 
et al.’s Land Use Trade-Off (LUTO) (Connor et al. 2015). Using Linear Programming (LP) 
the land-use trade-offs prioritised maximisation of economic returns from land over the 
secondary objective of maximisation of biodiversity services, despite Australia having a 
rudimentary ecoservice industry (Connor et al. 2015; Settre et al. 2019).

The Land-Use Sequence Optimiser (LUSO) (Renton and Lawes 2009) schedules crops 
with consideration to accumulative biotic stresses, capturing effect of current land use on 
future use. The inclusion of weed and disease algorithms adds realism to the modelling. 
However, LUSO assumes all years are ‘average’ production years, potentially underes-
timating pest loads, and omitting the role stochastic weather has on populations. A fur-
ther limitation is that only a single land unit can be analysed, inhibiting its contribution to 
whole-farm management decisions, unless the model is run over all paddocks, a resource-
consuming exercise.

While Renton and Lawes (2009) state combinatorial problems of temporal land use 
options are complex and that heuristic search algorithms are resource parsimonious, they 
discount the near-optimal solutions generated, preferring an exact value as required in sen-
sitivity analysis. This may be appropriate for individual farm analysis but at larger scale, 
regional production shifts are required, so “near-optimal” solutions are fit for purpose, 
identifying coarse-grain shifts in enterprises. The deficiency with LUSO lies in its time 
scale and robustness.

Randall et  al. (2020) further developed a temporal model from the previous work of 
Lewis and Randall (2017). A temporal problem is defined as: “an optimisation problem in 
which all relevant temporal data is considered, as well as the interactions and cumulative 
effects of these data” (p. 2). In effect, these problems are a set of joined problems in which 
each member of the set represents one time unit (such as a year).

While the temporal model allows for planning over extended time horizons, it can only 
use one climate prediction model at any one time. Given that there are many such models 
available with no absolute certainty about which will prevail, it was necessary to enhance 
the temporal modelling so that it could simultaneously accept multiple climate models and 
derive robust crop allocations over time. This has been presented in Randall et al. (2022) 
and named Robust Temporal Optimisation (RTO). In this context, the term “robust” means 
that solutions (crop mixes over time) will produce objective values, such as net revenue and 
environmental flow deficit, that will vary minimally despite which model it is evaluated  
against. (This contrasts with a risk management approach adopted by some others, such 
as Elnashar and Elyamany (2022)). Thus, such solutions give greater certainty for future 



2724	 A. Lewis et al.

1 3

planning and understanding how cropping patterns will change in the medium to far future. 
The results indicated that stable crop mixes into the far future could be found, despite 
which climate prediction may eventuate.

The solutions considered are generated algorithmically from predictions of future cli-
matic conditions. Validation of the accuracy of predicted outcomes is challenging. Optimisa-
tion models are inherently complex to validate. Although some researchers have considered 
the idea of formal optimisation validation  (Aspinall et  al. 2007), it depends on the ability 
to objectively measure changes in resource measures of differing instances. For validation 
to occur, instances would need to have eventuated and outcomes measured. Given the solu-
tions require changes in agricultural practices under changing environments, this is difficult 
to achieve. This prevents validation of model outputs against measurable agricultural data. 
Rather, confidence in model outputs depends on validation of model inputs and the internal 
logic of the model.

The rest of this paper is organised as follows. Section 2 shows how we can use the latest 
models and the robust temporal optimisation framework to help determine the feasibility of 
current practices into the future. Specifically, both a scaling and an optimisation approach 
are used, which include a number of experimental results. These deserve close considera-
tion and are discussed in Sect. 3. Finally, in Sect. 4, the implications of the work are given 
as well as new research directions that are currently being explored.

2 � Methods and Results

As described in Randall et al. (2022), an RTO algorithm has been applied to conditions 
predicted by four global climate models, downscaled to regional landscapes (Evans et al. 
2014) using the Weather Research and Forecasting (WRF) model with three regional cli-
mate models (Ji et al. 2016). This yields an ensemble of 12 climate predictions, each with 
varying changes in ambient temperatures and levels of precipitation in the regions that 
influence local conditions and water available for irrigation in the MIA. Data from the 
ensemble of climate predictions is available for an historical, baseline period (1990–2009), 
the immediate future (2020–2039) and more distant future (2060–2079) (NSW Department 
of Planning and Environment 2022a). Climate data from the 2020–29 and 2060–69 peri-
ods, combined with data on crop requirements, has been structured for use by the optimisa-
tion process and is available online (Lewis et al. 2022).

Agriculture in the MIA is dependent on local rainfall, irrigation from the Murrum-
bidgee River that rises in the Snowy Mountains, and groundwater sources. Rainfall was 
directly predicted from the climate modelling data. Access to groundwater is subject to 
legislative control and has been progressively limited to Long-Term Average Annual 
Extraction Limits  (Kumar 2013). This is explicitly accounted for in constraints applied 
in the optimisation process. At present, license to access surface water for irrigation from 
the river is provided annually at different levels of security. Regional water strategies and 
water sharing plans are under active development, including setting Sustainable Diversion 
Limits (SDLs) for water that can be consumed within catchments (NSW Department of 
Planning and Environment 2022b; Wang et  al. 2018). In addition to agricultural irriga-
tion, this water use also includes for urban and industrial needs, as well as that intended to 
maintain river and environmental health.

In order to allow realistic modelling for future time periods, some reasonable estimate 
was needed for SDLs. Consulting consolidated data for water used in agriculture in the 
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Murrumbidgee catchment from 2005 to 2018  (Aither 2019) and using historical water 
course discharge data from the Australian Bureau of Meteorology (BoM) for the Murrum-
bidgee River at Wagga Wagga (BoM station 410001), and the main canal at Berembed 
(BoM station 410013) (Australian Government Bureau of Meteorology 2022) for the same 
period, a median estimate for annual diversion to the MIA was 26% of the main stream 
flow in the Murrumbidgee River. This corresponded at the time to an annual diversion of 
some 600 gigalitres (GL), though across drought years median flow was limited to about 
380 GL, a median proportion of 35%. For the purposes of this study, an SDL of 26% was 
used. This was calculated as a proportion of the estimated stream flow based on predicted 
precipitation in the Snowy Mountain catchments. The computational framework is illus-
trated in Fig. 1.

Two periods were chosen for study from data available from the NARCliM project: the 
current to immediate future (2020–2029) and the more distant future (2060–2069). The 
optimised crop selections in the 2020’s will be considered the “baseline” for this study. All 
values of net revenue are expressed in 2020 dollars to allow direct comparison of results 
between different time periods. The regional climate in the distant future is predicted to be 
generally hotter and drier, with a significant drop in precipitation in the Snowy Mountains. 
These projections imply a drop in the water available in the river for irrigation. How this 
reduction is addressed is open to a number of approaches.

2.1 � Scaling “Business As Usual”

Agricultural enterprises in the MIA could continue to cultivate baseline crop mixes – a 
“business as usual” approach. However, with less water available for irrigation, the areas 
planted of irrigated crops may need to be reduced. Taking the cropping mix solutions gen-
erated by the RTO for the 2020s, and reducing all crop areas proportionally until they con-
sume no more than the water available monthly under all climate model projections for the 
2060s produces a set of “scaled” solutions that are feasible. The extent of the reduction in 
area cultivated is shown in Fig. 2. To generate the results shown in the figure, solutions 

Fig. 1   Computational framework for processing data from a single climate model. The same framework is 
used with each of the 12 climate scenarios
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were scaled to meet flow restrictions in each year. It is not until the area cultivated is 
reduced to less than 30% of the 2020s crop area that all solutions are feasible under 2060s 
conditions. This implies a considerable reduction in achievable net revenue from irrigated 
crops, as shown in Fig. 3, which plots 2020 solutions scaled to be feasible in the 2060s that 
are in the 99th percentile by net revenue, i.e., highest achievable net revenue.

Figure 3 is a parallel coordinates plot  (Inselberg and Dimsdale 1990) – each solution 
in the set in the 99th percentile of net revenue achieved is represented by a line on the plot 
joining the values of each of the parameters (areas of crops planted, net revenue over 10 
years in dollars, and deficit in flows released for other, downstream uses in megalitres over 
10 years) on the corresponding, parallel vertical axes. By inspecting the intersection of the 
line representing a particular solution with a vertical axis representing a particular crop-
ping area (in hectares) or outcomes, the solutions can be characterised and compared.

For example, by following a line on the plot representing a solution from the 2020s, 
a general trend can be seen for larger areas planted with canola and cotton, in contrast to 
solutions scaled to be feasible in the 2060s that can only plant smaller areas of these broad-
acre crops. Both groups of solutions also emphasise planting vegetable crops, particularly 
in winter. The 2060s-scaled solutions yield lower net revenues, which are achieved with 
higher environmental flow deficits than for solutions from the 2020s. This is reflective of 
the reduction in water available for irrigation in the predicted climates of the 2060s.

In the work described in Lewis and Randall (2017) it was discovered that the optimi-
sation algorithm would greedily allocate the majority of the cultivable land to lucrative 
but perishable crops, producing unrealistic solutions that were unlikely to realise predicted 
profits in practice. Constraints were applied to production of perishable commodities to 
generate more realistic solutions, limiting them to 10% of the national annual production, 
and these constraints have been maintained in subsequent modelling. In the face of the 
drastic reduction in net revenue predicted due to climate change, consideration could be 

Fig. 2   Scaling solutions from 2020s to be feasible in 2060s
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given to easing these constraints. By allowing unconstrained cultivation of these horticul-
tural crops, subject to availability of water, the impact on revenues can be ameliorated, as 
shown in Fig. 4.

This figure contrasts the unconstrained results with the data shown in Fig. 3. It should 
be noted that vertical axes have been scaled to maximum values which may have changed 
from those in the earlier figure, for example for vegetable crops. Maximum values may be 
set by solutions that do not reach the 99th percentile in terms of net revenue and hence have 
been filtered out of the results presented. With unconstrained horticulture, the highest net 
revenue for scaled solutions was achieved. However, inspection of the figure shows that 
virtually nothing else has been planted. Once again, the optimisation algorithm has chosen 
to put “all its eggs in one basket” – it is hardly “business as usual”.

2.2 � Computationally Optimising Crop Selection

An alternative approach to attempting to continue “business as usual” is to allow the RTO 
algorithm to try to find optimal cropping responses to the changes in climatic conditions 
predicted for the 2060s. The solutions generated in such an experiment, taken from the 
99th percentile by net revenue achieved, are shown in Fig. 5. As may be seen in the figure, 
the solutions generated for the 2060s remain quite similar in the most part to those from 
the 2020s, but with reduced net revenues, and increased deficits in environmental flows 
released. One point of difference is a significant increase in summer vegetable crops.

Fig. 3   Solutions from 2020s scaled to be feasible in 2060s and filtered by net revenue achieved
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As a point of reference, Fig. 5 also includes the 2020s solutions scaled to be feasible in 
the 2060s. The net revenues for the “business as usual” solutions are the lowest of all three 
sets of outcomes, and their environmental flow deficits are higher. Use of the optimisation 
algorithm has delivered marked benefit.

As for the scaled solutions, the “optimised” solutions could benefit from allowing 
increased horticultural cropping. This has already become evident in the increased culti-
vation of summer vegetables suggested by the RTO algorithm for the 2060s time period, 
when compared to its solutions for the 2020s. To avoid “runaway” production of these 
perishable commodities, as occurred in earlier experiments, the 2060s optimisation was 
limited to doubling the horticulture crop areas. For comparison, a similar doubling of hor-
ticulture was allowed for in the scaled 2020s solutions, in addition to the scaled, baseline 
solutions. The outcomes are shown in Fig. 6.

Comparing Figs. 5 and 6 a number of distinct features may be seen. Obviously, the area 
given to vegetables (the most lucrative horticultural crops) has been doubled. The land to 
achieve this has come largely from de-emphasising the broadacre crops of cotton and canola.

In terms of the net revenue generated from irrigated agriculture, doubling the area given 
to horticulture significantly improves the profitability of agriculture in the MIA. The 2060 
solutions deliver the highest net revenues, the 2020s scaled to be feasible in the 2060s the 
second highest (both greater than horticulture-constrained, optimal results in the 2020s). 
The 2060 outcomes deliver slightly better results in terms of environmental flow release, 

Fig. 4   High net revenue solutions from 2020s scaled (with unconstrained horticulture) to be feasible in 2060s
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though not achieving targets as well under the constrained water availability of the 2060s 
as in the 2020s.

The focus of the results presented so far has been on net revenues achieved. The opti-
misation algorithm has a second objective, which is to deliver downstream flows for other 
stakeholders in the regional water sharing plans. Under normal conditions, highest prior-
ity is given to the environment (NSW Department of Planning and Environment 2022b). 
For example, in the MIA there are the Ramsar wetlands of the Fivebough and Tuckerbil 
Swamps (Ramsar Sites Information Services 2002). For this reason the amount by which 
a targeted downstream release each month is not met is referred to in this modelling as 
an Environmental Flow Deficit (EFD), though downstream flows also may be subject to 
urban, industrial or indigenous cultural needs and uses. Based on historical data (Xevi and 
Khan 2005), the monthly target was set at 100 ML.

Consideration should be given to the extent to which solutions generated by the opti-
misation process also meet this EFD objective. Figure  7 presents the 99th percentile by 
net revenue of solutions for the 2060s with doubled limits on horticulture, compared with 
solutions for the same period and conditions that are in the 1 st percentile by EFD, i.e., the 
most water-efficient solutions. In the figure it may be seen that the cultivation of vegeta-
bles is almost identical between the two cohorts of solutions. However, the water-efficient 
solutions also favour increased planting of other horticultural crops such as citrus, vines 
and stone fruit. Another contrast is the drastic reduction in cultivation of cotton and canola, 
both broadacre crops with large water requirements. Care must be taken in interpreting 

Fig. 5   Comparison of high net revenue solutions across different eras
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these plots – barley and oats appear to have significant differences between cohorts but 
these differences are less significant given the total areas of cultivation of these crops are 
an order of magnitude smaller than that devoted to cotton and canola.

Another feature that may be noted through inspection of Fig. 7 is that in the 2060s no solu-
tions are able to consistently meet environmental flow targets; even the most water-efficient 
solutions have EFDs that are substantially above zero. Inspection of the input data to the opti-
misation process reveals that available inflows exceeded targets in only 37% of all months 
(averaged over different climate models.) Some previous work explored seasonal variation 
of targets (Lewis et al. 2017) and application of constraints to ensure minimum downstream 
flows were maintained, with some degree of success. However, attempting to prescribe abso-
lute volumes of water in the uncertain future conditions under climate change is prone to fail-
ure; a different approach is advisable.

As the optimisation algorithm employed is a multi-objective evolutionary algorithm, 
it produces Pareto-optimal sets of solutions. The analyses presented using parallel 
coordinate plots have focussed on distinct subsets of the solutions generated – those 
with greatest net revenue or with minimal water usage. This particular, visual analytic 
approach has been used to try to investigate specific differences in the crop mixes that 
achieve these outcomes. It can be informative to view all the solutions against both 
objectives. The sets of solutions for the 2020s, the 2060s, and the 2060s with doubled 
horticultural limits are shown in Fig.  8. Only the solutions in the upper extremes of 

Fig. 6   Comparison of high net revenue solutions across different eras (with doubled horticulture limits)
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each of the curves have been examined in preceding figures, with solutions from the 
lower extreme of the curve representing the 2060s with doubled horticultural limits also 
shown in Fig. 7.

Fig. 7   Comparison of water efficient solutions with high net revenue solutions for 2060s with doubled hor-
ticulture limits

Fig. 8   Pareto optimal sets of solutions in different eras
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As may be clearly seen, each set experiences a “floor” in the EFD that can be 
achieved. The floor for the solutions of the 2020s is at a deficit of significant size. Even 
for that era, the environmental flow targets formulated for an earlier period in previous 
work  (Lewis and Randall 2017) are unachievable, and the problem grows farther into 
the future. At low levels of water consumption, solutions can increase net revenues by 
a variety of means differing very little in the amounts of water used. Beyond this level 
there appears to be an approximately linear relationship between net revenue gained and 
water used. Water efficiency in irrigated agriculture is an increasingly important fac-
tor. Furthermore, for any given level of water consumption, changes in land use can 
significantly impact profitability. As the figure also demonstrates, the optimisation tools 
provide a spectrum of outcomes from which decision makers can choose, depending on 
economic and environmental priorities.

3 � Discussion

Figure 6 shows that there is a general decline in predicted net revenues achievable from 
irrigated agriculture in the MIA in the 2060s. This is largely due to the reduced avail-
ability of water, as was inferred from Fig. 7 and confirmed by inspection of the asso-
ciated inflow data. If, in response to this reduction in available water, an approach is 
adopted of simply scaling down the area cultivated while continuing the cropping mixes 
of the 2020s – “business as usual” – there is a predicted reduction in net revenue achiev-
able from irrigation of 28%. If, however, climate-aware optimisation of cropping is 
undertaken, this reduction in revenue can be roughly halved.

Testing the proposition that increasing production of lucrative horticultural crops 
may be beneficial showed reductions in net revenue can be reversed. Doubling the area 
dedicated to horticulture can lead to a 28% increase in net revenue achievable within the 
same water budget. Implementing a change like this would require capital investment in 
necessary infrastructure – detailed cost/benefit analyses would be needed. The benefits 
of maintaining profitability of agricultural enterprises, domestic value-add to commodi-
ties, and developing potential regional employment opportunities in food processing 
need to be weighed against competing priorities in sharing scarce water resources.

There are further responses to declining availability of water for irrigated agriculture 
that have not been considered in this study. For example, broadacre farming may be able 
to increase dryland cropping, and water itself may be considered as a commodity in 
an active trading market. In investigating other responses, the ability of computational 
tools to deliver insights has been demonstrated to be practical and useful.

For this study, NARCliM has provided information about future ambient conditions 
and precipitation in the MIA case study region. Detailed information about the water 
requirements, costs and revenues was also obtained to synthesise problem instances 
(Randall et  al. 2020; Randall et  al. 2022). From these, it has been possible to derive 
optimised cropping plans for the MIA case study area over the period 2060–69. Given 
climate and detailed crop data for a different area, it would be possible to generate 
future predictions for any other region.
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4 � Conclusions

The outcomes of different approaches to adapt to climate change for irrigated agricul-
ture in the medium and long-term future have been investigated using simulation and 
optimisation methods. These have shown that a simple approach of scaling down exist-
ing cropping practices as available water resources decrease leads to unacceptable 
reductions in net revenue. However, using climate-aware optimisation of cropping plans 
can reduce these losses, and implementing changes in land use can even reverse them. 
The importance of using sophisticated, data-driven tools to help plan and predict agri-
cultural production beyond the immediate future cannot be underestimated. With a rap-
idly changing climate and population increases, governments and farmers alike, in any 
region, can use these tools to make sensible policy and operational decisions now that 
may mitigate the worst of the effects in the future. This adaptive use of precious water 
resources will allow for achieving the goal of global food security.

A number of important areas are currently being pursued in future work:

•	 To date the model has been restricted to a single crop per annum on a particular 
parcel of land. Moving the modelling basis to temporal modelling over one or more 
decades allows the cropping perspective to change from single crops to considering 
whole-of-farm climate-smart agriculture, reflecting the realities of crop rotations 
and more detailed consideration of land use capabilities.

•	 The lack of a sophisticated treatment of market forces and price setting in model-
ling to date has necessitated the use of elementary constraints on horticultural crops. 
A more realistic consideration of supply-chain and market dynamics is needed to 
implicitly constrain the algorithmic tendencies towards monocultures.

•	 The second objective targeting environmental (and other) water needs is to be refor-
mulated to avoid using environmental flow targets, instead aiming for minimal water 
use. It is accepted that there will be a “floor” on the outcomes given the need for 
some agricultural water use, and a “ceiling” imposed by competing needs for water, 
but these can be dealt with by filtering outputs. This will simplify the computational 
modelling and allow external factors governing water allocations to be applied eas-
ily, and varied to explore “what if” scenarios.
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